
159
O. Stock and M. Zancanaro (eds.), Multimodal Intelligent Information Presentation, 159–176
© 2005 Springer. Printed in the Netherlands

G. CARENINI AND C. CONATI

GENERATING TAILORED WORKED-OUT PROBLEM
SOLUTIONS TO HELP STUDENTS LEARN FROM

EXAMPLES

1. INTRODUCTION

Studying examples is one of the most natural ways of learning a new skill. When
studying a worked out solution to a problem, students can focus all their cognitive
resources on understanding one solution step at a time, without being overwhelmed
by the possibly too demanding task of solving the whole problem from scratch.
Given the critical role played by worked out examples in learning, it is not
surprising that substantial research in the field of Intelligent Tutoring Systems (ITS)
has been devoted to understand how to use examples effectively.

Most of this research has focused on how to select examples that can help a
student during problem solving. ELM-PE [Burrow and Weber 1996] and ELM-ART
[Weber and Specht 1997] are two tutoring systems that allow the student to access
relevant examples while solving LISP programming problems and provide
explanations on how each example is relevant for the problem solution.
SHERLOCK [Gott, Lesgold et al. 1996], provides expert solutions to
troubleshooting problems, and helps students compare these solutions with their
own solutions at the end of each problem solving task. CATO [Aleven and Ashley
1997] helps students building legal arguments by generating relevant example cases
and by reifying the connection between the content of the cases and their use in the
arguments.

In contrast with previous work, the research presented in this chapter does not
investigate how to select examples that can help a student during problem solving.
Rather, our focus is on how to describe an example solution so that a student can
learn the most by studying it prior to problem solving. In particular, we address the
issue of how to vary the level of detail of the presented example solution, so that the
same example can be equally stimulating for learners with different degrees of
domain knowledge.

This problem is novel in ITS, as it requires sophisticated natural language
generation (NLG) techniques. While the NLG field has extensively studied the
process of producing text tailored to a model of the user’s inferential capabilities
[Horacek 1997; Korb, McConachy et al. 1997; Young 1999], the application of
NLG techniques in ITS are few and mainly focused on managing and structuring the
tutorial dialogue [Moore 1996; Freedman 2000], rather than on tailoring the
presentation of instructional material to a detailed student model.

160 CARENINI AND CONATI

The rationale behind varying the level of detail of an example solution lies on
cognitive science findings about self-explanation (i.e., generate explanations to
themselves to clarify an example solution) and cognitive load (i.e., the load that
performing a particular task imposes on the learner’s cognitive system). Several
studies indicate that those students who self-explain examples learn better than those
students who read the examples without elaborating them [Chi 2000]. One kind of
self-explanation that these studies showed to be correlated with learning involves
filling in the gaps commonly found in textbook example solutions (gap filling self-
explanation). However, the same studies also showed that most students tend not to
self-explain spontaneously. In the case of gap filling, this phenomenon could be due
to the fact that gap filling virtually requires performing problem solving steps while
studying an example. And, because problem solving can be highly cognitively and
motivationally demanding [Sweller 1988], if the gaps in an example solution are too
many or too difficult for a given student, they may hinder self-explanations aimed at
filling them. Furthermore, if the gaps are too few and too easy the learner’s
cognitive system can be overloaded by the unnecessary information.

We argue that, by monitoring how a student’s knowledge changes when studying
a sequence of examples, it is possible to introduce in the examples appropriate
solution gaps, thus facilitating gap filling self-explanation and providing a smooth
transition from example study to problem solving. We are exploring this hypothesis
by extending the SE-Coach, a framework to support self-explanation of physics
examples [Conati and Vanlehn 2000].

The SE-Coach already effectively guides two other kinds of self-explanations
that have been shown to trigger learning [Chi 2000]: (i) justify a solution step in
terms of the domain theory (step correctness); (ii) map a solution step into the high-
level plan underlying the example solution (step utility). The internal representation
of an example solution used by the SE-Coach to monitor students’ self-explanation
is generated automatically. However, because the SE-Coach does not include any
NLG capability, the example description presented to the student and the mapping
between this description and the internal representation is done by hand. Thus, each
example has a fixed description, containing virtually no solution gaps.

In this chapter, we describe how we extended the SE-Coach with NLG
techniques to (i) automatically generate the example presentation from the example
internal representation, and (ii) selectively insert gaps in the example presentation,
tailored to a student’s domain knowledge.

Several NLG computational models proposed in the literature generate concise
text by taking into account the inferential capabilities of the user.

