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ABSTRACT 
There is increasing evidence that users’ characteristics such 
as cognitive abilities and personality have an impact on the 
effectiveness of information visualization techniques. This 
paper investigates the relationship between such 
characteristics and fine-grained user attention patterns. In 
particular, we present results from an eye tracking user 
study involving bar graphs and radar graphs, showing that a 
user’s cognitive abilities such as perceptual speed and 
verbal working memory have a significant impact on gaze 
behavior, both in general and in relation to task difficulty 
and visualization type. These results are discussed in view 
of our long-term goal of designing information visualisation 
systems that can dynamically adapt to individual user 
characteristics. 
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INTRODUCTION 
Information visualization (Infovis for short) aims to assist 
users in exploring, managing, and understanding the ever-
growing amount of digital information. While 
visualizations have gained increasingly in terms of general 
usage and usability, they have traditionally followed a one-
size-fits-all model, typically ignoring user differences. 
However, recent research has shown that individual 
differences can indeed have a significant impact on task 
effectiveness and user satisfaction during Infovis usage. For 
example, personality traits have been found to impact a 
user’s performance with different Infovis designs  [31, 15]. 
Velez et al. [30] found that a user’s abilities for spatial 
reasoning (e.g., spatial orientation) were correlated with 

visualization comprehension. Similarly, Conati & Maclaren 
[3] and Toker et al. [28] found that cognitive abilities such 
as perceptual speed, visual/verbal working memory and 
expertise can impact user performance or subjective 
preference with a given visualization.  

These studies indicate that it is important to investigate the 
possibility of user-adaptive information visualization 
systems, namely, Infovis that can dynamically adapt to 
individual differences. User-adaptive interaction has been 
shown to be effective in a variety of applications such as 
web search, desktop assistance, and e-learning [18], but it is 
largely unexplored in information visualization. Notable 
exceptions are [13, 14], which monitor a user’s interaction 
data to detect and adapt to suboptimal usage patterns. In 
contrast, our research goal is to investigate how to detect 
and adapt to longer-term user cognitive abilities, which 
have been shown to be relevant for effective information 
visualization processing. 

While Conati & Maclaren [3] investigated the impact of 
these cognitive abilities on overall user performance with 
different visualizations, the research presented in this paper 
aims to gain a more fine-grained understanding of the 
impact that these cognitive abilities have on visualization 
processing. One of the most informative (and sometimes 
the only available) sources of real-time information on 
visualization processing is a user’s gaze data, because 
visual scanning and elaboration are fundamental 
components of working with a visualization (they are in 
fact the only components for non-interactive 
visualizations). Therefore, in this paper we aim to 
determine if and how features in user gaze behavior are 
impacted by different user characteristics. In particular, we 
aim to answer the following questions: 

1) Do individual user characteristics influence a user’s 
gaze behavior in a way that is detectable by state of the 
art eye tracking?  

2)  If yes, (a) which gaze features are influenced by which 
user characteristics? (b) Is the effect modulated by task 
context (e.g., task difficulty), and visualization type 
(e.g., bar vs. radar graph)? 

Answering these questions can provide a better 
understanding of how specific user characteristics influence 
the processing of both information visualizations in general, 
as well as different visualization types (e.g., bar graphs), 
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and individual visualization components (e.g., a graph’s 
legend). Moreover, these answers can help drive the design 
of user-adaptive visualizations. In particular, by finding that 
user characteristics influence a user’s gaze behavior in a 
way that is detectable via eye tracking, we can consider 
exploring eye tracking as a source of real-time information 
to provide adaptive interventions targeting these 
characteristics. For instance, if an Infovis system could 
detect from gaze data that the current user has low 
perceptual speed (an element that, as we will see later in the 
paper, may negatively impact the user’s interaction with a 
visualization), it could then generate interventions to 
facilitate visualization processing, e.g., through highlighting 
or by explanatory material. 

In exploring these research questions, this paper makes the 
following contributions. First, we present a statistical 
analysis using Mixed-Models [8] to investigate how a 
user’s gaze behavior relates to user characteristics, task 
difficulty, and visualization type.  We argue that a Mixed 
Model analysis is the most suitable statistical model to 
leverage at best the generally noisy eye tracking data. 
Secondly, we present a novel definition of task difficulty, 
derived through applying Principal Component Analysis to 
a selection of both objective and subjective performance 
measures. Thirdly, the results from the analysis show that 
user characteristics indeed have a significant influence on 
user gaze behavior, and that this influence is detectable 
through a variety of eye tracking metrics. We discuss these 
results in detail, as well as how they can inform the design 
of user-adaptive information visualizations 

RELATED WORK 
The use of eye tracking has long been established in 
Psychology as a means for analyzing user attention patterns 
in information processing tasks [20]. Research in this field 
has also investigated the impact of individual user 
differences on reading and search tasks [23]. 

