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AbstractÐIn this paper, we present and discuss our experience in the task of probability elicitation from experts for the purpose of

belief network construction. In our study, we applied four techniques. Three of these techniques are available from the literature,

whereas the fourth one is a technique that we developed by adapting a method for the assessment of preferences to the task of

probability elicitation. The new technique is based on the Analytic Hierarchy Process (AHP) proposed by Saaty [12], [13], and it allows

for the quantitative assessment of the expert inconsistency. The method is, in our opinion, very promising and lends itself to be applied

more extensively to the task of probability elicitation.

Index TermsÐBayesian belief networks, analytic hierarchy process, probability elicitation.
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1 INTRODUCTION

PRACTICAL experience shows that the acquisition of
knowledge from experts is a costly and time-consuming

task. It is very rare that an effective methodology is selected
at the onset and that its application straightforwardly leads
to the appropriate knowledge base. More often, consider-
able time is spent studying the available methodologies,
iteratively applying the most promising ones and assessing
and comparing their outcomes. Sometimes, when no
available methodology adequately supports the current
knowledge engineering task, adapting existing methodol-
ogy or developing new ones is the only choice.

In this paper, we present and discuss our experience in

the knowledge acquisition task of probability elicitation

from experts for the purpose of belief network (BN)

construction. In our study, we have applied four techni-

ques. Three of these techniques are available from the

literature [10], [19], whereas the fourth one is a technique

that we developed by adapting the Analytic Hierarchy

Process (AHP), a method for the assessment of preferences

and their consistency introduced by Saaty in [12], [13].
Although our experience in probability elicitation was

mainly driven by practical needs, we believe that this study
has generated some valuable insights into the development
and the application of knowledge acquisition techniques to
the task of probability elicitation. The evolution of our
investigation from practical needs to more general insights
can be summarized as follows: At the onset of our project,
only rough approximations of the probabilities of interest
were needed. As a consequence, a simple and fast technique
of probability elicitation was adopted. Subsequently,

because of a shift in the goals of our project, the initial
probability assessments were refined by means of more
reliable techniques. The refinement process led to the
discovery of significant inconsistencies in the expert's
assessments. It was at this stage of our study that we
started to search for more sophisticated elicitation techni-
ques, and we eventually devised and applied a new
elicitation technique that we believe to be very promising.
In particular, our technique allows the analyst to measure
reliably the degree of inconsistency in the expert's assess-
ments, and to make the expert face his/her inconsistencies
as soon as they arise.

The belief network which is the object of this work is
aimed at modeling the domain of chronic nonorganic
headaches. In order to acquire the relevant conditional
probabilities in this clinical domain, we had to rely on
elicitation techniques from domain experts. In fact,
although information for structuring the network is
abundant in the medical literature [14], [16], the medical
literature does not provide sufficient information to
quantify the probabilistic relationships among the domain
variables. Furthermore, no data was available to our group
for the automatic estimation of the probabilities of interest.1

The discussion of our study is organized as follows: In
Section 2, we first motivate the construction of a belief
network in the clinical domain of chronic nonorganic
headaches. We then examine the structure of the belief
network we built, and discuss the initial knowledge
acquisition process for its construction. In Section 3, we
describe the sensitivity analysis that focused the subsequent
knowledge acquisition and the application of well-known
probability elicitation techniques, based on bets and
lotteries. We then discuss the elicitation technique we
adapted from the Analytic Hierarchy Process (AHP) [12], [13].
One of the notable features of this technique is its providing
for an explicit measure of the consistency of the probability
assessments. In Section 4, we report a preliminary sub-
jective evaluation of the different elicitation methodologies.
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1. Learning belief networks from data, both their structure and their
parameterization, is an active field of research, and several methods have
been devised to this end [3], [7], [9], [17], [8]. However, in many domains
there is no availability of data on which to base the learning process.

1041-4347/00/$10.00 ß 2000 IEEE

Authorized licensed use limited to: The University of British Columbia Library. Downloaded on August 27, 2009 at 19:25 from IEEE Xplore.  Restrictions apply. 



In particular, we examine the confidence of the expert with
the different elicitation techniques, the expert's reaction to
the techniques and the results they produced, changes in
the expert's perception of the different elicitation techni-
ques, and the expert's reaction to his inconsistencies. In the
final sections, we elaborate on the possible roles of the AHP
technique in the elicitation task and we draw some
conclusions about our experience in the elicitation process.

2 BACKGROUND

In [2], we present an information-based Bayesian strategy
for history-taking, aimed at optimizing the evidence-
gathering process. We apply this strategy to a history-
taking module developed as part of a system for patient
education in the clinical domain of chronic nonorganic
headaches [1].