[Young 1999] presents a system that generates concise plan descriptions tailored
to the hearer’s plan reasoning capabilities. In instructing the user how to accomplish
a certain task, for instance initializing a PDA, the system leaves out details if the
user is assumed to be able to fill them in, given a model of the user’s planning
algorithm and preferences. [Horacek 1997] describes a system that takes into
account the hearer’s logical inference capabilities. The system generates
explanations for planning office space. Facts are omitted from an explanation, if the
user is expected to be able to infer them from previous information and context. The
model of the user’s inferential capabilities consists of a set of deterministic logical

GENERATING TAILORED WORKED-OUT PROBLEM SOLUTIONS 161

rules associated with a stereotypical model of the user’s domain expertise. Finally,
[Korb, McConachy et al. 1997] proposes a system that relies on a model of user’s
probabilistic inferences to generate sufficiently persuasive arguments. In order to
assess whether the user’s degree of belief in the argument conclusion will be within
a target range once an argument is presented, the system represents the argument as
a Bayesian network which encodes a probabilistic model of the user’s beliefs. This
model can also incorporate common errors in human reasoning under uncertainty.

In contrast to all of these approaches, our generation system tailors the content
and organisation of an example to a probabilistic model of the user’s logical
inferences, namely, a model of the system’s uncertainty about the user’s knowledge
of a set of deterministic rules. This allows us to explicitly represent the inherent
uncertainty involved in assessing a learner’s knowledge and reasoning processes.
Furthermore, our system maintains information on what example parts are not
initially presented (i.e., solution gaps), which is critical to support gap-filling self-
explanations for those students who tend not to self-explain autonomously.

In the following sections, we first briefly present the Cognitive Load Theory
(CLT), a theory of instructional design rooted in cognitive science that provides the
background and motivation of our work. After that, we illustrate our general
framework for example generation and presentation. We start by describing in detail
the NLG techniques used and an example of the tailored presentations they generate.
Then, we show how the output of the NLG process supports an interface to guide
gap filling self-explanation. We conclude with a discussion of future work.

2. COGNITIVE LOAD THEORY

Cognitive Load Theory (CLT) is an instructional theory that takes into account
the student’s cognitive limitations as primary factors in learning processes [Sweller
1994], [Cooper 1998]. At the core of the theory is the recognition that, in order to
learn a new skill, relevant information must be first attended to and then processed
in working memory, before it is eventually stored in long-term memory. However,
working memory is limited in capacity and it can store information only for a
limited time. Therefore, according to CLT, effective learning can occur only if the
learner’s cognitive system (working memory in particular) is not overloaded with
information.

On these grounds, CLT strongly criticizes conventional instructional strategies in
which problem solving is excessively emphasized. Traditionally, when a new topic
is taught, only few worked out examples are shown and learning how to apply newly
introduced principles and rules is supposed to occur when students practice them in
solving problems. However, novices who did not have enough practice with
sufficiently varied worked out examples cannot learn effectively when they perform
problems solving. The reason is that, when novices solve a problem, they typically
waste a considerable amount of their limited cognitive resources on processes (e.g.,
means-ends analyses) that are not directly relevant for attending and processing the
information intended to be learned (i.e., how to apply and combine relevant rules
and principles in the target domain).

162 CARENINI AND CONATI

CLT proposes several remedies to improve traditional instructional strategies by
taking into account the learner’s cognitive limitations. These include: goal free
problem solving (i.e., instead of asking students to find a specific quantity, students
are asked to find what they can), have learners study many worked out examples and
then complete partially solved problems, avoid splitting the student’s attention
across multiple sources of information (e.g., graphic and text), avoid presenting
information redundantly (where what is redundant may depend on the learner’s level
of expertise [Kalyuga, Chandler et al. 1997]). Notice that all these suggestions from
CLT have been empirically shown to be beneficial to learners in several domains,
ranging from geometry to biology (e.g., [Paas and Merrienboer 1994]).

The key aspect of CLT that inspires our work is the importance placed on
example studying in learning. CLT claims that, by studying a worked out example,
the learner needs only to attend and process one solution step at a time. As a result,
learning how to apply the rule used to derive that step is unlikely to be hampered by
cognitive overload. However, it is clear that, as the student gains expertise in the
domain, fully specified examples may become less and less effective, because the
student already masters how to derive some of the required steps. Ideally, what the
student needs are examples that leave out steps she is already familiar with, but still
specify the steps she needs to learn how to derive.

