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G. CARENINI AND C. CONATI 

GENERATING TAILORED WORKED-OUT PROBLEM 
SOLUTIONS TO HELP STUDENTS LEARN FROM 

EXAMPLES

1. INTRODUCTION 

Studying examples is one of the most natural ways of learning a new skill. When 
studying a worked out solution to a problem, students can focus all their cognitive 
resources on understanding one solution step at a time, without being overwhelmed 
by the possibly too demanding task of solving the whole problem from scratch. 
Given the critical role played by worked out examples in learning, it is not 
surprising that substantial research in the field of Intelligent Tutoring Systems (ITS) 
has been devoted to understand how to use examples effectively.  

Most of this research has focused on how to select examples that can help a 
student during problem solving. ELM-PE [Burrow and Weber 1996] and ELM-ART 
[Weber and Specht 1997] are two tutoring systems that allow the student to access 
relevant examples while solving LISP programming problems and provide 
explanations on how each example is relevant for the problem solution. 
SHERLOCK [Gott, Lesgold et al. 1996], provides expert solutions to 
troubleshooting problems, and helps students compare these solutions with their 
own solutions at the end of each problem solving task. CATO [Aleven and Ashley 
1997] helps students building legal arguments by generating relevant example cases 
and by reifying the connection between the content of the cases and their use in the 
arguments.  

In contrast with previous work, the research presented in this chapter does not 
investigate how to select examples that can help a student during problem solving. 
Rather, our focus is on how to describe an example solution so that a student can 
learn the most by studying it prior to problem solving. In particular, we address the 
issue of how to vary the level of detail of the presented example solution, so that the 
same example can be equally stimulating for learners with different degrees of 
domain knowledge.  

This problem is novel in ITS, as it requires sophisticated natural language 
generation (NLG) techniques. While the NLG field has extensively studied the 
process of producing text tailored to a model of the user’s inferential capabilities 
[Horacek 1997; Korb, McConachy et al. 1997; Young 1999], the application of 
NLG techniques in ITS are few and mainly focused on managing and structuring the 
tutorial dialogue [Moore 1996; Freedman 2000], rather than on tailoring the 
presentation of instructional material to a detailed student model. 
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The rationale behind varying the level of detail of an example solution lies on 
cognitive science findings about self-explanation (i.e., generate explanations to 
themselves to clarify an example solution) and cognitive load (i.e., the load that 
performing a particular task imposes on the learner’s cognitive system). Several 
studies indicate that those students who self-explain examples learn better than those 
students who read the examples without elaborating them [Chi 2000]. One kind of 
self-explanation that these studies showed to be correlated with learning involves 
filling in the gaps commonly found in textbook example solutions (gap filling self-
explanation). However, the same studies also showed that most students tend not to 
self-explain spontaneously. In the case of gap filling, this phenomenon could be due 
to the fact that gap filling virtually requires performing problem solving steps while 
studying an example. And, because problem solving can be highly cognitively and 
motivationally demanding [Sweller 1988], if the gaps in an example solution are too 
many or too difficult for a given student, they may hinder self-explanations aimed at 
filling them. Furthermore, if the gaps are too few and too easy the learner’s 
cognitive system can be overloaded by the unnecessary information. 

We argue that, by monitoring how a student’s knowledge changes when studying 
a sequence of examples, it is possible to introduce in the examples appropriate 
solution gaps, thus facilitating gap filling self-explanation and providing a smooth 
transition from example study to problem solving. We are exploring this hypothesis 
by extending the SE-Coach, a framework to support self-explanation of physics 
examples [Conati and Vanlehn 2000].  

The SE-Coach already effectively guides two other kinds of self-explanations
that have been shown to trigger learning [Chi 2000]: (i) justify a solution step in 
terms of the domain theory (step correctness); (ii) map a solution step into the high-
level plan underlying the example solution (step utility). The internal representation 
of an example solution used by the SE-Coach to monitor students’ self-explanation 
is generated automatically. However, because the SE-Coach does not include any 
NLG capability, the example description presented to the student and the mapping 
between this description and the internal representation is done by hand. Thus, each 
example has a fixed description, containing virtually no solution gaps.  

In this chapter, we describe how we extended the SE-Coach with NLG 
techniques to (i) automatically generate the example presentation from the example 
internal representation, and (ii) selectively insert gaps in the example presentation, 
tailored to a student’s domain knowledge.  