Researchers in human-computer interaction and 
information visualization have also started to use eye 
tracking technology to investigate trends and differences in 
user attention patterns and cognitive/decision processing. 
This research has typically focused on either identifying 
differences in gaze patterns for different visualizations [12], 
task types [17, 26], and activities within a task [4], or on 
explaining differences in user accuracy between alternative 
visualization interfaces [22]. While these studies provide 
valuable insights on how different tasks and/or activities 
affect a user’s gaze behaviors, they have traditionally 
ignored individual differences among study participants. 

Recent research, however, has shown that user differences 
can have a significant impact on a user’s performance 
during Infovis tasks. For example, Ziemkiewicz et al. [31], 
and Green and Fisher [15], looked at the influence of 
personality traits, showing that locus of control impacts 
performance across different visualizations. Cognitive 
measures such as perceptual speed and visual memory have 

been shown to influence a user’s ability to complete a task 
effectively [3, 30]. These results were extended in a recent 
study [28] showing that perceptual speed and visual/verbal 
working memory influence not only task performance, but 
also a user’s subjective preference for two different 
visualizations. While each of these studies clearly indicate 
that user differences should be considered in Infovis, they 
do not explain why or how these differences impact 
visualization processing, nor do they examine how this 
impact could be detected in real time. In this paper, we 
address these issues by providing a detailed analysis of how 
a set of user characteristics (including three cognitive 
measures and visualization expertise) influences a variety 
of eye gaze features during visualization processing. 

To the best of our knowledge, there is no established 
comprehensive theory connecting eye gaze patterns and 
individual user traits that could guide our investigation of 
gaze patterns during visualization processing. Previous 
work has empirically identified relationships between eye 
gaze and individual user differences in attention-related 
tasks [21] (e.g., measuring a user’s susceptibility to 
distraction), which is not directly relevant to our focus. Our 
research adds to this body of empirical work by providing 
detailed evidence of how individual differences affect a 
user’s gaze patterns during Infovis usage. The closest to our 
research is work by Tai et al. [26] and Tang et al. [27], who 
focused on a single, domain-specific user trait (task-domain 
expertise), showing that domain experts and novices display 
different gaze behaviors. The scope of our work is broader, 
since we investigate a comprehensive array of user 
characteristics including cognitive abilities and 
visualization expertise, (i.e., expertise on specific 
visualizations). These characteristics are domain-
independent, thus our results are more general across 
different Infovis tasks. Furthermore, we perform a detailed 
analysis of gaze data in order to link different 
characteristics to standard Infovis components (e.g., 
legends). 

One approach to analyze eye tracking data is to apply data 
mining techniques, such as Hidden Markov Models [4], 
Scan-Path clustering [11], or specifically defined 
unsupervised algorithms [5, 16]. While data mining 
methods can quickly identify clusters of similar attention 
patterns during visualization tasks, the results they return 
are often difficult to interpret, since unsupervised 
algorithms are typically applied as black-boxes. By 
contrast, although traditional human-guided statistical 
analyses can be more time-consuming, its findings tend to 
be more transparent and easier to interpret. Our paper 
presents such a human-guided analysis of how user gaze 
behavior relates to user, task, and visualization 
characteristics. In particular, the paper provides fine-
grained insights on how a set of user characteristics interact 
with different visualization types, components, and task 
difficulty to impact gaze patterns. 



 

 

USER STUDY 
In this section, we describe the study that we conducted to 
investigate the relationship among user characteristics, task 
difficulty and gaze patterns while using different 
visualizations. As case studies, we considered two basic 
visualization techniques: bar graphs (Figure 1, top) and 
radar graphs (Figure 1, bottom). Bar graphs were chosen 
because they are one of the most popular and effective 
visualization techniques. We chose radar graphs because, 
although they are often considered inferior to bar graphs on 
common information seeking tasks [7], they are widely 
used for multivariate data. Furthermore, there are 
indications that radar graphs may be just as effective as bar 
graphs for more complex tasks [28].  

