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ABSTRACT
The popularity of email has triggered researchers to look
for ways to help users better organize the enormous amount
of information stored in their email folders. One challenge
that has not been studied extensively in text mining is the
reconstruction of hidden emails. A hidden email is an orig-
inal email that has been quoted in subsequent emails but
is not itself present in the folder; it may have been deleted
or may never have been received. This paper proposes a
method for reconstructing hidden emails using the embed-
ded quotations found in messages further down the thread
hierarchy. To do so, we model all the quoted fragments in a
precedence graph, from which hidden emails are regenerated
as bulletized documents. The bulletized model is our solu-
tion to the situation when a total ordering of fragments is
not possible. We give a necessary and sufficient condition for
each component of the precedence graph to be captured in a
single bulletized email, and we develop heuristics that min-
imize the number of regenerated emails when the condition
is not met. Finally, we present empirical results showing the
scalability of our approach.

Categories and Subject Descriptors
H.4.3 [Information Systems Applications]: Communi-
cations Applications—Electronic mail

Keywords
Text Mining, Hidden Email Discovery, Document Forensics

1. INTRODUCTION AND MOTIVATION
Since email has became one of the major communication

tools over the past decade, more and more information is
stored in one’s inbox [1]. In addition, with the increasing
use of handhelds, there is a trend to read email in mobile
devices [2]. The popularity of email has triggered researchers
to look for ways to help users better organize and use their
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mail folders, e.g., classification [3], task management [4] and
user interface [5].

The challenges of automatically processing emails differ
from those of other types of documents in various ways. One
well-understood difference is the threaded nature of emails.
According to one study, over 60% of emails are threaded [6].
Most sets of emails are hierarchically inter-related. Because
managing an email folder is still largely a random activity
prone to many errors, there is a pressing need to effectively
support every aspect of this process. In this paper, we pro-
pose a solution to the hidden email problem. Although we
concentrate on emails, the solution can also be applied to
the more general task of reconstructing any document that
exists only in fragments, where a total ordered recovery is
not feasible.

A hidden email is an original email document that has
been quoted in subsequent emails but is not present itself
in the same folder. Anyone who has ever managed a folder
is accustomed to the tedium of manually shunting messages
between folders, as well as deciding which messages to keep
and which to delete. Accidental or intentional deletion may
occur. Hidden emails also occur when new recipients are
included in an existing thread. Whether the original email
was deleted or never existed, it still may be found in the
quotation of subsequent emails. The problem this paper
attempts to solve is how hidden emails can be reconstructed
using the embedded quotations found in messages further
down the thread hierarchy.

Ideally, the hidden email can be reconstructed in full and
represented exactly as it was first written, i.e., a total order
representation. However, doing so will often not be possible.
Parts of the original may not have been quoted in subsequent
emails. Even if the entire text does exist scattered among
the various quotations, some uncertainty about the correct
ordering may remain. In these cases, it is still desirable to
settle for a partial order representation, while maintaining
utility. As a preview, this paper makes the following contri-
butions.

• We introduce a bulletized model of a reconstructed
email that accounts for partial ordering. The email
is built from a precedence graph which represents the
relative orders among email fragments. The key tech-
nical result is a necessary and sufficient condition for
each component of the precedence graph to be repre-
sented as a single bulletized email. These concepts are
discussed in Section 3.

• In Section 4, we develop an algorithm to generate the
bulletized email, if the necessary and sufficient condi-
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tion is met. We also develop heuristics for generating
the emails if the graph fails the condition. The bi-
clique problem of graph theory is applicable to our
heuristics. We show one way to minimize the num-
ber of edges removed from the graph to reconstruct
a useful bulletized email. The various heuristics are
evaluated empirically in Section 5.

There are many applications for which we may need to
reconstruct a hidden email. A related text mining research
project of ours deals with email summarization. Reconstruc-
tion of hidden emails is critical to this endeavour’s success.
Document reconstruction is also important for the growing
field of document forensics. It is indispensable to many ap-
plications in archaeology, crash recovery and security.

2. RELATED WORK
From a research perspective, email and newsgroups differ

from traditional documents in many aspects. For exam-
ple, there is a high level of hierarchical and referential rela-
tionship among emails in any folder, i.e., document thread-
ing. This relationship has caught the attention of many
researchers. Agrawal et al. [7] studied the social networks
extracted from newsgroups. They found that replies to a
posting often entails disagreement. Google’s recently intro-
duced gmail, a new system that applies the company’s search
engine technology to email management, also includes con-
versation threading.