The knowledge base for the proposed history-taking
strategy is built around a belief network that models the
domain of interest. The belief network structure is as
depicted in Fig. 1. We considered a mutually exclusive and
exhaustive set of three diseases (hypotheses): Migraine,
Cluster, and Tension headaches.2 The assumption that these

diseases are mutually exclusive is a reasonable approxima-
tion in our case, since the only significant overlap is 10
percent between migraine and tension headaches. The
assumption of exhaustiveness is also reasonable because
Migraine, Cluster, and Tension headaches cover about
90 percent of all nonorganic headaches.

The links diverging from the disease node correspond to
findings, aggravating and relieving factors, and other
patient features, whereas the links converging to the disease
node are typical headache provocative factors (disease
etiologies). Although many links in the network can be
given a causal interpretation, this is not true for all of them.
For some nodes, the connection simply states a correlation
and the choice of the link direction is solely determined by
the easiness in the elicitation of the corresponding condi-
tional probabilities.

In the development of our prototype application, the
elicitation of the numeric probabilities was the most
difficult task. In fact, the medical literature provided
sufficient information for the definition of the belief net-
work structure [14], [16] (which was later validated by our
expert). However, it did not provide the information
necessary to quantify the probabilistic relationships among
the domain variables. For this task, we relied exclusively on
the domain expert. At this stage of the project, our main
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2. The assumption of a mutually exclusive and exhaustive set of diseases
allows us to group the diseases in a single node, which is the one in the
center of Fig. 1.

Fig. 1. The belief network for the clinical domain of chronic nonorganic headaches.
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concern was the history-taking strategy rather than the
accuracy of the assessments, and our expert was already
familiar with a very simple elicitation technique based on
the selection of his subjective probabilities from a
predetermined set of six adjacent probability intervals
ranging from impossible to certain.3 Therefore, this was
the method of choice. We translated the six probability
intervals into point values by taking the midpoints of the
given intervals, as suggested in [18]. A small subset of these
subjective assessments is shown in Table 1. We considered
all these approximations as acceptable since, as already
pointed out, our main goal was to inform history-taking
strategies rather than to automate the diagnostic process, a
task for which a higher level of accuracy of the estimated
probabilities would be deemed appropriate.

After a preliminary evaluation of the strategy using five
patient cases, we felt it necessary to better understand the
relation between the diagnostic accuracy of the belief
network and the effectiveness of the history-taking strategy.
This was the main motivation of the additional probability
elicitation effort that we describe in this paper.

3 METHODOLOGY

This section is devoted to the description of the overall
elicitation strategy we adopted. We first illustrate the
sensitivity analysis we performed to focus the subsequent
probability elicitation effort. We then describe, in detail, the
techniques of probability elicitation we adopted, with
particular attention to the adaptation of the AHP to the
task at hand.

3.1 Sensitivity Analysis

In order to focus our attempt to increase the diagnostic
accuracy of the belief network, we performed a simple one-
way sensitivity analysis.4 We varied the probability of each
evidence node (conditioned on the disease node) from 0 to 1
(maintaining all the other probabilities constant), and we
computed the corresponding variation in the probabilities

of the three values of the disease node conditioned on the
evidence node.5

Examining the graphs generated by plotting the results
of this analysis, it is possible to group the posterior
probabilities into three different classes, corresponding to
three very different degrees of sensitivity. The graph at the
top of Fig. 2 shows a typical case in which the diagnostic
decision is not sensitive to variations in the assessment;
changing the posterior probability P �fatigue j cluster� from
the original assessment (0:2) cannot change the most likely
disease (migraine). Clearly, in this case, no further assess-
ment is required. The graph in the middle of Fig. 2 shows a
typical case of low sensitivity. Although changing the
posterior probability P �fatigue j tension� from the original
assessment (0:2) can change the most likely disease from
migraine to tension, this change occurs only when
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TABLE 1
Probability Assessments for the Old Network

Fig. 2. Three examples of the graphs used for sensitivity analysis. The top
graph plots P �disease j fatigue� as a function of P �disease j rocking�.
The middle graph plots P �disease j fatigue� as a function of
P �fatigue j tension�. The bottom graph plots P �disease j rocking� as a
function of P �rocking j migraine�. The vertical line labeled ªactualº
corresponds to the original assessment.

3. Our expert was involved in the development of the INTERNIST-I
knowledge base [10]. In INTERNIST-I, the association between a manifesta-
tion and a disease is represented as a variable called evoking strength. The
evoking strength answers the question: ªGiven a patient with this
finding, how strongly should I consider this diagnosis to be its
explanation?º The evoking strength is expressed as a number on a scale
from 0 to 5 [10].