 
Figure 1. Sample bar (top) and radar graph (bottom) 

User characteristics explored in the study 
The user characteristics that we investigate in this study 
consist of two measures of prior visualization expertise, one 
for each of the two visualizations, as well as three cognitive 
abilities: perceptual speed (a measure of speed when 
performing perceptual tasks), verbal working memory 
(verbal WM - a measure of storage and manipulation 
capacity of verbal information), and visual working memory 
(visual WM - a measure of storage and manipulation 
capacity of visual and spatial information).  Visualization 
expertise was chosen because we hypothesized that users 
with different levels of expertise might exhibit different 
gaze behaviors. For our study, participants self-reported 
their expertise by expressing their agreement with the 
statement "I am an expert in using radar(bar) graphs," on a 
Likert-scale from 1 to 5. Perceptual speed and visual WM 
were selected because they were among the perceptual 
abilities explored by Velez et al. [30], as well as among the 
set that Conati and Maclaren [3] found to impact user 
performance with radar graphs and a Multiscale Dimension 
Visualizer (MDV). We chose verbal WM because we 
hypothesized that it may affect performance in processing 
textual components of a visualization (e.g., labels/ legends). 

Experiment tasks 
Participants were asked to perform a set of tasks related to 
evaluating student performance in eight different courses. 
This task domain was chosen because it did not require any 

specific background knowledge, thus domain expertise was 
not a factor in our study. The tasks were based on a set of 
low-level analysis tasks that Amar et al. [1] identified as 
largely capturing people’s activities with visualizations. 
The tasks were chosen so that each of our two target 
visualizations would be suitable to support them. A first 
battery of tasks involved 10 questions comparing the 
performance of one student with the class average for eight 
courses (e.g., "In how many courses is Maria below the 
class average?"). A second battery of tasks involved 4 
questions comparing the performances of two different 
students with respect to the class average, e.g., "Find the 
courses in which Andrea is below the class average and 
Diana is above it". 

Procedure 
Thirty-five subjects (18 female), ranging in age from 19 to 
35, participated in the experiment. Participants were 
recruited via advertising at our university, with the aim of 
collecting a heterogeneous pool of participants with suitable 
variability in the target characteristics. Ten participants 
were CS students, while the rest came from a variety of 
backgrounds, including microbiology, economics, classical 
archaeology, and film production. The experiment was a 
within-subjects study, designed and pilot-tested to fit in a 
single session lasting at most one hour. Participants began 
by completing tests for the three cognitive measures: a 
computer-based OSPAN test for verbal WM [29] (lasting 
between 7 and 12 minutes), a computer-based test for visual 
WM [10] (10 minutes long), and a paper-based P-3 test for 
perceptual speed [6] (3 minutes long). The experiment was 
conducted on a Pentium 4, 3.2GHz, with 2GB of RAM and 
a Tobii T120 eye tracker as the main display. Tobii T120 is 
a remote eye tracker embedded in a 17” display, providing 
unobtrusive eye tracking. After undergoing a calibration 
phase for the eye tracker, each participant performed the 14 
tasks described in the previous section twice, once with 
each of the two target visualizations. The presentation order 
with respect to visualization type was fully counterbalanced 
across subjects. Each task consisted of presenting the 
participant with a radar/bar graph displaying the relevant 
data, along with a textual question. Participants would then 
select their answer from a set of available options, and click 
OK to advance to the next task. Before seeing the next task, 
participants were shown a screen asking them to rate their 
confidence in their answer on a Likert scale from 1 to 5. 
The experimental software was fully automated and coded 
in Python. 

DATA ANALYSIS 

Independent Measures 
The independent measures for our study consisted of the 
collected cognitive abilities and expertise measures 
(continuous), visualization type (categorical: bar vs. radar), 
and task difficulty (continuous - values described in the 
next section). Table 1 presents summary statistics on the 
user characteristics data collected from the study. The 
rather large variances for most measures indicate that we 



 

 

succeeded in collecting a diverse pool of participants. We 
also verified our results with other studies involving the 
same tests and found similar results from other populations.  

 
Table 1. User characteristics collected from our study 

Task difficulty 
Defining tasks as being easy or difficult a priori is 
challenging, since difficulty depends upon user expertise 
and perceptual abilities, which were varied on purpose in 
our study. We therefore defined task difficulty a posteriori, 
based on four different measures (two objective and two 
subjective) aggregated using a principal component analysis 
[8]. Because there was a ceiling effect on task correctness, 
our first objective measure of task difficulty is task 
completion time (assuming that, in general, more time is 
needed for more difficult tasks). However, longer 
completion times may also simply be an indication of a task 
being longer while not necessarily being more difficult. 
Therefore our second objective measure of difficulty is 
the standard deviation of completion time for each task, 
across all users. A high value of this metric indicates a high 
variability among users’ completion times, an indicator that 
the task may be difficult or confusing for some users. 