Several NLG computational models proposed in the literature generate concise 
text by taking into account the inferential capabilities of the user.

[Young 1999] presents a system that generates concise plan descriptions tailored 
to the hearer’s plan reasoning capabilities. In instructing the user how to accomplish 
a certain task, for instance initializing a PDA, the system leaves out details if the 
user is assumed to be able to fill them in, given a model of the user’s planning 
algorithm and preferences. [Horacek 1997] describes a system that takes into 
account the hearer’s logical inference capabilities. The system generates 
explanations for planning office space. Facts are omitted from an explanation, if the 
user is expected to be able to infer them from previous information and context. The 
model of the user’s inferential capabilities consists of a set of deterministic logical 
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rules associated with a stereotypical model of the user’s domain expertise. Finally, 
[Korb, McConachy et al. 1997] proposes a system that relies on a model of user’s 
probabilistic inferences to generate sufficiently persuasive arguments.  In order to 
assess whether the user’s degree of belief in the argument conclusion will be within 
a target range once an argument is presented, the system represents the argument as 
a Bayesian network which encodes a probabilistic model of the user’s beliefs. This 
model can also incorporate common errors in human reasoning under uncertainty. 

In contrast to all of these approaches, our generation system tailors the content 
and organisation of an example to a probabilistic model of the user’s logical 
inferences, namely, a model of the system’s uncertainty about the user’s knowledge 
of a set of deterministic rules. This allows us to explicitly represent the inherent 
uncertainty involved in assessing a learner’s knowledge and reasoning processes. 
Furthermore, our system maintains information on what example parts are not 
initially presented (i.e., solution gaps), which is critical to support gap-filling self-
explanations for those students who tend not to self-explain autonomously.    

In the following sections, we first briefly present the Cognitive Load Theory  
(CLT), a theory of instructional design rooted in cognitive science that provides the 
background and motivation of our work. After that, we illustrate our general 
framework for example generation and presentation. We start by describing in detail 
the NLG techniques used and an example of the tailored presentations they generate.  
Then, we show how the output of the NLG process supports an interface to guide 
gap filling self-explanation. We conclude with a discussion of future work. 

2. COGNITIVE LOAD THEORY 

Cognitive Load Theory (CLT) is an instructional theory that takes into account 
the student’s cognitive limitations as primary factors in learning processes [Sweller 
1994], [Cooper 1998]. At the core of the theory is the recognition that, in order to 
learn a new skill, relevant information must be first attended to and then processed 
in working memory, before it is eventually stored in long-term memory. However, 
working memory is limited in capacity and it can store information only for a 
limited time. Therefore, according to CLT, effective learning can occur only if the 
learner’s cognitive system (working memory in particular) is not overloaded with 
information.  

On these grounds, CLT strongly criticizes conventional instructional strategies in 
which problem solving is excessively emphasized.  Traditionally, when a new topic 
is taught, only few worked out examples are shown and learning how to apply newly 
introduced principles and rules is supposed to occur when students practice them in 
solving problems. However, novices who did not have enough practice with 
sufficiently varied worked out examples cannot learn effectively when they perform 
problems solving. The reason is that, when novices solve a problem, they typically 
waste a considerable amount of their limited cognitive resources on processes (e.g., 
means-ends analyses) that are not directly relevant for attending and processing the 
information intended to be learned (i.e., how to apply and combine relevant rules 
and principles in the target domain).  
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CLT proposes several remedies to improve traditional instructional strategies by 
taking into account the learner’s cognitive limitations. These include: goal free 
problem solving (i.e., instead of asking students to find a specific quantity, students 
are asked to find what they can), have learners study many worked out examples and 
then complete partially solved problems, avoid splitting the student’s attention 
across multiple sources of information (e.g., graphic and text), avoid presenting 
information redundantly (where what is redundant may depend on the learner’s level 
of expertise [Kalyuga, Chandler et al. 1997]). Notice that all these suggestions from 
CLT have been empirically shown to be beneficial to learners in several domains, 
ranging from geometry to biology (e.g., [Paas and Merrienboer 1994]).  