Example

Before run-time

Problem definition
(givens and goals)

Domain and planning rules

Problem
Solver

Solution graph

Example Generator

 User Interface

Long-term
user’s model
Long-term

user’s model

Before run-time
Templates

Explanation
strategies

Bayesian
network

Gap filling menu
Text Plan

1a

2a

3b

4

5

1b

2b

6

3a
7

Figure 1. Framework for example generation

In the following sections, we describe a framework that does exactly that. It
generates examples whose level of detail is tailored to the learner’s degree of
domain knowledge. According to CLT, on one hand, if the example says too much
(i.e., too few and/or too small gaps in the solution), it will generate unnecessary
cognitive load because the learner will have to pay attention to steps that she already
knows how to derive. On the other hand, if the example says too little (i.e., too many

GENERATING TAILORED WORKED-OUT PROBLEM SOLUTIONS 163

and/or too large gaps in the solution), it will also generate unnecessary cognitive
load, because the learner will have to fill in the missing steps through problem
solving that may be too cognitively demanding. Essentially, the challenge for our
system is to strike a difficult balance between saying too much and saying too little,
in order to avoid overloading the learner and therefore promote effective learning.

3. THE FRAMEWORK FOR EXAMPLE GENERATION

Figure 1 shows the architecture of our framework for generating tailored
example presentations. The part of the framework labelled “before run-time” is
responsible for generating the internal representation of an example solution from (i)
a knowledge base (KB) of domain and planning rules (for physics in this particular
application); (ii) a formal description of the example initial situation, given
quantities and sought quantities [Conati and Vanlehn 2000]. A problem solver uses
these two knowledge sources to generate the example solution represented as a
dependency network, known as the solution graph. The solution graph encodes how
each intermediate result in the example solution is derived from a domain or
planning rule and from previous results matching that rule’s preconditions.
Consider, for instance, the physics example in Figure 2 (Example1). Figure 3 shows
the part of the solution graph that derives the first three steps mentioned in the
Example1 solution:

establish the goal to apply Newton’s 2nd Law (the corresponding text in
Example1 is:“Because we want to find a force, we apply Newton’s 2nd law
to solve this problem”);
select the body to which to apply the law (the corresponding text in
Example1 is: “We choose Jake as the body”);
identify the existence of a tension force on the body (the corresponding text
in Example1 is: “The helicopter’s rope exerts a tension force T on Jake”).

In the solution graph, intermediate solution facts and goals (F- and G- nodes in
Figure 3) are connected to the rules (R- nodes) used to derive them and to previous
facts and goals matching these rules’ enabling conditions. The connection goes
through rule-application nodes (RA- nodes in Figure), explicitly representing the
application of each rule in the context of a specific example. Thus, the segment of
network in Figure encodes that the rule R-try-Newton-2law establishes the goal to
apply Newton’s 2nd Law (node G-try-Newton-2law) to solve the goal to find the
force on Jake (node G-force-on Jake).

164 CARENINI AND CONATI

Figure 2: Sample Newtonian physics example.

The rule R-goal-choose-body sets the subgoal to find a body to apply the
Newton’s 2nd Law (node G-goal-choose-body), while the rule R-find-forces sets the
subgoal to find all the forces on the body (node G-find-forces). The rule R-body-by-
force dictates that, if one has the goals to find the force on an object and to select a
body to apply Newton’s 2nd Law, that object should be selected as the body. Thus, in
Figure 3 this rule selects Jake as the body for Example1 (node F-Jake-is the body).
The rule R-tension-exists says that if an object is tied to a taut string, then there is a
tension force exerted by the string on the object. When applied to Example1, this
rule generates the fact that there is a tension force on Jake (node F-tension-on-Jake
in Figure 3).

The solution graph can be seen as a model of correct self-explanation for the
example solution, because for each solution fact it encodes the various types of self-
explanations relevant to understand it: step correctness (what domain rule generated
that fact), step utility (what goal that fact fulfills in the high-level plan underlying
the example solution) and gap filling (how the fact derives from previous solution
steps).

In the SE-Coach, every time a student is shown an example, the corresponding
solution graph provides the structure for a Bayesian network (see right bottom side

GENERATING TAILORED WORKED-OUT PROBLEM SOLUTIONS 165

of Figure, link-1a) that uses information about how the student reads and self-
explains that example to generate a probabilistic assessment of how well the student
understands the example and the related rules [Conati and Vanlehn 2000]. The prior
probabilities to initialise the rule nodes in the Bayesian network come from the long-
term student model (see Figure, link-3b), which contains a probabilistic assessment
of a student’s current knowledge of each rule in the KB.