Our two chosen subjective measures of task difficulty are 
based on the users’ reported confidence of their 
performance, which was elicited after each task. The first 
subjective measure is the average confidence reported by 
users on each task. Intuitively, less difficult tasks would 
have higher values for this average. However, we also want 
to take into account that some users may tend to be more 
confident overall than other users. Therefore, our second 
subjective measure is the average deviation of confidence 
for each task across all users and is computed as follows.  
For each user, we look at their average confidence across 
their tasks. Then, for each task, we compute the deviation of 
confidence as the difference between the user's reported 
confidence for that task and the user's average confidence 
across tasks. Finally, for each task, we average the 
deviation of confidence across all users. This average 
indicates for which tasks users were giving confidence 
ratings that were above or below their typical input. 

In order to combine the four variables above, we performed 
a Principal Component Analysis (PCA). PCA is a form of 
dimension reduction that allows one to identify and 
combine groups of inter-related variables into components 
more suitable for data analysis [8]. A PCA on our four 
measures of task difficulty resulted in one output 
component. Bartlett's test of sphericity (x² = 73.35, df = 6,  

p < .001) indicated that the principal component analysis 
was appropriate. Kaiser's sampling adequacy was 0.55 and 
all variables showed a communality > 0.52 which was 
above the acceptable limit of 0.51 [8]. The component we 
generated had an eigenvalue over Kaiser's criterion of 1 and 
explained 62.22% of the variance. In sum, we use the 
output component generated by this PCA (i.e., dimensional 
reduction) as the measure of task difficulty that we will 
investigate in our analysis. 

Dependent Measures: Eye Tracking Features 

Eye tracking measures 
An eye tracker captures gaze information in terms of 
fixations (i.e., maintaining gaze at one point on the screen) 
and saccades (i.e., a quick movement of gaze from one 
fixation point to another), which can then be analyzed to 
derive a viewer’s attention patterns. In this paper, we use a 
large set of basic eye tracking features described by 
Goldberg and Helfman [11] as the building blocks for 
comprehensive gaze processing. These features are built by 
calculating a variety of statistics upon the basic eye tracking 
measures that are described in Table 2.  

Measure  Description 
Fixation rate Rate of eye fixations per milliseconds 
Number of 
Fixations 

Number of eye fixations detected during an 
interval of interest 

Fixation Duration Time duration of an individual fixation 

Saccade Length Distance between the two fixations delimiting the 
saccade (d in Figure 2) 

Relative Saccade 
Angles 

The angle between the two consecutive saccades 
(angle y in Figure 2) 

Absolute Saccade 
Angles 

The angle between a saccade and the horizontal  
(angle x in Figure 2) 

Table 2. Description of basic eye tracking measures 

 
Figure 2. Saccade based eye measures 

Among the measures described in Table 2, fixation rate, 
number of fixations, and fixation duration are widely used. 
In addition, we included saccade length, relative saccade 
angle, and absolute saccade angle, as suggested by 
Goldberg and Helfman [11], because these measures are 
useful to summarize trends in user attention patterns within 
a specific interaction window (e.g., if the user’s gaze seems 
to follow a planned sequence as opposed to being 
scattered).   

The gaze features for our analysis are obtained by 
computing statistics such as sum, average, and standard 
deviation over the measures shown in Table 2, at two levels 
of granularity. At the Task Level, features are computed 
over each task as a whole (Table 3). At the AOI level, 
                                                             
1 All subsequent PCA results reported meet the required criteria, 
and for simplicity we only report the value of Bartlett's test. 



 

 

features are computed based on gaze activity within a 
specific region of the screen, or Area Of Interest (Table 4), 
including transitions between pairs of defined AOIs (five in 
our analysis, as described in the next section). To limit our 
analysis to a reasonable number of features, at the AOI 
level, we opted to calculate only proportionate features and 
did not include features related to path angles (note that 
each AOI feature increases complexity by a factor of 5). In 
total, we included 49 different features in our analysis (14 
Task-level and 35 AOI-level), computed by processing raw 
data from the Tobii using customized Python scripts2. 