4. The task of sensitivity analysis in the context of belief network
construction is illustrated in [4], [11], among others.

5. We are adopting a categorical utility model, which assigns utility 1 to
the correct diagnosis, and utility 0 to any misdiagnosis. Therefore, the
change in probability of a given diagnosis translates into a corresponding
change in utility of the diagnosis, which is the measure sensitivity analysis
should focus on.
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P �fatigue j tension� is greater than 0:5, that is, 0:3 off the
original assessment. In this case, further assessment is
required only when the original assessments are expected
to be highly inaccurate. Finally, the graph at the bottom of
Fig. 2 shows a typical case of high sensitivity; a tiny
variation of the original assessment would change the
diagnosis from cluster to migraine. In this case, further
assessment is necessary.

We found that the conditional probabilities of 32 nodes
in our belief network belong to the group of highly sensitive
assessments, for which further assessment is required.
Twelve of these 32 nodes correspond to binary nodes and
the remaining 20 to multivalued nodes. The preliminary
refinement effort discussed in this paper focuses on the
binary nodes only. Furthermore, since all 12 binary nodes
depend on the disease node only, and the change in
diagnosis in the sensitivity analysis is always from migraine
to tension or vice versa, a total of 24 assessments must be
performed (P �nodei j migraine� and P �nodei j tension�).

For the refinement of the ªsensitiveº probabilities, we
assessed the expert's subjective probabilities by means of
well established elicitation techniques based on the use of
bets and lotteries. Moreover, we adapted the Analytic
Hierarchy Process (AHP) method for the assessment of
preferences introduced by Saaty in [12], [13] to the task of
probability elicitation. A notable feature of the AHP is that,
besides facilitating the expert's assessments, it also provides
us with a technique to evaluate the consistency of the
assessor. A detailed description of these techniques follows.

3.2 Elicitation: Standard Techniques

The methods we used are exemplified in Fig. 3.6 In the first
of these methods, also called betting method, the expert is
asked about the bets he would be willing to place for or
against the occurrence of a certain event. A decision tree
representation of this assessment is depicted in Fig. 3a. The
elicitation strategy consists of adjusting the amounts of
money X and Y until the expert is indifferent about betting
for or against the occurrence of the event of interest. In our
case, the events of interest are the manifestation of specific
aggravating, relieving, or associated factors, assuming that

the patient has a certain disease. In Fig. 3a, the event is ªthe
quality of pain is achingº (for brevity, aching), assuming that
the disease is migraine. Once we know X an Y , we can
compute the expert's subjective probability for the event of
interest (in our example, P �aching j;migraine�� by comput-
ing the simple expression Y =�X � Y �.

In the second method, often referred to as equivalent-

lottery method, the expert is asked to compare two lottery-
like games as depicted in Fig. 3b. Each of the lotteries can
result in either a highly desirable prize (e.g., a trip to
Hawaii), or a ªconsolationº prize (e.g., a glass of beer), but
the outcome of the first lottery depends on the occurrence of
the event of interest, while the outcome of the second lottery
depends on the known probability p. In Fig. 3b, the top
lottery reads ªwin a trip to Hawaii if the event aching

occurs;º while the bottom lottery reads: ªwin a trip to

Hawaii with known probability p.º The elicitation strategy
consists of adjusting the parameter p of winning the highly
desirable prize until the expert is indifferent between the
two lotteries. The final p is the expert's assessment of the
probability of the event.

3.3 Analytical Hierarchy Process for Probability
Elicitation

The Analytical Hierarchy Process (AHP) proposed in [12],
[13] has been devised as a mathematical-based technique to
analyze complex situations and assist in decision making.
Since its introduction, the method has received wide
application in a variety of areas [6]. Commercial software

packages are also available [5].
One of the notable features of the method is its providing

for a well-founded technique of elicitation of preferences
over multiattribute alternatives, and for the mathematical
tools to assess the consistency of the elicited preferences.
The technique is based on the elicitation from the decision
maker of relative or pairwise judgements of the importance
of the different attributes of interest. From these pairwise
judgements, a priority ordering of the attributes of interest
can be derived, together with a measure of the expert
inconsistency. It is important to emphasize that while the
mathematical foundations of the method are by no means
trivial, the utilization of the method for preference elicita-
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Fig. 3. Decision tree representation for assessing subjective probablities via (a) the betting method; and (b) the probability equivalent method.