RuleR

Fact/GoalF/G

Rule ApplicationRA

R - try - Newton - 2law

F- Jake -is - the - body

R- goal - choose - body

R- body - by - force

RA- goal - choose -b ody

RA - body - by - force

G- goal - choose - body

G- force - on - Jake

G- try - Newton - 2law

RA- try - Newton - 2law F- hangs - from - rope

G- find - forces

F- tension - on- Jake

RA- find - forces

RA - tension - exists

R- tension - exists

R- find - forces

RuleR

Fact/GoalF/G

Rule ApplicationRA

RuleR

Fact/GoalF/G

Rule ApplicationRA

R - try - Newton - 2law

F- Jake -is - the - body

R- goal - choose - body

R- body - by - force

RA- goal - choose -b ody

RA - body - by - force

G- goal - choose - body

G- force - on - Jake

G- try - Newton - 2law

RA- try - Newton - 2law F- hangs - from - rope

G- find - forces

F- tension - on- Jake

RA- find - forces

RA - tension - exists

R- tension - exists

R- find - forces

Figure 3: Segment of solution graph for Example1.

The long-term student model is created when the user starts using the SE-Coach.
At first, the model is initialized either with existing data on student relevant Physics
knowledge, or with uniform priors, when these data are not available. Then, the
model is updated every time the student finishes studying an example, with the new
rule probabilities computed by the corresponding Bayesian network (see Figure,
link-7).

In the SE-Coach, the solution graph and Bayesian network described above are
used to support students in generating self-explanations for step correctness and step
utility only. No explicit monitoring and support for gap filling self-explanation is
provided. This is because in the SE-Coach, the description of the example solutions
presented to the student and the mapping between these descriptions and the
corresponding solution graphs are done by hand. This makes it impossible to tailor
an example description to the dynamically changing student model by inserting gaps

166 CARENINI AND CONATI

at the appropriate difficulty level for a given student. We have overcome this
limitation by adding to the SE-Coach the example generator (see Figure), an NLG
system that can automatically tailor the detail level of an example description to the
student’s knowledge, in order to avoid overloading the student’s cognitive resources
and thus stimulate and support gap-filling self-explanation.

4. THE EXAMPLE GENERATOR (EG)

EG is designed as a standard pipelined NLG system [Reiter and Dale 2000]. A
text planner [Young and Moore 1994] selects and organizes the example content,
then a microplanner and a sentence generator realize this content into language. In
generating an example, EG relies on two key communicative knowledge sources
(Figure, links 2a and 2b): (i) a set of explanation strategies that allow the text
planner to determine the example’s content, organization and rhetorical structure;
(ii) a set of templates that specifies how the selected content can be phrased in
English.

The design of these sources involved a complex acquisition process. We
obtained an abstract model of an example’s content and organisation from a detailed
analysis of the rules used to generate the solution graph. This was combined with an
extensive examination of several physics textbook examples, which also allowed us
to model the examples’ rhetorical structure and the syntactic and semantic structure
of their clauses. To analyse the rhetorical structure of the examples, we followed
Relational Discourse Analysis (RDA) [Moser, Moore et al. 1996], a coding scheme
devised to analyse tutorial explanations. The semantic and syntactic structure of the
examples’ clauses was used to design the set of templates that map content into
English.

We now provide the details of the selection and organisation of the example
content. In EG, this process relies on the solution graph and on the probabilistic
long-term student model (Figure 1, links 3a and 3b). It consists of two phases, text
planning and revision, to reduce the complexity of the plan operators and increase
the efficiency of the planning process. Text planning selects from the solution graph
a knowledge pool of all the propositions (i.e., goals and facts) necessary to solve a
given example, and it organizes them according to ordering constraints also
extracted from the solution graph. The output of this phase, if realized, would
generate a fully detailed example solution. After text planning, a revision process
uses the assessment in the student’s long-term model to decide whether further
content selection can be performed to insert appropriate solution gaps. Text planning
and revision are described in the following sub-sections.

4.1 Text Planning Process

The input to the text planner consists of (i) the abstract communicative action of
describing an example solution; (ii) the example solution graph; (iii) the explanation
strategies. The planning process selects and organizes the content of the example
solution by iterating through a loop of communicative action decomposition1.