In [8], Lam et al. propose to summarize a set of emails
based on their threading hierarchy. They mention the exis-
tence of deleted messages in the hierarchy which they point
out distinguishes them from messages in newsgroups. How-
ever, they do not study how to regenerate them.

In the closely related area of newsgroup summarization,
Newman [9] describes MailContent, an operational system
to explore email-based discussion lists. This system inte-
grates many facilities such as email content analysis, thread
structure analysis and a new visualization tool to represent
thread structures. The author indicates the possibility of or-
phaned quotations and warns that applications such as clas-
sification and summarization would be adversely affected as
a result, but does not explore the issue further.

Carvalho et al. [10] studied the problem of signature and
quotation detection within an email. Their work can help us
find the right content in the process of quotation identifica-
tion. De Vel et al. [11] investigate how to use data mining
and machine learning techniques to learn both structural
and linguistical characters, and hence identify the email au-
thorship.

Our research on the reconstruction of missing emails can
be generalized to the area of document forensics, where doc-
ument reconstruction from fragments is crucial. Shanmuga-
sundaram et al. propose the reconstruction of a total or-
dered document in [12]. They take the maximum weight
Hamiltonian path in a complete graph as the optimal re-
sult. With respect to our goal of reconstructing the hidden
email, as well as in document forensics, a total order is not
always possible. Forcing one where none exists may be in-
correct and even misleading. We believe that a partial order
representation, i.e., the bulletized model, constitutes a rea-
sonable solution that constitute a reasonable compromise
between accuracy and completeness concerns.

3. BULLETIZED HIDDEN EMAILS
For any given email folder, some emails may contain quo-

tations from original messages that do not exist in the same
folder; the originals may have been deleted or were never
received at all. Each of those quotations is considered a
hidden fragment, as part of a hidden email. Several hidden
fragments may all originate from the same hidden email,
and a hidden fragment may be quoted in multiple emails.
Our goal is to reconstruct hidden emails from the hidden
fragments by finding the relative ordering of the fragments
and, where possible, piecing them together. In this section,
we first describe how to use a precedence graph to represent
hidden fragments. Then we describe how to reconstruct hid-
den emails based on a bulletized email model. Finally, we
give precise conditions under which (parts of) a precedence
graph can be transformed into a bulletized email.

3.1 Identifying Quoted Fragments
Given a folder of emails {M1, . . . , Mn}, we first conduct

the following two preprocessing steps to identify fragments
that are quoted in some email Mi but do not originate from
emails in the folder.

1. Extracting quoted fragments: Given email Mi, to-
kenize it into the quoted and the new (non-quoted)
fragments. A quoted fragment is a maximally contigu-
ous string preceded by a quotation symbol, e.g. >,
or by proper indentation1. A new fragment is a maxi-
mally contiguous string delimited by quoted fragments
(or by either end of the email). For convenience, we
use Mi.quote and Mi.new to denote the set of quoted
and new fragments in Mi.

2. Eliminating quoted fragments originating from
the folder: For each quoted fragment F in Mi.quote,
we match it against Mj .new for all 1 ≤ j ≤ n. Let τ

be the longest match, i.e., contiguous string, in F and
in some fragments in Mj .new. There are 3 cases:

(a) τ = F :
F originates from Mj and is not a fragment from
a hidden email. Remove F from Mi.quote.

(b) length(τ ) < minLen:
τ has fewer characters than the threshold minLen

(e.g., 40 characters long). Some common words or
phrases may match in isolated parts of the text,
but there is no reason to believe that F , or parts
of F , originates from Mj . Thus, F remains in
Mi.quote.

(c) Otherwise, split F into 3 (contiguous) fragments
F1, τ and F2. Replace F in Mi.quote with F1 and
F2 and continue.

3.2 Creating The Precedence Graph
After the preprocessing described above, every item in

Mi.quote is a hidden fragment. The next step is to look for
overlap among the fragments. The same fragment, or parts
of it, could be quoted in multiple emails. Such duplication
must be removed.

1We omit details regarding nested quotations, and we as-
sume quotations at the same level to all be from the same
original email.
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Let Fdr be the union of Mi.quote for all 1 ≤ i ≤ n.
For each fragment F in Fdr, match it against every other
fragment F ′ in Fdr. Apply a similar process as in step 2
above.