Total Fixation rate 
Total Number of Fixations 
Sum, Mean and Std. Dev. of Fixation Durations 
Sum, Mean and Std. Dev. of Saccade Length 
Sum, Mean and Std. Dev. of Relative Saccade Angles 
Sum, Mean and Std. Dev. of Absolute Saccade Angle 

Table 3. Task-level eye tracking features  

Proportion of Fixation Durations 
Proportion of Total Number of Fixations 
Number of Transitions from this AOI to each other AOI (5 
separate measures for each AOI) 

Table 4. AOI-level eye tracking features  

Areas of interest (AOI) 
A total of five AOIs were defined for each of the two 
visualizations. These regions were selected in order to 
capture the distinctive and typical components of these two 
information visualizations. Figure 3 and 4 show how these 
AOIs map onto bar graph and radar graph visualizations. 

• High Area: covers the upper half of the data elements of 
each visualization. This area is the graphical portion of an 
Infovis that contains the relevant data values. On the bar 
graph, it corresponds to a rectangle over the top half of 
the vertical bars (see Figure 3); for the radar graph, it 
corresponds to the combined area of the 8 trapezoidal 
regions covering the data points (see Figure 4). 

• Low Area: covers the lower half of the data elements for 
each visualization.  

• Labels Area: covers all the data labels in each graph. 
• Question Text Area: covers the text describing the task to 

be performed. 
• Legend Area: covers the legend showing the mapping 

between each student and the color of the visualization 
elements that represent her performance. 

The selection of these five AOIs is the result of a trade-off 
between having detailed information on user attention by 
measuring very specific areas that are salient for task 
execution, versus keeping the number of AOIs manageable 
for data interpretation and analysis. Because each added 
AOI increases transition analysis by n², we opted to include 
fewer AOIs (e.g., we don’t have an AOI for each bar in the 

                                                             
2 These scripts are part of EMDAT (Eye Movement Data Analysis 
Toolkit), an open-source toolkit developed by our group. 

bar graph or radial element in the radar graph), while still 
capturing distinctive areas that can be considered general 
components of many Infovis. 

 
Figure 3. The five AOI regions defined over Bar Graph 

 
Figure 4. Five AOI regions defined over Radar Graph 

Feature Reduction: Principal Component Analysis 
To account for correlations among measures, we used three 
PCAs on our initial set of 49 gaze features. We grouped the 
gaze features into three non-overlapping families according 
to how the measures were intuitively related, namely (i) 
task-level features (e.g., fixation rate); (ii) AOI 
proportionate features (e.g., proportion of fixation durations 
in each AOI) and (iii) AOI transitions (e.g., number of 
transitions from one AOI to another). One PCA was 
performed on each of these three families, which allows us 
to discuss results in terms of high-level related gaze 
components rather than many low-level features. 

The task level family consisted of 14 gaze features. Five 
components were generated3 using PCA (x² = 15434.49,    
df = 91, p < .001),  explaining 86.69% of the variance. 
Table 5 shows the breakdown of the original 14 features 
into the five components. Note that, for most components, it 
is quite easy to identify intuitive commonalities among its 
features, as reflected in the components’ names (e.g., all 
                                                             
3 The number of components generated is always determined by 
using the Catell scree test, or if this test results in an ambiguous 
scree plot, we then use Kaiser's criterion to select only 
components with eigenvalues greater than 1 [7]. 



 

 

features of component 1 are based on sums, all features in 
component 2 relate to fixation measures, etc.). The same is 
true for the components resulting from PCA on the other 
two families of features.  

Component 
Name Task-Level Measures 

Sum Measures num. fixations, sum rel. path angles, sum abs. path 
angles, sum path distance, sum fixation duration 

Fixation 
Measures 

mean fixation duration, std. dev. fixation duration, 
fixation rate** 

Path Distance mean path distance, std. dev. path distance 
Std.Dev. 
Path Angles 

mean rel. path angles, std. dev. rel. path angles, 
std. dev. abs. path angles 

Mean Abs. Path mean abs. path angles 

Table 5.  Generated components for the task-level family         
**fixation-rate is the only measure that inversely correlates 

with the other members of its component 

The AOI proportionate family consisted of 10 gaze 
features. Five components (see Table 6) were produced 
from the PCA (x²= 5706.32, df = 300, p < .001) and 
explained 97.13% of the variance. The AOI transitions 
family consisted of 25 features and the PCA generated four 
components (see Table 7), (x² = 8506.86, df = 45, p < .001), 
which explained 45.24% of the variance. Note that PCA 
proved to be especially useful for reducing the many AOI 
transition features to a small set of meaningful components, 
each including features mostly related to a specific AOI.  