GENERATING TAILORED WORKED-OUT PROBLEM SOLUTIONS 167

Abstract actions are decomposed until primitive communicative actions (executable
as speech acts) are reached. In performing this task, the text planner relies on the set
of explanation strategies that specify possible decompositions for each
communicative action and the constraints dictating when they may be applied. These
constraints are checked against the solution graph and when they are satisfied the
decomposition is selected and appropriate content is also extracted from the solution
graph. For illustration, Figure 4 (a) shows a simplified explanation strategy that
decomposes the communicative action describe-solution-method. Possible
arguments for this action are, for instance, the Newton’s-2nd-Law and the
Conservation-of-Energy methods. Looking at the details of the strategy, the function
find-steps (:constraints field) checks in the solution graph whether the method has
any steps. If this is the case, the steps are retrieved from the solution graph and the
describe-solution-method action is decomposed in an inform-about primitive action
and in a describe-method-steps abstract action. The output of the planning process is
a text plan, a data structure that specifies what propositions the example should
convey, a partial order over those propositions and the example rhetorical structure.
A portion of the text plan generated by EG for Example1 is shown in Figure 4(b).

The propositions that the example should convey are specified as arguments of the
primitive actions in the text plan. In Figure 4(b) all primitive actions are of type inform.

For instance, the primitive action (Inform-about (act-on Jake weight)) specifies the
proposition (act-on Jake weight), which is realized in the example description as “the
other force acting on Jake is his weight”. In the text plan, the communicative actions
are partially ordered. This ordering is not shown in the figure for clarity’s sake; the
reader can assume that the actions are ordered starting at the top. The example

rhetorical structure consists of the action decomposition tree and the
informational/intentional relations among the communicative actions. For instance, in

Figure(b), the rhetorical structure associated with the action describe-solution-
method specifies that, to describe the solution method, the system has to perform
two actions: (i) inform the user about the method adopted; (ii) describe all the steps
of the method. Between these two actions the Enable intentional relation and the
Goal:Act informational relation hold. All the informational/intentional relations used
in EG are discussed in (Moser, Moore et al. 1996] We clarify here only the meaning
of the Enable relation because this relation is critical in supporting gap-filling self-
explanations. An intentional Enable relation holds between two communicative
actions if one provides information intended to increase either the hearer’s
understanding of the material presented by the other, or her ability to perform the
domain action presented by the other.

168 CARENINI AND CONATI

(Describe example1)

(Inform-about-problem find-force)

(Inform-about (choose-simple-body Jake))
(Describe-step choose-body)

(Inform-about-method Newton’s-2nd-Law)

(Describe-step body’s-properties)

(Describe-step all-forces-on-body)
(Inform-about (act-on Jake tension))

(Inform-about (act-on Jake weight))

(Show free-body-diagram)

(Describe-solution-method Newton’s-2nd-
L)

(Describe-substeps-method Newton’s-2nd-Law)

Enable Goal:Act

Joint Step1:Step2

Enable Preparation:Act

Enable Goal:Act

Communicative action decomposition Intentional/Informational relations

Graphical
actions…

(Describe-step specify-component-equations)

(Describe-step write-component-equations)
(Describe-step choose-coordinate-axes)

(Describe-solution-method ?method
 :constraints
 (find-steps ?method ?steps)
 :sub-actions
 ((a1 (Inform-about ?method))
 (a2 (describe-method-steps ?steps)))
:relations
 ((r1 (Enable a2 a1))
 (r2 (Goal:Act a1 a2))))

(a)

(b)

Figure 4: (a) Sample explanation strategy. (b) Portion of the text plan.

4.2 The Revision Process

Once the text planner has generated a text plan for the complete example, the
revision process revises the plan to possibly insert solution gaps that can make the
example more stimulating for a specific student. As described in the section on CLT,
the key idea is to insert solution gaps of adequate difficulty. In this way, the student
can practice applying newly acquired knowledge without incurring in the excessive
cognitive load due either to too demanding problem solving (i.e., when gaps are too
many/large), or to unnecessary information (i.e., when gaps are too few/small).

In most NLG systems, the revision process typically involves reorganizing the
text plan. In contrast, revision in EG does not change the structure of the text plan.
Rather, the EG revision process only performs further content selection by
consulting the probabilistic long-term student model that estimates the current
student’s domain knowledge (see of Figure, link-3b). More specifically, the revision
process examines each proposition specified by a primitive communicative action in
the text plan and, if according to the student model, there is a high probability
(above a given threshold) that the student knows the rule necessary to infer that

GENERATING TAILORED WORKED-OUT PROBLEM SOLUTIONS 169

proposition, the action is de-activated. De-activated actions are kept in the text plan
but are not realized in the text, thus creating solution gaps. However, as we will see
in the next section, de-activated actions may be realized in follow-up interactions.