1. If F ′is a duplicate of F , then F ′ is removed from Fdr.

2. If F and F ′ do not (sufficiently) overlap, then both
remain in Fdr.

3. If F and F ′ overlap sufficiently but not fully, they are
split to avoid duplication. F is split into F1, τ, F2, and
F ′ is split into F3, τ, F4. Then F and F ′ are replaced
by F1, . . . , F4, τ in Fdr.

After applying the duplication removal process described
above, fragments remaining in Fdr are used to create a
precedence graph G = (V, E). The set of nodes V is ex-
actly the set of fragments in Fdr. An edge is created from
node F to F ′ if (i) there exists an email Mi such that both
fragments are quoted in Mi, and (ii) fragment F precedes
fragment F ′ textually. Thus, the precedence graph G rep-
resents the relative textual ordering of all fragments from
hidden emails in M .

An edge (F, F ′) ∈ E is redundant if the relative ordering
of F and F ′ can be inferred from the rest of the graph. Thus,
the Minimum Equivalent Graph (MEG) of G is sufficient to
represent the relative ordering. The MEG is a subgraph
of G such that MEG maintains all reachability relations
in G and the number of edges is minimized. This is the
transitive reduction problem described in [13]. In the rest of
this paper, when we talk about a precedence graph, we refer
to its minimum equivalent graph unless otherwise stated.

3.3 The Bulletized Email Model
The precedence graph G describes the relationship be-

tween hidden fragments, i.e., their textual ordering. In the
ideal case, the edges link all the fragments into a single chain
of nodes, which amounts to a total order natural reconstruc-
tion of the hidden email. In practice, however, selective
quoting may lead to the the following complications:

• There may be multiple hidden emails in the folder.
This will be evidenced by the existence of disconnected
components in G, which may be the result of there
having been more than one original email in the folder
in the first place, or only one original email but with
some missing connecting edges. This happens when re-
sponders selectively quote the original email with some
intermediate section never being quoted. To identify
the relationship between two components in the prece-
dence graph, we need to use methods other than the
preprocessing steps stated before.

• There may be cycles in G. This corresponds to a sit-
uation when in one email, fragment F is quoted be-
fore fragment F ′, and in another email, the opposite
is encountered. There are various heuristics to handle
cycles in G; however, in this paper, for simplicity, we
do not consider this situation and assume that G is
acyclic.

• A node may have more than one outgoing edge to
nodes which are not connected. That is, in one email,
fragment F was quoted before fragment F1; in another

email F was quoted before F2; and there is no path
connecting F1 and F2 in G. We refer to these two
nodes as incompatible, i.e., nodes with a common an-
cestor but not otherwise connected to each other.

Given the precedence graph G from which hidden emails
are to be regenerated, there are three overall objectives for
the reconstruction process:

1. (node coverage) Every node must appear in at least
one regenerated email. This is natural since this hid-
den fragment was indeed quoted. If the fragment is
not included in any regenerated emails, a real loss in
information results.

2. (edge soundness) The textual ordering of the frag-
ments in a regenerated email must not correspond to
a spurious edge not existing in G. That is, two in-
compatible nodes in G must remain incompatible in
a regenerated email. It is undesirable to impose an
arbitrary ordering on incompatible nodes.

3. (minimization) The number of regenerated emails
should be minimized. This guarantees that the edges
in G are reflected as much as possible in the regener-
ated emails.

People usually read a document sequentially and are not
accustomed to reading graphical representations of docu-
ment fragments. The possible presence of incompatible nodes
and the objective of not introducing arbitrary ordering im-
plies that our email model for representation has to account
for partial ordering among fragments. Bullets represent a
standard way to show unordered paragraphs in documents.
So, we adopt a bulletized email model using bullets and off-

sets text devices described in [14]. Bullets show no ordering
among fragments at the same level, which implies that bul-
letized fragments come in sets of at least two. They are
suitable to represent incompatible nodes. Offsets can only
apply to bulletized fragments, and show a nested relation-
ship from the set of bulletized fragments to the fragment
from which they are offset. We give an inductive definition
below.

Definition 1. A bulletized email d = [itemn] is a sequence
of items, each of which is either a fragment (base case), or
a set of bulletized emails (inductive case).