Component 
Name AOI Proportionate Measures 

Low prop. low prop. num. fixations,  low prop. time 

Label prop. labels prop. num. fixations,  labels prop. time 

Legend prop. legend prop. num. fixations,  legend prop. time 

Text prop. text prop. num. fixations,  text prop. time 

High prop. high prop. num. fixations,  high prop. time 

Table 6. The components for AOI Proportionate Measures 

Component 
Name AOI Transition Measures 

Legend 
Transitions 

legend to legend,  legend to high,  high to legend,  text 
to legend,  legend to text,  legend to low,  text to text, 
low to legend,  legend to labels,  labels to legend 

Low 
Transitions 

high to low,  low to high,   text to low,  low to low,  
low to text 

Label 
Transitions 

labels to labels,  labels to low, low to labels, text to 
labels,  labels to text 

High 
Transitions 

high to labels,  labels to high,  high to text,  high to 
high,  text to high 

Table 7. Components for the AOI Transitions Family 

Mixed Model Analysis 
Since the study data involved repeated measures (e.g., each 
subject performed the same task type with each of the two 
different visualizations), a suitable means for analysis is a 
Mixed Model [8].  Mixed models can handle both repeated 
measures as well as the mix of categorical and continuous 
independent measures that we consider. An alternative 
model commonly used for repeated-measures analysis is a 
General Linear Model Repeated Measures analysis (GLM 

for short) [8]. GLM, however, is less suitable than a Mixed 
Model for eye tracking analysis, because it is less resilient 
to missing data. This issue is due to the fact that GLM 
requires data to be in wide format, where all repeated 
measures (trials) for each participant are listed in one data 
entry row. When there is an invalid trial, GLM is forced to 
discard the entire data for that participant. This can be 
costly in an experiment with several invalid trials, as is 
often the case when using unobtrusive eye trackers that do 
not constrain subjects’ movements.   By contrast, a Mixed 
Model uses data in long format, listing each trial as a 
different data entry, and discarded invalid trials do not 
interfere with valid ones. Thus, a Mixed Model analysis is 
able to leverage at best potentially noisy eye tracking data. 

For each of our three families of gaze features (i.e., task 
level, AOI Proportionate, and AOI transition) we ran a 
mixed model over each of the generated PCA components 
within that family4. Each mixed model was a 2 
(visualization type) by 2 (visualization order) model, with  
the user characteristics and task difficulty as the model's 
covariates. We report statistical significance at the 0.05 
level. Effect sizes of our results are reported small for r = 
0.1, medium for r = 0.3, and large as r = 0.5 [9]. In the next 
section, we report the most salient results of the analysis. 
When going over the results involving directionality, the 
reader should keep in mind that our dependent measures are 
PCA components, each consisting of a single value that 
represents a much larger collection of underlying measures. 
Each component is generated by (i) calculating the 
weighted values of its underlying members; (ii) aggregating 
and scaling these values into one number typically ranging 
from -1 to +1. If an underlying member is positively 
correlated to its corresponding component the directionality 
will be the same, otherwise it will be opposite. 

RESULTS  
In this section, we present results that provide answers to 
our original research questions: do individual user 
characteristics influence a user’s eye gaze behavior in a 
way that is detectable by state of the art eye trackers? If so, 
which gaze features are influenced by which particular user 
characteristics, and is the effect modulated by task and 
visualization type? The analysis results are discussed per 
user characteristic. 

Perceptual Speed - Main Effects 
We found main effects of perceptual speed on three PCA 
components (see Table 8). 

One main effect was at the task level (first row in Table 8), 
showing that High perceptual speed users had lower values 

                                                             
4 Mixed Models are univariate analyses (ANOVA), thus do not 
support having more than one depended measure per model. We 
adjusted our models for family-wise error by applying the 
Bonferroni adjustment to each family of results, according to the 
number of components within that family. 



 

 

of Fixation Measures than low perceptual speed users. An 
analysis of the underlying members of this component 
shows that users with high perceptual speed had a higher 
fixation-rate than low perceptual speed users, indicating 
that they were able to scan the screen more quickly. They 
also had lower average and standard deviation of fixation 
durations, i.e. shorter and more consistently timed fixations. 
These combined findings closely match the definition of 
perceptual speed, and are interesting because they show that 
individual differences for this cognitive ability may be 
captured via eye tracking measures that are not related to 
information on specific elements of the visualization. 