As an illustration of the effects of the revision process on content selection,
compare the example solutions shown in Figure 5 and Figure 6. Figure 5 displays
the worked out solution for Example2 which, similarly to Example1, does not
contain any solution gaps. In contrast, the same portion of Example2 solution shown
in Figure 6 is much shorter, including several solution gaps. As previously
described, EG determines what information to leave out by consulting the long-term
probabilistic student model. In particular, the concise solution in Figure 6 is
generated by EG if the student had previously studied Example1 with the SE-Coach
and generated self-explanations of correctness and utility providing sufficient
evidence that she understands the rules used to derive Example1 solution. When
selecting the content for Example2, EG leaves out all the propositions derived from
the rules that the student has learned from Example1. Notice, for instance, that the
concise solution in Figure 6 does not mention the solution method used and the
weight force. Also, the choice of the body and of the coordinate system is only
conveyed indirectly.

Even if a student has sufficient knowledge to fill in the solution gaps inserted by
the revision process, she may not actually perform the required inferences when
studying the example. As a matter of fact, cognitive science studies show that most
students tend not to self-explain spontaneously [Chi 2000]. Thus, once the text plan
is revised and realized, the system presents the concise example with tools designed
to stimulate gap filling self-explanation. These tools help a student to detect gaps in
an example solution and to fill the gaps.

5. SUPPORT FOR GAP FILLING SELF-EXPLANATION

To support gap-filling self-explanation, we have extended the interface that the
SE-Coach uses to support self-explanations for step correctness and utility. In this
interface, described in [Conati and Vanlehn 2000] each example’s graphical element
and solution step presented to the student is covered with gray boxes.

Figure 7 shows a segment of the example solution in Figure 6 as presented with
the masking interface.
To view an example part, the student must move the mouse over the box that covers
it, thus allowing the interface to track what the student is reading. When the student
uncovers an example part, if the SE-Coach determines that the student needs to self-
explain that step at that time, a “self-explain” button appears next to it (see Figure 8
(a1)). Clicking on this button generates more specific prompts that suggest one or
more of the self-explanations for correctness, utility or gap filling, depending upon
which of them are needed by the current student to fully understand the uncovered
step.

170 CARENINI AND CONATI

Figure 5. Portion of Example2 without solution gaps.

In particular, the text plan produced by EG is the key element in determining
whether a prompt for gap filling is generated (Figure 1, link 4). A prompt for gap
filling is generated whenever some of the primitive communicative actions that
were de-activated during the revision process are related through an Enable
intentional relation to the communicative action expressing the uncovered example
part. The rationale behind this condition is that a solution gap with respect to an
example part comprises all the solution steps that were left out, but whose
understanding is a direct precondition to derive that example part. For instance,
given the example part uncovered in Figure 8(a1), there is only one solution gap
preceding it, namely the one corresponding to the communicative action Inform-
about (choose-simple-body wagon)2.

GENERATING TAILORED WORKED-OUT PROBLEM SOLUTIONS 171

Figure 6. Portion of Example2 with solution gap.

Figure 7. Masking interface to track what the student is attending to.

As shown in Figure 8 (a1), the prompt for gap filling is generated by adding the
item “filling in missing steps” to the self-explain menu. If the student clicks on this
item, the interface inserts in the solution text an appropriate number of masking
boxes, representing the missing steps (see Figure 8 (a2), first box from top). The
interface also activates a dialogue box that allows the student to fill in the missing
steps. Since the interface currently does not process natural language input, the
student needs to fill each missing step by selecting a sentence describing the step
from a set of possible alternatives. Each alternative is either generated by EG by
applying the realisation component to unrealised communicative actions in the text
plan (see Figure 1, link 5), or it is randomly chosen from a pool of steps unrelated to
the current problem.

172 CARENINI AND CONATI

(a1)

(b1) Pull-down menu interface

(b2) Radio-button interface

 We apply Newton’s 1st law

 We choose the wagon as the body

 The wagon’s weight W is directed downward

(a2)

Figure 8. Interface techniques for gap-filling self-explanation. (a1-2) Techniques to
prompt the user for gap-filling and to indicate location of missing steps. (b1-2) Two
versions of the dialogue box that supports the student in filling in the missing steps.

We have implemented two versions of the dialogue box that support the student
in filling in the missing steps. As shown in Figure 8 (b1-2), one version is based on
pull-down menus, while the other on radio-buttons. A key difference between the
two is that, when more than one step is missing, radio buttons allow the student to

GENERATING TAILORED WORKED-OUT PROBLEM SOLUTIONS 173

inspect all the alternatives for all the missing steps at the same time. In contrast, with
pull-down menus the student has to focus on one missing step at a time.