6. For a detailed description of these methods the reader can refer to [19,
Chapter 4].
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tion is straightforward, which is one of the reasons that
make the method so appealing.

Although the method is devised for the purpose of
preference elicitation, we believe it lends itself naturally to
the task of probability elicitation. In this section, we first
give a brief description of the method and show its
relevance to the task of probability elicitation (some of
these ideas are introduced in [15]). We then analyze some of
the drawbacks that may arise from its use, as well as
possible ways to circumvent them. Finally, we give an
intuitive justification of the method, following closely [13].

For the description of the method, we adapt the original
terminology for utilities and preferences to the probabilistic
setting. In particular, we substitute the term attribute with
the term stochastic event (for brevity, event), and the term
importance with the term likelihood. With these modifica-
tions, the method can be described as follows:

First, a scale of comparison must be established, based on
which the expert can compare pairwise the events of
interest. The scale proposed by Saaty is given in Table 2. It
considers nine values from ªequally likelyº 1 to ªabsolutely
more likelyº 9. This is also the scale we use in our
evaluation. However, we see no reasons not to adopt
alternative scales should the expert and/or the analyst
deem it appropriate.7

Once the scale is defined, the expert can compare
pairwise the events under consideration according to the
given scale. Since every event is compared with every other
event, the resulting assessments can be arranged in a square
matrix that we refer to as the likelihood matrix. Given events
ei and ej, the matrix entry mij (i.e., the matrix element in
row i and column j) accounts for the comparison between
event ei and event ej. For example, if the entry is set to
three, it means that the event ei is ªweakly more likelyº than
the event ej, according to the scale of Table 2. Notice that
once we obtain the entry mij, we can also fill in the entry mji

with the inverse of mij, i.e., 1=mij.
We thus obtain a reciprocal matrix with diagonal

elements all set to 1 (since mii is equal to 1 for all i).
Assuming that n is the number of events of interest, a
minimum of nÿ 1 pairwise comparisons is needed to fill in
the matrix. This can be easily shown by noticing that once
the assessments mik and mkj are available, we can derive
the comparison between ei and ej as mij � mikmkj (that is, if
ei is judged to be twice as likely as ek, and ek to be twice as

likely as ej, consistency would imply that ei is four times as
likely as ej). However, by limiting the assessments to nÿ 1
comparisons only, we are guaranteed to obtain a perfectly
consistent matrix, as the expert does not need to perform
any redundant comparison. Since measuring the consis-
tency of the expert's assessments is one of the objectives of
the elicitation process based on the AHP technique, it is
clear that we need to directly elicit more than the required
minimum of nÿ 1 comparisons. In our experiments, as
suggested in [13], the comparisons necessary to fill in the
elements above the diagonal were obtained by direct
assessment (therefore, our expert assessed n�nÿ 1�=2
comparisons), while we filled in the elements below the
diagonal with the reciprocal of the direct assessments.
Notice that with this approach we need to elicit O�n2�
comparisons from the expert, for the assessment of n
quantities (the n original probabilities). However, the
rationale behind this approach is that the elicitation of the
pairwise comparisons is easier and better accepted by the
expert than the direct elicitation of the probabilities of
interest, as also confirmed by the evaluation described in
Section 4.

As an example, Table 3 presents the likelihood matrix
accounting for the comparison of the likelihood of the
different events (pieces of evidence) introduced in Section 2,
conditioned on the patient having tension headache,
P �evidence j tension�. The events are arranged in the matrix
from the least likely to the most likely, according to the
probability assessments elicited with the standard methods
previously described. This arrangement helps in giving a
qualitative interpretation of the data. In fact, every column
can be interpreted as a ranking of the likelihood of the
different events according to a different ratio-scale. If the
expert showed consistency in assessing his subjective
probabilities with the standard methods and with the
AHP technique, every column should be a list of
nondecreasing quantities from the top to the bottom. As it
is shown in Table 3, this rule is often violated.