The key aspect of CLT that inspires our work is the importance placed on 
example studying in learning.  CLT claims that, by studying a worked out example, 
the learner needs only to attend and process one solution step at a time. As a result, 
learning how to apply the rule used to derive that step is unlikely to be hampered by 
cognitive overload. However, it is clear that, as the student gains expertise in the 
domain, fully specified examples may become less and less effective, because the 
student already masters how to derive some of the required steps. Ideally, what the 
student needs are examples that leave out steps she is already familiar with, but still 
specify the steps she needs to learn how to derive.
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Figure 1. Framework for example generation 

In the following sections, we describe a framework that does exactly that. It 
generates examples whose level of detail is tailored to the learner’s degree of 
domain knowledge. According to CLT, on one hand, if the example says too much 
(i.e., too few and/or too small gaps in the solution), it will generate unnecessary 
cognitive load because the learner will have to pay attention to steps that she already 
knows how to derive. On the other hand, if the example says too little (i.e., too many 
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and/or too large gaps in the solution), it will also generate unnecessary cognitive 
load, because the learner will have to fill in the missing steps through problem 
solving that may be too cognitively demanding. Essentially, the challenge for our 
system is to strike a difficult balance between saying too much and saying too little, 
in order to avoid overloading the learner and therefore promote effective learning.  

3. THE FRAMEWORK FOR EXAMPLE GENERATION 

Figure 1 shows the architecture of our framework for generating tailored 
example presentations. The part of the framework labelled “before run-time” is 
responsible for generating the internal representation of an example solution from (i) 
a knowledge base (KB) of domain and planning rules (for physics in this particular 
application); (ii) a formal description of the example initial situation, given 
quantities and sought quantities [Conati and Vanlehn 2000]. A problem solver uses 
these two knowledge sources to generate the example solution represented as a 
dependency network, known as the solution graph.  The solution graph encodes how 
each intermediate result in the example solution is derived from a domain or 
planning rule and from previous results matching that rule’s preconditions. 
Consider, for instance, the physics example in Figure 2 (Example1). Figure 3 shows 
the part of the solution graph that derives the first three steps mentioned in the 
Example1 solution:  

establish the goal to apply Newton’s 2nd Law (the corresponding text in 
Example1 is:“Because we want to find a force, we apply Newton’s 2nd law 
to solve this problem”);
select the body to which to apply the law (the corresponding text in 
Example1 is: “We choose Jake as the body”);
identify the existence of a tension force on the body (the corresponding text 
in Example1 is: “The helicopter’s rope exerts a tension force T on Jake”).

In the solution graph, intermediate solution facts and goals (F- and G- nodes in 
Figure 3) are connected to the rules (R- nodes) used to derive them and to previous 
facts and goals matching these rules’ enabling conditions. The connection goes 
through rule-application nodes (RA- nodes in Figure), explicitly representing the 
application of each rule in the context of a specific example. Thus, the segment of 
network in Figure encodes that the rule R-try-Newton-2law establishes the goal to 
apply Newton’s 2nd Law (node G-try-Newton-2law) to solve the goal to find the 
force on Jake (node G-force-on Jake).
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Figure 2: Sample Newtonian physics example. 

The rule R-goal-choose-body sets the  subgoal to find a body to apply the 
Newton’s 2nd  Law (node G-goal-choose-body), while the rule R-find-forces sets the 
subgoal to find all the forces on the body (node G-find-forces). The rule R-body-by-
force dictates that, if one has the goals to find the force on an object and to select a 
body to apply Newton’s 2nd Law, that object should be selected as the body. Thus, in 
Figure 3 this rule selects Jake as the body for Example1 (node  F-Jake-is the body).
The rule R-tension-exists says that if an object is tied to a taut string, then there is a 
tension force exerted by the string on the object. When applied to Example1, this 
rule generates the fact that there is a tension force on Jake (node F-tension-on-Jake
in Figure 3). 

The solution graph can be seen as a model of correct self-explanation for the 
example solution, because for each solution fact it encodes the various types of self-
explanations relevant to understand it: step correctness  (what domain rule generated 
that fact), step utility (what goal that fact fulfills in the high-level plan underlying 
the example solution) and gap filling (how the fact derives from previous solution 
steps).

In the SE-Coach, every time a student is shown an example, the corresponding 
solution graph provides the structure for a Bayesian network (see right bottom side 
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of Figure, link-1a) that uses information about how the student reads and self-
explains that example to generate a probabilistic assessment of how well the student 
understands the example and the related rules [Conati and Vanlehn 2000]. The prior 
probabilities to initialise the rule nodes in the Bayesian network come from the long-
term student model (see Figure, link-3b), which contains a probabilistic assessment 
of a student’s current knowledge of each rule in the KB.
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Figure 3: Segment of solution graph for Example1. 