We have performed a preliminary user study involving 26 students to determine
which of the two versions students prefer. Unfortunately, the result of the study was
inconclusive with roughly half of the students preferring one version and the other
half preferring the other. Several students mentioned that radio-buttons were
confusing when more than one missing step was present, because too much text was
displayed. As for pull-down menus, one complaint was the need of a mouse click to
see what options are available.

Additional studies are clearly needed, especially to identify user differences that
can explain the differences in their preferences; and also to explore whether hybrid
combinations of pull-down menus and radio-buttons might be more effective and
more acceptable to users.

Going back to the student interaction with the gap-filling interface, let’s assume
now that the student, regardless of which of the two dialogue boxes had been
provided, makes her selection for filling in the missing step. When this happens, the
student receives immediate feedback on the correctness of his selection, which is
also sent to the Bayesian network built for the current example (see Figure 1, link 6).
The network fact node that corresponds to the missing step is clamped to either true
or false, depending on the correctness of the student’s selection, and the network
updates the probability of the corresponding rule consequently.

As we mentioned in Section 3, at the end of the interaction with the current
example, the long-term student model is updated with the new rule probabilities
from the example Bayesian network . In particular, if the student’s actions have
shown that he is not ready to apply a given rule to fill a solution gap, this rule’s
probability will decrease in the long-term student model (see Figure 1, link-7).
When this happens, if the resulting rule probability is too low (i.e., below the
threshold), the next presented example involving this rule will include the solution
steps the rule generates, giving the student another opportunity to see how the rule is
applied.

6. CONCLUSIONS AND FUTURE WORK

We have presented a tutoring framework that integrates principles and
techniques from ITS and NLG to improve the effectiveness of example studying for
learning. Our framework uses an NLG module and a probabilistic student model to
introduce solution gaps in the example solutions presented to a student. Gaps are
introduced when the student model assesses that the student has gained from
previous examples sufficient knowledge of the rules necessary to derive the
eliminated steps. The goal is to allow the student to practice applying these rules in
problem solving episodes of difficulty adequate for his knowledge.

Our framework is innovative in two ways. First, it extends ITS research on
supporting the acquisition of the learning skill known as self-explanation, by
providing tailored guidance for gap filling self-explanation. Second, it extends NLG

174 CARENINI AND CONATI

techniques on producing user-tailored text by relying on a dynamically updated
probabilistic model of the user logical inferences.
As future work, in the short term, we plan to investigate how the prediction
capabilities of the probabilistic student model can be used to refine the strategies
that EG uses to decide when to leave out a solution step. Currently the model is used
to diagnose the student’s understanding of the relevant physics rules given the
student’s interaction with the system. The results of this diagnosis, i.e., the updated
rule probabilities, are then used directly to decide if the student can apply each rule
to derive a corresponding solution step, and if so to deactivate that step in the
presented solution. This approach is reasonable, if we assume that we always insert
only gaps that include only one missing solution step. However, if we want to insert
gaps that consist of chains of two or more steps, the fact that the student has enough
knowledge to infer each of these steps in isolation does not imply that the user can
actually make the chain of inferences, because of the increased cognitive load that
this process entails. Thus, we are working on using the student model to predict,
given one or more chains of deactivation, if the student can actually derive them
given the current rule probabilities in the model.

A more long-term step in our research will be to test the effectiveness of our
framework through empirical studies. These studies are crucial to refine the
probability threshold currently used to decide when to leave out a solution step,
and possibly to identify additional principles to inform the text plan revision.

Additional future work involves NLG research. First, we plan to investigate how
the example text plan can be used to maintain the coherence of the other example
portions, when the student fills a solution gap. Second, we will start working on how
to integrate the generation of the textual example solution and of the graphical
elements of the example (e.g., the free body diagram). Third, we aim to verify
whether a template-based approach to realization is sufficiently powerful to cover
our target domain of physics examples.

7. ACKNOWLEDGEMNTS

We thank Andréa Burnt for help in reviewing literature on Cognitive Load Theory
and its applications in Intelligent Tutoring Systems.

8. NOTES

1. Communicative actions satisfy communicative goals. So, text planning actually involves two
intertwined processes of goal and action decomposition. To simplify our presentation, we only refer
to communicative actions and their decomposition.

2. Since the text plans for Example1 and Example2 are structurally the same, this can be verified in
Figure 4(b), in which the missing step would have been Inform about (choose-simple-body Jake).