Figure 1 shows a precedence graph of fragments and the
corresponding bulletized email. There are two groups of in-
compatible fragments: B, D and C, E, F . In the bulletized
email, this incompatibility is reflected in the two bullets be-
ginning with B and C. Within the bullet of C, there are
two sub-bullets of E and F , reflecting their incompatibility.
Hereafter, we adopt the notation of using [ ] to denote a
sequence of items and using { } to denote a set of incompat-
ible bullets. For example, the bulletized email shown in the
figure is represented as [A; {[B; D], [C; {[E], [F ]}]}; G; H ].

3.4 Completeness and Strictness
So far, we have described how to construct a precedence

graph of hidden fragments from an email folder, and what is
the corresponding bulletized email. Since each component
of the graph, a maximum weakly connected subgraph, cor-
responds to one hidden email, the key scientific questions
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Figure 1: Example of a Bulletized Email

to ask are whether each component can be represented as a
single bulletized email, and if not, under what conditions it
can be done. The rest of this section, and a key result of
this paper, deals with the development of a necessary and
sufficient condition. In the next section, we look at graphs
that fail this condition.

Given a weakly connected precedence graph G = (V, E)
and a node v ∈ G, we use child(v) and parent(v) to denote
the set of all child nodes and parent nodes of v respectively.
We generalize this notation to a set of nodes by taking the
union of the individual sets.

Definition 2. (Completeness) A parent-child subgraph

PC = (P ∪ C, E′) is a subgraph of G = (V, E), such that:

• for every node p ∈ P , child(p) ⊆ C;

• for every node c ∈ C, parent(c) ⊆ P ;

• for every edge (u, v) ∈ E′, u ∈ P and v ∈ C;

• for every node u ∈ P, v ∈ C, edge (u, v) 6∈ E − E′;

• PC is weakly connected, i.e., the underlying undi-
rected graph is connected.

PC is complete if PC is a biclique, i.e., a complete bipartite
graph. G is a complete parent-child graph iff every parent-
child subgraph in G is complete.

Definition 3. (Strictness) A parent-child subgraph PC =
(P ∪C, E) precedes node u if there exists a node v in P such
that P is an ancestor of u. A precedence graph G is strict

if for any pair of vertices x, y such that x, y share the same
child u, then for any parent-child subgraph PC preceding x

or y, but not both, all the nodes in PC must be ancestors
of u.

Figure 2 illustrates the notion and importance of strict-
ness. Let us first consider the situation with A,x, y, u as
shown but without node B. (This corresponds to the situ-
ation when in one email, A,x, u were quoted in this order,
and in another email y, u were quoted.) This graph is strict
because node A is an ancestor of u. The corresponding bul-
letized email is [{[A; x], y}; u]. Now if in another email A, B

were quoted in this order, the edge connecting A, B makes
the graph non-strict. Consider the parent-child subgraph
with PC = (P ∪ C, E) with P = {A}. PC precedes x but

B

A

u

yx

Figure 2: Example of strictness

not y. But node B in PC is not an ancestor of u, which
violates the strictness condition. To see the importance of
strictness, consider where to put B into [{[A; x], y}; u]. If
we add it into [{[A; x], y}, we add a spurious edge between
B and u. Similarly, grouping B with u adds spurious edges
between x, y and B.

In the following theorem, we give a necessary and suffi-
cient condition that any component of a precedence graph
must meet to be captured in a single bulletized email.

Theorem 1. A weakly connected precedence graph G can

be represented by a single bulletized email with every edge

captured and no inclusion of spurious edges, iff G is a strict

and complete parent-child graph.

(b)

A

B C

D E

F

(a)

A

B C

D E

F

(c) (d)

A

F

*   B

*   C
         D

         E

A
* B
* C
# D
# E
F

Figure 3: An incomplete parent-child graph

Figure 3 illustrates the situation. The graph in Figure
3(a) is complete and strict, and it can be represented as in
(b). However, if we add an edge between C, D, as in (c), the
graph is no longer complete parent-child graph as there is
no edge between B, E. The bulletized emails in Figure 3(b)
and (d) represent two failed attempts to correctly capture
the graph. This shows the importance of completeness. Fig-
ure 4(a) shows a graph that is complete but non-strict. The
problem is that F is not an ancestor of G, making it impos-
sible to find a location for G for the graph to be captured
by a single bulletized email.