The long-term student model is created when the user starts using the SE-Coach. 
At first, the model is initialized either with existing data on student relevant Physics 
knowledge, or with uniform priors, when these data are not available.  Then, the 
model is updated every time the student finishes studying an example, with the new 
rule probabilities computed by the corresponding Bayesian network (see Figure, 
link-7).

In the SE-Coach, the solution graph and Bayesian network described above are 
used to support students in generating self-explanations for step correctness and step 
utility only.  No explicit monitoring and support for gap filling self-explanation is 
provided. This is because in the SE-Coach, the description of the example solutions 
presented to the student and the mapping between these descriptions and the 
corresponding solution graphs are done by hand. This makes it impossible to tailor 
an example description to the dynamically changing student model by inserting gaps 
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at the appropriate difficulty level for a given student. We have overcome this 
limitation by adding to the SE-Coach the example generator (see Figure), an NLG 
system that can automatically tailor the detail level of an example description to the 
student’s knowledge, in order to avoid overloading the student’s cognitive resources 
and thus stimulate and support gap-filling self-explanation. 

4. THE EXAMPLE GENERATOR (EG) 

EG is designed as a standard pipelined NLG system [Reiter and Dale 2000]. A 
text planner [Young and Moore 1994] selects and organizes the example content, 
then a microplanner and a sentence generator realize this content into language. In 
generating an example, EG relies on two key communicative knowledge sources 
(Figure, links 2a and 2b): (i) a set of explanation strategies that allow the text 
planner to determine the example’s content, organization and rhetorical structure; 
(ii) a set of templates that specifies how the selected content can be phrased in 
English.

The design of these sources involved a complex acquisition process. We 
obtained an abstract model of an example’s content and organisation from a detailed 
analysis of the rules used to generate the solution graph. This was combined with an 
extensive examination of several physics textbook examples, which also allowed us 
to model the examples’ rhetorical structure and the syntactic and semantic structure 
of their clauses. To analyse the rhetorical structure of the examples, we followed 
Relational Discourse Analysis (RDA) [Moser, Moore et al. 1996], a coding scheme 
devised to analyse tutorial explanations. The semantic and syntactic structure of the 
examples’ clauses was used to design the set of templates that map content into 
English.

We now provide the details of the selection and organisation of the example 
content. In EG, this process relies on the solution graph and on the probabilistic 
long-term student model (Figure 1, links 3a and 3b).  It consists of two phases, text 
planning and revision, to reduce the complexity of the plan operators and increase 
the efficiency of the planning process. Text planning selects from the solution graph 
a knowledge pool of all the propositions (i.e., goals and facts) necessary to solve a 
given example, and it organizes them according to ordering constraints also 
extracted from the solution graph. The output of this phase, if realized, would 
generate a fully detailed example solution. After text planning, a revision process 
uses the assessment in the student’s long-term model to decide whether further 
content selection can be performed to insert appropriate solution gaps. Text planning 
and revision are described in the following sub-sections.

4.1 Text Planning Process 

The input to the text planner consists of (i) the abstract communicative action of 
describing an example solution; (ii) the example solution graph; (iii) the explanation 
strategies. The planning process selects and organizes the content of the example 
solution by iterating through a loop of communicative action decomposition1.



GENERATING TAILORED WORKED-OUT PROBLEM SOLUTIONS  167 

Abstract actions are decomposed until primitive communicative actions (executable 
as speech acts) are reached. In performing this task, the text planner relies on the set 
of explanation strategies that specify possible decompositions for each 
communicative action and the constraints dictating when they may be applied. These 
constraints are checked against  the solution graph and when they are satisfied the 
decomposition is selected and appropriate content is also extracted from the solution 
graph. For illustration, Figure 4 (a) shows a simplified explanation strategy that 
decomposes the communicative action describe-solution-method. Possible 
arguments for this action are, for instance, the Newton’s-2nd-Law and the 
Conservation-of-Energy methods. Looking at the details of the strategy, the function 
find-steps (:constraints field)  checks in the solution graph whether the method has 
any steps. If this is the case, the steps are retrieved from the solution graph and the 
describe-solution-method action is decomposed in an inform-about primitive action
and in a describe-method-steps abstract action. The output of the planning process is 
a text plan, a data structure that specifies what propositions the example should 
convey, a partial order over those propositions and the example rhetorical structure. 
A portion of the text plan generated by EG for Example1 is shown in Figure 4(b). 