9. REFERENCES

[Aleven and Ashley 1997] V. Aleven and K. D. Ashley. Teaching case-based argumentation through a
model and examples: Empirical evalution of an intelligent learning environment. Proc. of the
Artificial Intelligence in Education, Kobe, Japan, 1997.

GENERATING TAILORED WORKED-OUT PROBLEM SOLUTIONS 175

[Burrow and Weber 1996] R. Burrow and G. Weber. Example explanation in learning environments.
Proc. of the Intelligent Tutoring Systems - Proceedings of the Third International Conference, ITS
'96, Springer: 457-465, 1996.

[Chi 2000] M. T. H. Chi. Self-Explaining Expository Texts: The Dual Processes of Generating Inferences
and Repairing Mental Models. Advances in Instructional Psychology. R. Glaser. Mahwah, NJ,,
Lawrence Erlbaum Associates: 161-238, 2000.

[Conati and Carenini 2001] C. Conati and G. Carenini. Generating Tailored Examples to Support
Learning via Self-Explanation. Proc. of the Proceedings of the 17th Joint International Conference
on Artificial Intelligence (IJCAI 2001), Seattle, USA, 2001.

[Conati and Vanlehn 2000] C. Conati and K. Vanlehn. Toward Computer-Based Support of Meta-
Cognitive Skills: a Computational Framework to Coach Self-Explanation. International Journal of
Artificial Intelligence in Education 11: 398-415, 2000.

[Cooper 1998] G. Cooper. Research into Cognitive Load Theory and Instructional Design at UNSW,
University of New South Wales, Australia, 1998.

[Freedman 2000] R. Freedman. Plan-based dialogue management in a physics tutor. Proc. of the Sixth
Applied Natural Language processing Conference (ANLP '00), Seattle, 2000.

[Gott, Lesgold et al. 1996] S. P. Gott, A. Lesgold and R. S. Kane. Tutoring for transfer of technical
competence. Constructivist Learning Environments. B. G. Wilson. Englewood Cliffs, NJ,
Educational Technology Publications: 33-48, 1996.

[Horacek 1997] H. Horacek. A Model for Adapting Explanations to the User's Likely Inferences. UMUAI
7(1): 1-55, 1997.

[Kalyuga, Chandler et al. 1997] S. Kalyuga, P. Chandler and J. Sweller. Levels of Expertise and User-
Adapted Formats of Instructional Presentations: A Cognitive Load Approach. Proc. of the User
Modeling: Proceedings of the Sixth International Conference, UM97, 1997.

[Korb, McConachy et al. 1997] K. B. Korb, R. McConachy and I. Zukerman. A Cognitive Model of
Argumentation. Proc. of the Proceedings of the Nineteenth Annual Conference of the Cognitive
Science Society: 400-405, 1997.

[Moore 1996] J. D. Moore. Discourse generation for instructional applications: Making computer-based
tutors more like humans. Journal of Artificial Intelligence in Education 7(2): 181-124, 1996.

[Moser, Moore et al. 1996] M. G. Moser, J. D. Moore and E. Glendening. Instructions for Coding
Explanations: Identifying Segments, Relations and Minimal Units, University of Pittsburgh,
Department of Computer Science, 1996.

[Paas and Merrienboer 1994] F. Paas and J. Merrienboer. Variability of Worked Examples and Transfer
of Geometrical problem-Solving Skills: A Cognitive-Load Approach. Journal of Educational
Psychology 86(1): 122-133, 1994.

[Reiter and Dale 2000] E. Reiter and R. Dale. Building Natural Language Generation Systems,
Cambridge University Press, 2000.

[Sweller 1988] J. Sweller. Cognitive load during problem solving: effects on learning. Cognitive Science
12: 257-285, 1988.

[Sweller 1994] J. Sweller. Cognitive Load Theory, Learning Difficulty, and Instructional Design.
Learning and Instruction 4: 295-312, 1994.

[Weber and Specht 1997] G. Weber and M. Specht. User modeling and adaptive navigation support in
WWW-based tutoring systems. Proc. of the Proceedings of User Modeling '97, 1997.

[Young 1999] M. R. Young. Using Grice's maxim of Quantity to select the content of plan descriptions.
Artificial Intelligence 115(2): 215-256, 1999.

[Young and Moore 1994] R. M. Young and J. D. Moore. DPOCL: A Principled Approach to Discourse
Planning. Proc. of the Proceedings of the 7th International Workshop on Text Generation,
Montreal, Canada, 1994.

10. AFFILIATIONS

Giuseppe Carenini and Cristina Conati
 University of British Columbia
 Vancouver, Canada