4. REGENERATION ALGORITHMS

4.1 Algorithm graph2email
Theorem 1 gives a necessary and sufficient condition for

a precedence graph to be captured in a single bulletized
email. Figure 5 shows a skeleton of an algorithm that (i)
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Figure 4: A non-strict graph

checks whether the graph satisfies the condition, and if so
(ii) generates the bulletized email. The algorithm starts
from the set of 0-indegree vertices in the precedence graph,
traverses the whole graph and generates a bulletized email.
It takes as input graph G and a set of nodes S, traverses S’s
descendents T , whose ancestors are connected to at least one
node in S, and returns an email for the subgraph induced
by S ∪ T and a frontier S′. The frontier is the set of nodes
at which graph2email stops traversing, i.e., each node in
the frontier either has no outgoing edge or has at least one
parent that is not a descendent of S.

A description of Figure 5 follows. In step 1, we partition
S into {S0, ..., Sn} where Si denotes the overlapped nodes
of parent set Pi and S. In step 2, for each Si found in step
1, we check for completeness, and exit on failure. If the test
passes, since each complete parent-child subgraph PCi =
(Pi ∪Ci, Ei) can be represented as [{Pi}; {Ci}], we set di =
[{Si}] and we recursively call [d′

i, S
′

i] = graph2email(G,Ci),
if Si = Pi. The returned email d′

i is appended to di. Now
we have a frontier S′ = {S′

0, S
′

1, ..., S
′

n}, each S′

i corresponds
to an email di. In step 3, we check for strictness, and exit
on failure. When two frontiers overlap but are not equal,
G is not strict. For example, in Figure 2, the frontier of
{A} is {B, u}, the frontier of {y} is {u}. The overlap of
{B, u} and {u} implies that B is in a parent-child subgraph
PC = ({A} ∪ {B, x}, E) which precedes x. So, A, B and
x have to be ancestors of u. However, B is not connected
with x, y and u. Thus, we conclude that the graph is not
strict. At this point in the algorithm, we have a set of emails
each of which is associated with one frontier. In step 3(b),
we union all emails which have the same frontier into a new
email dt, and collapse those frontiers into one St. If all
parents of the collapsed frontier are included in email dt, we
recursively call [d′

t, S
′

t] = graph2email(G,St), and append
d′

t to dt. This recursive call compensates for some missed
ones in step 2(c), where Si 6= Pi, but all nodes in Pi have
already been included in all emails generated in step 2. We
repeat step 3 until there are no identical frontiers. In step 4,
we simply generate a new email d, which is the set of emails
generated above, and return it along with frontier S′.

4.2 Incomplete or Non-strict Graphs
Algorithm graph2email regenerates the hidden email cor-

responding to a complete and strict precedence graph. In
the remainder of this section, we develop regeneration algo-
rithms for graphs that are incomplete or non-strict.

Recall from our three design objectives that textual or-

Algorithm: graph2email

Input: a weakly connected precedence graph G and a set of nodes
S ∈ G.
Output: an email d and a frontier S′.

1. Find all parent-child subgraph PCi = (Pi ∪ Ci, Ei), i ∈ [1, n],
where Pi overlaps with S and Si = Pi ∩ S. Union all 0-
outdegree nodes as a set S0.

2. For each Si, i ∈ [0, n], generate an email starting from Si as
follows:

(a) if PCi is not a biclique, exit the program.

(b) set email di as a set of nodes in Si, di = [{Si}], and set
frontier S′

i = Ci

(c) if Si = Pi, generate the email starting from Ci,
(d′

i, S′

i) = graph2email(G, Ci), set email di = [di; d′]

3. (a) Check for strictness as follows: If there exist S′

i ∩ S′

j 6= ∅

and S′

i 6= S′

j, ⇒ G is not strict and exit.

(b) Union emails that correspond to the identical frontier to-
gether into one email dt, i.e.,dt = [{di1

, ..., diti
}] and collapse

those identical frontiers together into one St. We replace those
frontiers in S′ with St

(c) For each collapsed frontier in the last step, S′

t, t ∈ [1, k], if
parent(St) are all included in dt, we recursively call (d′

i, S′

t) =
graph2email(G, St).

Repeat step 3 until there are no identical frontiers.