The priority order for the events in the matrix can be
derived by computing the matrix's eigenvector with the
largest eigenvalue. The eigenvector provides the priority
ordering, and the eigenvalue is a measure of the consistency
of the judgments. Let �max be the eigenvalue corresponding
to the priority vector, and let n be the number of events in
the matrix. The closer �max is to n, the more consistent is the
result (in the next section, we will see that �max is always
greater than or equal to n). Deviation from consistency can
be determined by computing the consistency index C.I. of the
likelihood matrix, given by ��max ÿ n�=�nÿ 1�, and by
comparing it with the C.I. of a randomly generated
reciprocal matrix, referred to as the random index (R.I.).
The ratio of the C.I. to the R.I. of a matrix of equivalent
dimension is defined as the consistency ratio (C.R.), and can
be adopted as the measure of the expert inconsistency.
According to [12], a C.R. of 0:10 or less is considered
acceptable. It is not clear, however, what is the justification
for selecting this threshold, and our experience provides
evidence that even lower values of the C.R. may still reflect
large levels of inconsistency in the expert assessments, a
point to which we will return.
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TABLE 2
The Agreed Upon Scale for the Pairwise Comparisons

7. See [13, p. 72±73] for a brief discussion on the selection of a scale.
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3.3.1 Intuitive Justification of the AHP Technique

In this section, we briefly illustrate the motivation behind

the application of the AHP technique for probability

elicitation and consistency measurement. For a more

comprehensive treatment of these issues, see [12,

chapters 2,3].
As previously explained, the entries of the likelihood

matrix MM represent pairwise comparisons, so that entry mij,

in the matrix, measures how much more (or less) likely

event ei is than event ej, where all assessments are

according to an agreed upon ratio scale.
If we knew the actual likelihood of all the events, we

could straightforwardly fill in the likelihood matrix MM so as

to have each of the entry correspond to the ratio of the

likelihood of two events. That is, each entry mij in the

matrix, would represent the quantity pi=pj, where pi and pj

are the likelihoods of the events ei and ej, respectively. In

matrix notation,

MM �
p1=p1 p1=p2 . . . p1=pn
p2=p1 p2=p2 . . . p2=pn

. . . . . . . . . . . .
pn=p1 pn=p2 . . . pn=pn

2664
3775:

Under this interpretation, if we denote with pp �
�p1; p2; . . . ; pn�T the column vector of likelihoods of the

single events, then the following relationship should hold:

p1=p1 p1=p2 . . . p1=pn
p2=p1 p2=p2 . . . p2=pn

. . . . . . . . . . . .
pn=p1 pn=p2 . . . pn=pn

2664
3775

p1

p2

. . .
pn

2664
3775 � n

p1

p2

. . .
pn

2664
3775;

or, in a more compact notation,

MpMp � npp i:e:;
Xn
j�1

mijpj �
Xn
j�1

pi
pj
pj � npi; i � 1; . . . ; n;

�1�
which yields a system of n equations in n unknowns. For

this system of equation to have a solution, n must be an

eigenvalue of MM, and pp the corresponding eigenvector.
For the relationship of (1) to hold, the matrix MM needs to

satisfy certain properties. In particular, it needs to be

consistent, whereby consistency is defined as follows:

Definition 1. [13, p. 48]. A matrix MM � fmijg is consistent if:

mikmkj � mij i; j; k � 1; 2; . . . ; n: �2�

For example, if the assessor judges event ei to be twice as

likely as event ek, and event ek to be twice as likely as event

ej, then, to be perfectly consistent, she would have to

consider event ei to be four times as likely as event ej.
It can be shown that for the matrix MM to be consistent, it

must have the ratio form MM � �pi=pj� [13, Theorem 2.1,

p. 49]. In general, however, we do not have access to the

actual likelihood of the single events, and all we have are

the pairwise comparisons mij. These comparisons are not

necessarily consistent (with regard to the above example, it

may well happen that the assessor will not consider ei to be

four times as likely as event ej).
The system of (1) allows for imperfect measurements,

since it constrains the assessments to be precise only on

average, that is,

pi � average of�mi1p1;mi2p2; . . . ;minpn�
or; more formally; pi � 1

n

X
j

mijpj i � 1; . . . ; n;
�3�

and does not enforce the stricter constraints
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TABLE 3
The Matrix of Pairwise Comparisons of the Probablities Conditioned on Tension Headache,

and the Corresponding Eigenvector of Priorities

Authorized licensed use limited to: The University of British Columbia Library. Downloaded on August 27, 2009 at 19:25 from IEEE Xplore.  Restrictions apply. 



pi � mi1p1 � mi2p2 � . . . � minpn

that should be satisfied if we assumed perfect measure-
ments. However, even allowing for this relaxation, the
system of (1) has a solution if and only if the likelihood
matrix MM is consistent, and n is its principal eigenvalue
(with pp the associated eigenvector) [13, Theorem 2.2, p. 49].