Family Component F-Ratio Effect 
Size 

Sig. 
Value 

Task 
level 

Fixation 
Measures F(1,27) = 8.9 r = 0.37 p = 0.03 

AOI 

Legend 
Proportion F(1,21) = 25.2 r = 0.21 p < 0.001 

Legend 
Transitions F(1,26) = 10.25 r = 0.16 p = 0.016 

Table 8. Main effects of perceptual speed 

The other two main effects of perceptual speed are at the 
AOI level (see Table 8), showing that this cognitive ability 
also affects eye gaze measures relating to specific 
visualizations elements. The main effects are on the two 
components Legend Proportion and Legend Transitions: 
low perceptual speed users spent more of their time in the 
legend AOI and transitioned to it more often than high 
perceptual speed users. This result indicates that users with 
low perceptual speed took more time to process/store 
legend-related information and looked at the legend more 
frequently (possibly because they tended to forget the 
contained information). 

Perceptual Speed - Interactions  
We found significant interactions of perceptual speed with 
both task difficulty and visualization type. 

Family Component F-Ratio Effect 
Size 

Sig. 
Value 

AOI 

Legend 
Transitions F(1,686)=6.85 r = 0.10 p < 0.05 

Label 
Transitions F(1,676)=7.97 r = 0.11 p = 0.02 

Table 9. Interaction Effects for Perceptual Speed and Task 
Difficulty. 

Interactions with Task difficulty. There are significant 
interactions of task difficulty and perceptual speed on both 
the Legend Transitions and Label Transitions components 
(see Table 9). For Legend Transitions, all users generate 
more legend-related transitions with difficult tasks than 
with easy tasks (see Figure 5), likely due to the fact that an 
increased difficulty increases cognitive load and causes 
users to forget some of the information in the legend.  This 
effect, however, is higher for low perceptual speed users. 

For Label Transitions (Figure 6), all users show more label-
related transitions for easy tasks, but the difference is much 

higher for low perceptual speed users. This effect is not as 
intuitive as the one found on Legend Transitions, but, 
irrespective of what causes users to have more label-related 
transitions for easy tasks, it seems to affect low perceptual 
speed users the most. 

 
Figure 5. Interaction between Perceptual Speed and Task 

Difficulty on AOI Legend Transitions 

 
Figure 6. Interaction between Perceptual Speed and Task 

Difficulty on AOI Label Transitions 

Interactions with visualization type. There was a 
significant interaction effect between perceptual speed and 
visualization type in terms of the High AOI Transitions 
component (F(1,680)=22.2, r=0.18, p < 0.001) (see Fig. 7).  

 
Figure 7. Interaction between perceptual speed and 

visualization type for AOI High Transitions 

All users showed more High AOI related transitions with 
the radar graph than with the bar graphs, but the difference 
is much higher for low perceptual speed users. Given that 
the High AOI is the graphical portion of an Infovis that 



 

 

contains the relevant data values, this effect indicates that 
low perceptual speed users are more affected by different 
ways of visualizing data.   

Verbal WM - Main Effects 
There are two main effects of verbal WM: one on the Text 
Proportion component and one on Standard Deviation of 
Path Angles (see Table 10).  

Text Proportion relates to the most textual element in our 
visualizations, namely the question text. An analysis of the 
members of this component shows that the proportionate 
amount of time spent on the Text AOI and the number of 
fixations in this area are lower for users with high verbal 
WM. This effect indicates that high verbal WM users refer 
to the task question less often than their low verbal WM 
counterparts, which is consistent with the definition of 
verbal WM as a measure of storage and manipulation 
capacity of verbal information. This result is interesting 
because it shows that differences in users’ verbal WM can 
be directly captured by eye tracking features related to the 
primary textual elements of a visualization. 

Family Component F-Ratio Effect 
Size Sig. Value 

AOI Text 
Proportion F(1,28) = 7.24 r = 0.36 p = 0.04 

Task 
Level 

Std.Dev. 
PathAngles F(1,25) = 8.06 r = 0.32 P < 0.05 

Table 10. Main effects of Verbal WM 
Std. Dev. Path Angles: this component essentially captures 
the consistency of a user’s gaze patterns during a 
visualization task, because it is built upon features related to 
measuring the deviation of angles between subsequent 
saccades. Users with low verbal WM had higher values for 
Std. Dev. Path Angles than users with high verbal WM. 
When these values are higher, it indicates that a user is 
frequently looking across different areas of the screen, 
rather than following more planned or consistent path 
directions. Therefore, the finding that users with low verbal 
WM had higher values for Std. Dev. Path Angles is 
consistent with the finding that low verbal WM users 
referred back to the question text more often. 