4. Union all emails generated by step 3 into one email d =
[{dt1

, ..., dtk
}], and union all frontiers S′

ti
into one set of nodes

S′. Return d and S′

Figure 5: Algorithm graph2email

A

B C D

E F

==>

H

GFE

DCB

A

H

B

evicted

H

G

Figure 6: Example of edge removal for strictness

dering of the fragments in a regenerated email must not
correspond to a spurious edge not existing in G. If G is
non-strict or incomplete, our approach is to remove edges
from G so that G′ will become strict and complete. A bul-
letized email is then generated corresponding to G′ using
Algorithm graph2email. There are many ways to show the
removed edges to the user. One solution is that we consider
the removed edges as a precedence graph G′′ and apply Al-
gorithm graph2email on G′′. Thus, the removed edges are
covered in subsequent regenerated hidden emails. Another
solution is to display the missing edges to the user in the
output of G′, e.g., a few arrows showing the missing prece-
dence. This is a question of user interface design, and is not
covered in this paper.

Given the definition of strictness from the previous sec-
tion, edge removal is an effective solution for fixing non-
strict graphs. Specifically, there are two kinds of edges that
can be removed: (1) the edge that makes two nodes, say
x, y, share the same child u; and (2) the edge between an
ancestor and one of its children nodes that is not itself an
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D EC
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Figure 7: Edge Removal for Completeness

ancestor of u. Figure 6 shows that the removal of the edge
between B and H makes the graph strict. Removing edge
(C, G) also makes the graph strict. Identifying the appro-
priate edge to remove to overcome non-strictness is easy to
incorporate into Algorithm graph2email. In step 3(a), in-
stead of exiting the program we can apply a heuristic to
remove edges. However, overcoming incompleteness is more
complicated.

Given an incomplete parent-child precedence graph G,
there must exist an incomplete parent-child subgraph of G,
which is detected in step 2 of Algorithm graph2email. In
stead of exiting the program we can apply heuristics de-
scribed in this section and proceed to the next step.

Figure 7 (a) shows an example of how removing an edge
can lead to a biclique. The edge between A and E is missing
and the graph is incomplete. Our strategy is to remove
the edge between B and E, so that the subgraph involving
A, B, C, D now becomes a complete bipartite graph. In the
example above, there is only one biclique left. The bulletized
email model also accepts multiple bicliques. We generalize
this as multiple biclique decomposition problem:

Given a bipartite graph G = (V1 ∪ V2, E) and a weight
function w : E → N , find a subset of edges Ec ⊆ E with
minimum total weight, s.t., G′ = (V1 ∪ V2, E − Ec) can
be partitioned into multiple bicliques, i.e., V1 = V11 ∪ ... ∪
V1k, V2 = V21 ∪ ... ∪ V2k, E − Ec = E1 ∪ ... ∪ Ek and Gi =
(V1i ∪ V2i, Ei), i ∈ [1, k] is a biclique.

This problem is similar to the maximum edge biclique

problem [15], which is NP-hard. We hypothesize that the
multiple biclique decomposition problem is NP-hard as well.
However, in the following discussion we point out that in
some cases we can obtain the optimal result by the well-
known min-cut algorithm.

For an incomplete parent-child subgraph, which is a weakly
connected bipartite graph, a missing edge between two nodes
is considered necessary for completeness if the two nodes
are connected some other way in the underlying undirected
graph. Thus, our aim is to find a way to break the existing
path between the two nodes so the remaining subgraph can
be represented by a bulletized email.

Let a cut c(u, v) denote a set of edges whose removal dis-
connects vertices u, v. The capacity of a cut is the total
weights of all edges in the cut. c(u, v) is called min-cut, iff
the capacity of c(u, v) is the minimum among all cuts be-
tween u, v. For each missing edge (u, v), we can disconnect

Algorithm star-cut

Input: a connected bipartite graph G = (L, R, E)
Output: a set of edges Ec

1. find every missing edge ei = (ui, vi), ui ∈ L, vi ∈ R, i ∈ [1, k].
Let U = union(ui), V = union(vi), sort nodes in U descen-
dently according to the number of missing edges incident on
it.

2. for each u ∈ U in order, do the following:

(a) get all missing edges ej = (u, vj)

(b) add vertex t and edges (vj , t), set the capacity of edge
(vj , t) to infinity.