The propositions that the example should convey are specified as arguments of the 
primitive actions in the text plan. In Figure 4(b) all primitive actions are of type inform.

For instance, the primitive action (Inform-about (act-on Jake weight)) specifies the 
proposition (act-on Jake weight), which is realized in the example description as “the 
other force acting on Jake is his weight”. In the text plan, the communicative actions 
are partially ordered. This ordering is not shown in the figure for clarity’s sake; the 
reader can assume that the actions are ordered starting at the top. The example 

rhetorical structure consists of the action decomposition tree and the 
informational/intentional relations among the communicative actions. For instance, in

Figure(b), the rhetorical structure associated with the action describe-solution-
method specifies that, to describe the solution method, the system has to perform 
two actions: (i) inform the user about the method adopted; (ii) describe all the steps 
of the method. Between these two actions the Enable intentional relation and the 
Goal:Act informational relation hold. All the informational/intentional relations used 
in EG are discussed in (Moser, Moore et al. 1996] We clarify here only the meaning 
of the Enable relation because this relation is critical in supporting gap-filling self-
explanations. An intentional Enable relation holds between two communicative 
actions if one provides information intended to increase either the hearer’s 
understanding of the material presented by the other, or her ability to perform the 
domain action presented by the other. 
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(Describe example1)

(Inform-about-problem find-force)

(Inform-about (choose-simple-body Jake))
(Describe-step  choose-body)

(Inform-about-method Newton’s-2nd-Law)

(Describe-step   body’s-properties)

(Describe-step all-forces-on-body)
(Inform-about (act-on Jake tension))

(Inform-about (act-on Jake weight))

(Show free-body-diagram)

(Describe-solution-method Newton’s-2nd-
L )

(Describe-substeps-method Newton’s-2nd-Law)

Enable Goal:Act

Joint Step1:Step2

Enable Preparation:Act

Enable Goal:Act

Communicative action decomposition Intentional/Informational relations

Graphical
actions…

(Describe-step specify-component-equations)

(Describe-step write-component-equations)
(Describe-step choose-coordinate-axes)

(Describe-solution-method ?method
 :constraints
           (find-steps ?method ?steps)
 :sub-actions
     ((a1 (Inform-about ?method))
       (a2 (describe-method-steps ?steps)))
:relations
     ((r1 (Enable a2 a1))
       (r2 (Goal:Act a1 a2))))

(a)

(b)

Figure 4: (a) Sample explanation strategy. (b) Portion of the text plan. 

4.2 The Revision Process 

Once the text planner has generated a text plan for the complete example, the 
revision process revises the plan to possibly insert solution gaps that can make the 
example more stimulating for a specific student. As described in the section on CLT, 
the key idea is to insert solution gaps of adequate difficulty.  In this way, the student 
can practice applying newly acquired knowledge without incurring in the excessive 
cognitive load due either to too demanding problem solving (i.e., when gaps are too 
many/large), or to unnecessary information (i.e., when gaps are too few/small).  

In most NLG systems, the revision process typically involves reorganizing the 
text plan. In contrast, revision in EG does not change the structure of the text plan. 
Rather, the EG revision process only performs further content selection by 
consulting the probabilistic long-term student model that estimates the current 
student’s domain knowledge (see of Figure, link-3b). More specifically, the revision 
process examines each proposition specified by a primitive communicative action in 
the text plan and, if according to the student model, there is a high probability 
(above a given threshold ) that the student knows the rule necessary to infer that 
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proposition, the action is de-activated. De-activated actions are kept in the text plan 
but are not realized in the text, thus creating solution gaps. However, as we will see 
in the next section, de-activated actions may be realized in follow-up interactions.  