In order to be able to accommodate inconsistent
assessments, we need to allow the value of n in (1) to
change. If we denote with �max this value, the final
formulation of the problem is:

pi � 1

�max

Xn
j�1

mijpj i � 1; . . . ; n;

or; in matrix notation; MpMp � �maxpp:

�4�

The solution of the system of (4) is unique, and the
problem as formulated is an instance of the eigenvalue
problem. �max is the largest or principal eigenvalue of MM,
and pp is the associated eigenvector representing the vector
of priorities. It can be shown that �max is always greater than
or equal to n [13, Theorem 2.9, p. 60], and that it is equal to n
if and only if MM is consistent [13, Theorem 2.10, p. 60].

Notice that, if we obtain the eigenvector pp0 �
�p01; p02; . . . ; p0n�T by solving (4), the matrix whose entries
are p0i=p

0
j is a consistent matrix, and it can be interpreted as a

(consistent) estimate of the original matrix MM of pairwise
comparisons. Correspondingly, the eigenvector pp0 can be
interpreted as an approximation of the actual priority
vector, and �max as an estimate of n. Therefore, the closer
�max is to n, the higher the consistency of the assessments.

To summarize, the problem of finding a priority vector pp
from a matrix of pairwise comparisons MM is solved by
assuming that the matrix MM is a perturbation of a consistent
matrix of likelihood ratios �pi=pj�, where the pi's are the
unknown likelihoods we want to assess. By solving (4), we
derive the eigenvector pp0, and we construct the consistent
matrix MM 0 � �p0i=p0j�, which we then compare to the original
matrix MM.

To measure the level of inconsistency, we can use the
difference between the maximum eigenvalue �max and n. In
particular, the quantity ��max ÿ n�=�nÿ 1�, referred to as the
consistency index (C.I.), corresponds to the variance of the
error incurred in estimating the mij [13, p. 83]. As such, it
can be used as a measure of inconsistency in the assess-
ments. Furthermore, by taking the ratio of �max ÿ n to its
average value over a large number of reciprocal matrices
whose entries are randomly (and uniformly) selected from
the interval �1=n; n�Ða measure referred to as consistency
ratio (C.R.)Ðwe obtain a relative measure of consistency,
which compares the consistency of a set of informed
assessments to the consistency of a set of random assess-
ments. Clearly, we would expect the former to be much
higher than the latter.

We conclude this section by briefly discussing some of
the problems that may arise from the use of pairwise
comparisons for the purpose of probability (or preference)
elicitation.

The first issue we address has to do with the sensitivity
of the AHP to the introduction of new alternatives to the
pool of alternatives already considered. That is, the

inclusion of a new alternative may result in an alteration
of the ranking, or priority order, of the ªoldº alternatives.
This phenomenon is usually referred to as rank reversal in
the literature (see, e.g., [13, Chapter 5]). While we do not
deal with the issue of rank reversal and rank preservation in
this paper, experimental studies show that there exist
situations when the decision maker is susceptible to rank
reversal and other situations when she is not. Accordingly,
the AHP provides for modes of operation able to handle
both situations.

Another delicate issue is the comparison of widely
different elements (in the context of probability elicitation,
the comparison of extreme probabilities) and the reliability
of the corresponding assessments. In general, when
comparing widely different elements, people are unable to
provide reliable assessments. To deal with this problem, the
AHP works by aggregating elements into homogeneous
clusters, such that elements belonging to the same cluster
must be of the same order of magnitude, with a common
element shared by two consecutive clusters. The relative
measurements within each clusters can be related and the
clusters combined because of the presence of the common
element between consecutive clusters. Given two consecu-
tive clusters, the largest element in the small cluster is
included as the smallest element in the large cluster. To
relate the elements of the two clusters, the relative weights
of the elements in the second cluster are all divided by the
relative weight of the common element, and multiplied by
its relative weight in the smaller cluster [13, p. 58±59]. This
procedure also helps to explain the choice of the scale of
Table 2, which enforces the requirement that the coefficients
of the comparison in the likelihood matrix are of the same
order of magnitude, that is, between one and nine.

4 EVALUATION

We applied the standard elicitation techniques and the
AHP-based technique in two sessions of about 90 minutes
each. Our expert is very familiar with our work, and has a
good understanding of probability theory and of the belief
network formalism. Therefore, a lengthy motivational
protocol was unnecessary for him to understand the goals
of the elicitation. The first session was devoted to the direct
elicitation of the probabilities of interest by means of the
standard techniques described in Section 3.2. In the second
session, we focused on the elicitation of the pairwise
comparisons according to the AHP as described in
Section 3.3. It is important to emphasize that while the first
session involved the elicitation of n quantities, and the
second session involved the elicitation of n�nÿ 1�=2
quantities, the time needed for both sessions was approxi-
mately the same.