(c) get the min-cut cu,t, add cu,t into Ec and remove all
edges in cu,t and vertex t

Figure 8: Algorithm star-cut

its two ends by deleting any cut c(u, v).
When all the missing edges share the same node u, i.e.,

ei = (u, vi), we can add an additional node t and edges
(vi, t), and set the capacity of edges (vi, t) to a big enough
integer(bigger than the degree of vi), the min-cut cu,t will
only contain edges in the original graph, and will therefore
give the optimal solution. The algorithm in Figure 8 uses a
greedy approach to first process the node that has the largest
number of missing edges incident on it and apply the min-cut
in step 2. To find the min-cut, we use the Edmonds-Karps
maxflow algorithm [16]. For a flow network with V nodes
and E edges, when all edges are integers and bounded by
U , the time complexity is O(V EU).

In order to represent an incomplete parent-child subgraph,
the remaining graph can be multiple bicliques. A single
maximum edge biclique, i.e., with a minimum number of
deleted edges, is acceptable as well. The maximum edge bi-
clique problem has recently been proved to be NP-complete
[17]. To the best of our knowledge, Hochbaum’s 2-approximate
algorithm [18] is the only c-approximate algorithm for the
edge-deletion problem and is used here as a comparison.
Hochbaum’s algorithm, which is called max-biclique here,
also applies the well-know min-cut algorithm. The details
can be found at [18]. Both max-biclique and star-cut can be
applied in step 2 of Algorithm graph2email.

5. EMPIRICAL EVALUATION

5.1 A Real Example
Figure 9 shows an original email stored in the teaching-

assistant folder of one of the authors. This email is deliber-
ately deleted from the folder to show how our regeneration
algorithms work. (For the ease of representation, we use a,
b, ..., h to represent the corresponding paragraphs.) Fig-
ure 10 shows 5 emails in the folder, all of which quoted the
original email.

If we only have email 1 and 4, the precedence graph is
disconnected and two hidden emails will be generated. With
all the five emails included, the precedence graph is shown
in Figure 11. This is an incomplete and non-strict graph.
Our heuristics then delete the edges between e and f , and
between b and h. Thus, the regenerated email is
[a; {[b], [e], [c; {[{[d], [f ]}; h], [g]}]}].

5.2 Scalability Evaluation
In the following, we study how well our algorithms per-

508



on Friday afternoon (today). 

SOWK 124 about 15 minutes before the exam.  In other words, I’ll meet you around 13:30 

University Boulevard and West Mall.  SOWK stands for Social Work.  I will meet you at 

easiest entrance for you coming from CICSR is to go to the entrance of the corner at 

b)  Don, can you go directly to SOWK 124 ... it’s just behind the LSK building, and the 

minutes before the exam ... I’ll come right over from SOWK 124.  We need to get students

double−spaced, so they’re sitting behind one another in columns.

c)  Warren and Qiang, can you go directly to LSK 201.  I’ll meet you there about 10 

rest (A−L and R−Z) will write in their normal classroom: LSK 201.

e)  Students whose last names begin with the letters M−Q will write in SOWK 124; the 

−Ed

Thanks.

h)  This is a closed book exam, with no help sheet, no calculators, no other aids.

f)  The exam is 48 minutes long, and it has 48 possible marks.

d)  I will bring the exams with me to Sage, so you don’t have to bring anything.

restaurant, so I’m going to walk to class from Sage (at the north end of campus)

a)  I need to meet with a faculty recruit at lunch tomorrow.  We’ll be at Sage

Here are the midterm details:

Subject: Midterm Details

exam, you should write that beside the student’s name on the check−off list.

students present.  If there’s a red serial number in the upper right hand corner of the 

g)  I will bring classlists with me.  We need to check off the names and IDs of all 

Figure 9: Case study - the missing/hidden email

> a

> b

> h

> c

> f

> h

ok. I’ll write them on the blackboard..

good design. Easy to mark! :)

Is there a seating plan as last term?

sure, I know where that building is.

Do students  need to sign that paper?

> c

> g

And no asking questions.:−P

How about a seating plan?

Email 2
Email 1

Email 3 

Email 4

> a

What time do you expect to leave?

I will be near there and can help 

you carry the exams if you like.

> e 

> f

Do the students know this already?

Email 5

> c

> d

> h

> a

I will be at Sage at that time too.

Can we walk over together? .

sounds great.:)

Will  we have a seating plan again?