As an illustration of the effects of the revision process on content selection, 
compare the example solutions shown in Figure 5 and Figure 6. Figure 5 displays 
the worked out solution for  Example2 which,  similarly to Example1, does not 
contain any solution gaps. In contrast, the same portion of Example2 solution shown 
in Figure 6 is much shorter, including several solution gaps. As previously 
described, EG determines what information to leave out by consulting the long-term 
probabilistic student model. In particular, the concise solution in Figure 6 is 
generated by EG if the student had previously studied Example1 with the SE-Coach 
and generated self-explanations of correctness and utility providing sufficient 
evidence that she understands the rules used to derive Example1 solution. When 
selecting the content for Example2, EG leaves out all the propositions derived from 
the rules that the student has learned from Example1. Notice, for instance, that the 
concise solution in Figure 6 does not mention the solution method used and the 
weight force.  Also, the choice of the body and of the coordinate system is only 
conveyed indirectly. 

Even if a student has sufficient knowledge to fill in the solution gaps inserted by 
the revision process, she may  not actually perform the required inferences when 
studying the example. As a matter of fact, cognitive science studies show that most 
students tend not to self-explain spontaneously [Chi 2000]. Thus, once the text plan 
is revised and realized, the system presents the concise example with tools designed 
to stimulate gap filling self-explanation. These tools help a student to detect gaps in 
an example solution and to fill the gaps.   

5. SUPPORT FOR GAP FILLING SELF-EXPLANATION 

To support gap-filling self-explanation, we have extended the interface that the 
SE-Coach uses to support self-explanations for step correctness and utility. In this 
interface, described in [Conati and Vanlehn 2000] each example’s graphical element 
and solution step presented to the student is covered with gray boxes.  

Figure 7 shows a segment of the example solution in Figure 6 as presented with 
the masking interface.  
To view an example part, the student must move the mouse over the box that covers 
it, thus allowing the interface to track what the student is reading. When the student 
uncovers an example part, if the SE-Coach determines that the student needs to self-
explain that step at that time, a “self-explain” button appears next to it  (see Figure 8 
(a1)). Clicking on this button generates more specific prompts that suggest one or 
more of the self-explanations for correctness, utility or gap filling, depending upon 
which of them are needed by the current student to fully understand the uncovered 
step.
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Figure 5. Portion of Example2 without solution gaps. 

In particular, the text plan produced by EG is the key element in determining 
whether a prompt for gap filling is generated (Figure 1, link 4). A prompt for gap 
filling is generated whenever some of the primitive communicative actions that  
were de-activated during the revision process are related through an Enable
intentional relation to the communicative action expressing the uncovered example 
part.  The rationale behind this condition is that a solution gap with respect to an 
example part comprises all the solution steps that were left out, but whose 
understanding is a direct precondition to derive that example part. For instance, 
given the example part uncovered in Figure 8(a1), there is only one solution gap 
preceding it, namely the one corresponding to the communicative action Inform-
about (choose-simple-body wagon)2.
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Figure 6. Portion of Example2 with solution gap. 

Figure 7. Masking interface to track what the student is attending to. 

As shown in Figure 8 (a1), the prompt for gap filling is generated by adding the 
item “filling in missing steps” to the self-explain menu. If the student clicks on this 
item, the interface inserts in the solution text an appropriate number of masking 
boxes, representing the missing steps (see Figure 8 (a2), first box from top). The 
interface also activates a dialogue box that allows the student to fill in the missing 
steps. Since the interface currently does not process natural language input, the 
student needs to fill each missing step by selecting a sentence describing the step 
from a set of possible alternatives. Each alternative is either generated by EG by 
applying the realisation component to unrealised communicative actions in the text 
plan (see Figure 1, link 5), or it is randomly chosen from a pool of steps unrelated to 
the current problem.  
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(a1)

(b1) Pull-down menu interface

(b2) Radio-button interface

      We apply Newton’s 1st law

      We choose the wagon as the body

      The wagon’s weight W is directed downward

(a2)

Figure 8. Interface techniques for gap-filling self-explanation. (a1-2) Techniques to 
prompt the user for gap-filling and to indicate location of missing steps. (b1-2) Two 
versions of the dialogue box that supports the student in filling in the missing steps. 

We have implemented two versions of the dialogue box that support the student 
in filling in the missing steps. As shown in Figure 8 (b1-2), one version is based on 
pull-down menus, while the other on radio-buttons. A key difference between the 
two is that, when more than one step is missing, radio buttons allow the student to 
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inspect all the alternatives for all the missing steps at the same time. In contrast, with 
pull-down menus the student has to focus on one missing step at a time. 