4.1 Standard Techniques

In the first session, we applied the standard techniques
only. We performed some warm-up assessments, during
which the expert preferred the lottery-equivalent method to
the betting method. Since he was comfortable with
assessing probabilities explicitly, he felt that the betting
method would have forced him to compute mentally the
amount of money corresponding to a given probability. In
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other words, the betting method would have simply
introduced an unnecessary level of indirectness by increas-
ing the possibility of noise due to the wrong computation of
the appropriate monetary quantities. On the other side, the
application of the lottery-equivalent method seemed quite
effective. Although the method was sometimes unnecessary
(the expert would directly give a numeric assessment), it
proved a useful tool to force the expert to carefully consider
his assessments.

4.2 Pairwise Comparisons (The AHP Technique)

In the second session, we performed the elicitation of the
pairwise comparisons. To this purpose, the expert had to fill
in two tables whose format is similar to the one depicted in
Table 4. We prepared two such tables, one for the
probabilities conditioned on migraine, and one for the
probabilities conditioned on tension headache. Both tables
have 66 entries. The pairwise judgments given by the expert
were then plugged into two matrices. The matrix for the
probabilities conditioned on tension headache is presented
in Table 3. The consistency ratio (C.R.) for this matrix is
0:05, and the C.R. for the matrix of probabilities conditioned
on migraine is 0:06. While these results are considered as
providing evidence for sufficient consistency according to
the 0:10 threshold proposed in [12], direct examination of
the matrix' entries suggests that this is not the case (see the

matrix of Table 3, where virtually every column manifests
inconsistency. See, e.g., the columns indexed by the events
ªrhinoº and ªrestless,º where the entries markedly depart
from a nondecreasing order). Further evidence of the expert
inconsistency is provided by the comparison of the expert's
assessments according to different elicitation techniques, as
shown in Fig. 4. These results suggest that a threshold lower
than 0:10 might be appropriate, at least for the purpose of
probability elicitation.

4.3 Confronting the Expert with His Inconsistencies

The expert was highly inconsistent in his assessments
elicited by means of the standard equivalent-lottery
method, when compared with his assessments for the
preliminary version of the network (the intervals described
in Section 2, Table 1). A diagram highlighting these
inconsistencies is shown in Fig. 4, where the horizontal
bars represent the assessments based on the intervals of
Table 1, and the point-value probabilities elicited by means
of bets and lotteries are represented by means of filled
squares or circles, depending on whether they fall within
the corresponding probability interval (squares) or not
(circles). The left diagram plots the probabilities condi-
tioned on the disease being migraine. The right diagram
plots the probabilities conditioned on the disease being
tension headache. We can see that there are ample
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obtained by means of the standard lottery-equivalent method (marks).

Authorized licensed use limited to: The University of British Columbia Library. Downloaded on August 27, 2009 at 19:25 from IEEE Xplore.  Restrictions apply. 



inconsistencies between the two classes of assessments.
Some of the point-value probabilities assessed by the expert
even fall out of the probability intervals.

We were interested in the expert's reactions to his
inconsistencies. In particular, we were interested in how
confronting the expert with his inconsistencies would
change his assessments and/or his perception of the
elicitation techniques. To this purpose, we showed the
diagram to the expert. When presented with this diagram
and the apparent inconsistencies in it, the expert was not
able to clearly privilege one class of assessments over the
other. For each of the assessments for which the point-value
falls out of the corresponding interval, he revised his
assessment by picking the middle point between the point-
value and the closest extreme of the interval. The expert did
not seem to privilege the assessments he gave by means of
the method that he was originally familiar and confident
with (choice of probability intervals).

We propose some possible explanations of the expert's
behavior just described. First, it seems to confirm our
expert's opinion. Since the beginning, he claimed that it is
very hard to assess sensible numbers for the domain we
selected. He also warned that forcing the refinement of the
initial intervals he assessed did not necessarily mean we
would obtain better assessments.

There are, however, other plausible explanations to the
expert's inconsistencies. A possible partial explanation is to
be found in the different elicitation methodologies used. For
the assessment of the probability intervals, our expert was
presented with triples of events to be assessed. Each triple
accounted for the same event conditioned on each of the
three diseases (e.g., the expert was asked to assess

P �aching j migraine�;
P �aching j tension�, and P �aching j cluster�). Apparently,
the expert was often unable to discriminate to a fine enough
grain the causal support of migraine and tension headache
to the same event. This is evident by looking at the sets of
intervals for the two diseases plotted in Fig. 4, which are
almost identical. This similarity is not replicated with the
point-value assessments.