Figure 10: Case study - emails in the folder

d

h

b

a

c e

f g

 x

  x

* c

     − g

     − * d

         h

a

        *  f

* b

* e

Figure 11: The precedence graph and regenerated
hidden email

form with respect to the key parameters that characterize
the hidden email problem, e.g., folder size. In our experi-
ments, we use a synthetic dataset to evaluate these parame-
ters. We first build a default setting as follows. We take as
input the size of an email folder, say M, and set M=1000.
Then we generate 1%*M hidden emails. Each hidden email
contains 30 fragments, which is called hidden email length.

After generating a set of hidden emails, we generate the
set of emails quoting them. 30% of emails in the folder
quote hidden emails. Each email quotes about 10% of the
fragments in that hidden email, which is called quotation

length. Some hidden emails and fragments are more likely
to be quoted since in real life, hot topics are more frequently
discussed. In our experiments, we begin with the default set-
ting, and scale up one parameter each time to see the effect
on performance. For each setting, we generate 10 datasets
and use the average in the following figures.

One of the key findings of our experiments deal with scal-
ability with respect to the folder size and the quotation
length. Figure 12(a) shows the number of hidden emails
discovered and the number of hidden emails quoted as the
folder size increases. The number of discovered emails in-
creases linearly to the folder size and is about 10% more
than the number of emails quoted. This difference indicates
that one original email may be discovered as several inde-
pendent hidden emails. Figure 12(b) shows that the number
of edges deleted by the two heuristics also increases linearly
as the folder size increases, and star-cut has a better perfor-
mance over hochbaum in the number of deleted edges. As
for runtime, both heuristics show increases proportional to
the folder size. For the folder size of 1000 and 10000, both
algorithms take about 2 seconds and 20 seconds respectively.
However, star-cut takes more time than hochbaum. The dif-
ference is about 3 seconds at M=10000.

Notice that in the default setting, if one email quotes
a hidden email, it only quotes 10% of the fragments in
that hidden email, i.e., each email only quotes 3 hidden
fragments. Figure 12(c) shows the number of discovered
and quoted hidden emails with respect to various quotation
length. This figure shows that with the increase of quotation
length, the number of discovered hidden emails is greatly re-
duced. When the quotation length is 20%, no original hid-
den emails are discovered as separate ones. This shows that
longer quotations greatly increase connectivity.

The discussion so far has only dealt with change in folder
size and quotation length. Our experimentation covered
many other parameters, and we provide a brief summary
of how the situation changes when those parameters are al-
tered:

• In the default setting, the number of emails quoting
hidden emails is set to be 30%. When we change this
percentage from 2% to 90%, we find that with more
emails quoting hidden emails, the number of discov-
ered emails first increases and then decreases. The
increase is natural because more hidden emails are
quoted at the same time. When more and more emails
quote hidden emails, the precedence graph becomes
more connected, which account for the decrease in the
number of discovered emails.

Similarly, the number of deleted edges of both heuris-
tics has an up-hill phase followed by a down-hill phase.
The reason is that when more emails quote hidden
emails, the precedence graph becomes more connected,
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Figure 12: Scalability with respect to folder size and quotation length

and hence one parent-child subgraph contains more
nodes and edges. Such increase results in more incom-
plete parent-child subgraphs, and then more edges are
deleted. While more emails may be quoting hidden
emails, both the size of a parent-child subgraph and
the number of incomplete parent-child subgraphs de-
crease. Hence, the down-hill phase is generated. This
reveals the fact that more quotations do not necessar-
ily imply better connectivity and less edge deletion.

• Comparison of the two heuristics for incompleteness
was inconclusive, In the default setting, star-cut takes
more time, but has a better performance in the num-
ber of deleted edges. However, we found that in some
settings, there is little difference between in both run-
time and the number of deleted edges, while in some
settings star-cut may delete more edges than that of
hochbaum. Their relative performance depends on the
kind of precedence graph on which they process and
their manner of constructing a flow network. Fur-
ther exploration into this problem may result in an
improvement of both heuristics in the future.

6. CONCLUSION
The work in this paper represents an important first step

toward the reconstruction of hidden emails. Its major con-
tribution is the introduction of the bulletized email model
and a necessary and sufficient condition for fitting a prece-
dence graph into the model. The heuristics we present apply
an edge deletion solution to graphs that do not meet the con-
dition. Our future plans include applying natural language
understanding techniques to make even more intelligent de-
cisions about piecing fragments together and representing
them to the user. This work is an integral part of a larger
project on text mining. As such, we plan to extend it to
related problems such as email summarization.
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