We have performed a preliminary user study involving 26 students to determine 
which of the two versions students prefer. Unfortunately, the result of the study was 
inconclusive with roughly half of the students preferring one version and the other 
half preferring the other. Several students mentioned that radio-buttons were 
confusing when more than one missing step was present, because too much text was 
displayed. As for pull-down menus, one complaint was the need of a mouse click to 
see what options are available.

Additional studies are clearly needed, especially to identify user differences that 
can explain the differences in their preferences; and also to explore whether hybrid 
combinations of pull-down menus and radio-buttons might be more effective and 
more acceptable to users. 

Going back to the student interaction with the gap-filling interface, let’s assume 
now that the student, regardless of which of the two dialogue boxes had been 
provided, makes her selection for filling in the missing step. When this happens, the 
student receives immediate feedback on the correctness of his selection, which is 
also sent to the Bayesian network built for the current example (see Figure 1, link 6). 
The network fact node that corresponds to the missing step is clamped to either true 
or false, depending on the correctness of the student’s selection, and the network 
updates the probability of the corresponding rule consequently.

As we mentioned in Section 3, at the end of the interaction with the current 
example, the long-term student model is updated with the new rule probabilities 
from the example Bayesian network . In particular, if the student’s actions have 
shown that he is not ready to apply a given rule to fill a solution gap, this rule’s 
probability will decrease in the long-term student model (see Figure 1, link-7). 
When this happens, if the resulting rule probability is too low (i.e., below the 
threshold ), the next presented example involving this rule will include the solution 
steps the rule generates, giving the student another opportunity to see how the rule is 
applied.

6. CONCLUSIONS AND FUTURE WORK

We have presented a tutoring framework that integrates principles and 
techniques from ITS and NLG to improve the effectiveness of example studying for 
learning. Our framework uses an NLG module and a probabilistic student model to 
introduce solution gaps in the example solutions presented to a student. Gaps are 
introduced when the student model assesses that the student has gained from 
previous examples sufficient knowledge of the rules necessary to derive the 
eliminated steps. The goal is to allow the student to practice applying these rules in 
problem solving episodes of difficulty adequate for his knowledge.   

Our framework is innovative in two ways. First, it extends ITS research on 
supporting the acquisition of the learning skill known as self-explanation, by 
providing tailored guidance for gap filling self-explanation. Second, it extends NLG 
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techniques on producing user-tailored text by relying on a dynamically updated 
probabilistic model of the user logical inferences.  
As future work, in the short term, we plan to investigate how the prediction
capabilities of the probabilistic student model can be used to refine the strategies 
that EG uses to decide when to leave out a solution step. Currently the model is used 
to diagnose the student’s understanding of the relevant physics rules given the 
student’s interaction with the system.  The results of this diagnosis, i.e., the updated 
rule probabilities, are then used directly to decide if the student can apply each rule 
to derive a corresponding solution step, and if so to deactivate that step in the 
presented solution. This approach is reasonable, if we assume that we always insert 
only gaps that include only one missing solution step. However, if we want to insert 
gaps that consist of chains of two or more steps, the fact that the student has enough 
knowledge to infer each of these steps in isolation does not imply that the user can 
actually make the chain of inferences, because of the increased cognitive load that 
this process entails. Thus, we are working on using the student model to predict,
given one or more chains of deactivation, if the student can actually derive them 
given the current rule probabilities in the model.  

A more long-term step in our research will be to test the effectiveness of our 
framework through empirical studies. These studies are crucial to refine the 
probability threshold  currently used to decide when to leave out a solution step, 
and possibly to identify additional principles to inform the text plan revision.   

Additional future work involves NLG research. First, we plan to investigate how 
the example text plan can be used to maintain the coherence of the other example 
portions, when the student fills a solution gap. Second, we will start working on how 
to integrate the generation of the textual example solution and of the graphical 
elements of the example (e.g., the free body diagram). Third, we aim to verify 
whether a template-based approach to realization is sufficiently powerful to cover 
our target domain of physics examples.  
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8. NOTES 

1. Communicative actions satisfy communicative goals. So, text planning actually involves two 
intertwined processes of goal and action decomposition. To simplify our presentation, we only refer 
to communicative actions and their decomposition. 

2. Since the text plans for Example1 and Example2 are structurally the same, this can be verified in 
Figure 4(b), in which the missing step would have been Inform about (choose-simple-body Jake). 
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