Another possible explanation is to be found in the
predefined and limited set of intervals the expert could
consider in the first of our elicitation efforts. When the
actual probability is highly skewed on one of the interval's
extremes, it can easily happen that the expert selects the
adjacent interval.

5 THE MANY ROLES OF AHP FOR PROBABILITY

ELICITATION

Our experience in probability elicitation has been mainly
driven by practical considerations rather than by an attempt
to systematically develop and compare different elicitation
techniques. However, in retrospect, we believe that the
most valuable outcome of our study has been the
preliminary development and application of the AHP
technique to the probability elicitation task. In fact, in light
of this experience, we now recognize several potential roles
for the AHP technique in the elicitation task.

Immediate feedback: The AHP technique allows the analyst
to make the expert face his inconsistencies as soon as they
arise. To this purpose, we propose the use of the AHP
technique to help the expert make his priorities explicit.
Once agreed on the priority vector (the eigenvector
computed from the matrix), the analyst should refer to this
vector whenever the assessor gives assessments incompa-
tible with it.

Probability elicitation: The AHP technique can also be
used for the actual assessment of probabilities of mutually
exclusive and exhaustive events. In fact, since the priority
eigenvector is such that its elements are all nonnegative and
sum to 1, they can be directly adopted as the probabilities of
the corresponding events.

Focus further elicitation: We envision the use of the AHP
technique to focus further elicitation. The matrix and the
eigenvector generated by the AHP technique can be used
for this purpose. As previously explained, each column of
the consistency matrix accounts for the comparison of the
different events with respect to a fixed element (the event
indexing the column). Assuming that the events in the
matrix are ordered according to the priorities given by the
eigenvector, by plotting each column as a curve we can
interpret the deviation of the curve from monotonicity as an
indication that further elicitation is necessary for that
event.8

Early inconsistency detection: The AHP technique allows
the analyst to measure the degree of inconsistency in the
expert's assessments. Furthermore, elicitation by pairwise
comparisons is usually easily assimilated by the expert, and
it is relatively economical in terms of time-requirements.
Based on these considerations, we envision its use for the
purpose of gauging the expected difficulty of the elicitation
process. If the C.R. (consistency ratio, see Section 3.3 for its
definition) of an expert for the domain of interest is very
high, this suggests that the domain is hard to quantify
reliably (or, possibly, that the expert is not an ªexpertº after
all, possibility that could be ruled out should the C.R. of
other experts result to be as high), and it might be
appropriate to consider interviewing other experts, or
adopting a possibly more time-consuming but more reliable
elicitation technique.

However, to be able to rely on the measure of
inconsistency provided by the AHP, it is necessary to better
understand the relation between the value of the C.R. and
the level of inconsistency deemed acceptable for the
knowledge base being built. In this paper, the manifest
inconsistency showed by the expert's assessments based on
different elicitation techniques provided us with evidence
that the 0:10 C.R. was not appropriate.

6 CONCLUSIONS AND FUTURE WORK

In our experience in probability elicitation, we recognize
some significant limitations. First, the medical domain of
chronic nonorganic headaches is considered particularly
difficult to formalize, because no well-established causal
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model exists. Second, we had access to one expert only,
therefore we could not make any interexpert comparisons.
Finally, our expert was available for four relatively short
sessions only.

Even recognizing these limitations, we believe our
investigation led to some valuable insights into the
probability elicitation task.

On the practical side, the main insight is the realization
that confronting the expert with the inconsistencies in his
assessments after the expert had already gone through the
whole elicitation process proved to be ineffective. As
suggested in Section 5, an alternative approach worth
investigating is to confront the expert with his inconsis-
tencies as soon as they arise during the elicitation process.

On the methodological side, we devised and applied the
new AHP-based technique. This technique appears to be
extremely useful in several aspects of the probability
elicitation task, although more work is necessary to
empirically verify its power in the elicitation of probabilities
from different experts in different domains, as well as to
better understand the relationship between the value of the
consistency ratio (C.R.) introduced in Section 3.3 and the
level of inconsistency deemed acceptable for the knowledge
base being built.

Some of the general directions of further research
worth exploring have been discussed in Section 5. In the
context of our project (the development of a system for
patient education in the clinical domain of chronic
nonorganic headaches), a natural extension of the elicita-
tion effort reported here would be to use the insights
from the AHP-based analysis to refine our probabilistic
model. A possible course of action would thus include:
1) the identificationÐ based on the AHP-analysisÐof the
critical assessments to be refined; 2) further elicitation
sessions with the expert to refine his assessments based
on the results of his pairwise comparisons; and 3) the
incorporation of the refined probabilistic model into our
system for history-taking, in an effort to improve its
performance.
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