Bar and Radar Graph Expertise  
There are two non-significant main effects of both bar 
graph and radar graph expertise, which we discuss because 
of their large effect sizes. 

There was a main effect of Bar Graph Expertise on the AOI 
Label proportion component, (F(1,21) = 6.042, r = 0.80, p = 
0.1), showing that users with high bar expertise spent a 
greater proportion of their time looking at labels compared 
to non-experts. Similarly, there was a main effect of Radar 
Graph Expertise on the AOI Legend proportion component 
(F(1,21) = 5.732, r = 0.78, p = 0.129), with radar experts 
spending less time looking at the legend when compared to 
non-experts. The discrepancy between strong effect sizes 
for these two expertise-related measures and the lack of 
statistical significance is likely due to limited statistical 

power. The power for the effect of Bar Graph expertise on 
the AOI Label is 0.67, and the power for the effect of Radar 
Graph expertise on AOI Legend is 0.64. A commonly 
recommended value of power is 0.8 [8], and we would have 
to add 17% (or 6) more users to reach this value. 

It may seem surprising that we did not find stronger 
influences of visualization expertise on gaze patterns. This 
result, however, is consistent with findings in [28], which 
showed that bar and radar graph expertise may only have 
significant effects on user visualization preference, but not 
on performance. These findings suggest that there might not 
be easily detectable differences in the visualization 
processing behaviors of experts and novices, as defined by 
our self-rated measures of expertise.   

Visual WM 
We found no effects worth reporting for visual WM. This 
lack of findings may be due to the fact that the study tasks 
were relatively easy and that the visualizations were static 
in nature. It is thus likely that users did not require to reach 
their maximum visual memory capacity, especially since 
they could easily get an overview of the whole graph in a 
single look. Moreover, individual tasks were independent of 
each other, thus users were not required to store any 
successive visual information (one of the functions affected 
by visual WM).  

SUMMARY OF FINDINGS & DISCUSSION 
The goal of our study was to investigate 1) if user 
characteristics impact gaze patterns during visualization 
processing, and if the impact can be detected though eye-
tracking; 2) which gaze measures are influenced by which 
user characteristics, as well as if/how the influence is 
mediated by task difficulty and visualization type. In this 
paper, we chose to focus on the five characteristics listed in 
Table 11 and, as shown in this table, we found a number of 
effects  (either statistically significant or with large effect 
sizes) on various gaze measures. 

Perceptual speed is the cognitive measure with the highest 
number of effects. This finding provides encouraging 
evidence that this cognitive ability could be reliably 
detected in real time using gaze information. This result is 
particularly important for our long-term goal of designing 
user-adaptive visualizations, especially in light of previous 
studies, which showed that low perceptual speed can 
negatively affect task performance, in terms of both 
accuracy [3] as well as task completion time [28]. We have 
shown that perceptual speed influences AOI-specific gaze 
measures relating to the legend, labels and High AOI. 
These findings suggest that adaptive interventions could be 
particularly useful if they support the access and/or 
processing of such AOIs for low perceptual speed users. In 
addition, the interaction effects we found for perceptual 
speed suggest that task difficulty and visualization type 
should be taken into account, if known, when providing 
adaptive interventions. For instance, we found that low 
perceptual speed users tended to access a visualization 



 

 

legend more than high perceptual speed users, suggesting 
that they should be specifically supported in terms of 
legend processing. However, we also found that this effect 
is exacerbated in the presence of difficult tasks. Thus, while 
it may not be worthwhile disrupting a low speed user with a 
legend-related intervention for tasks known to be easy, it 
may be important to do so as task difficulty increases.  

User 
Characteristic Eye tracking measure component 

Perceptual 
Speed 

Fixation Measures (main effect) 
Legend Proportion (main effect) 
Legend Transitions (main & interaction effect) 
Label Transitions (interaction effect) 
High AOI Transitions (interaction effect) 

Verbal WM Std. Dev. Path Angles (main effect) 
Text Proportion (main effect) 

Bar Expertise Label Proportion (p> 0.05,  but large effect size) 
Radar 
Expertise Legend (p> 0.05,  but large effect size) 

Visual WM None 

Table 11. Overall Results 
The results on verbal WM indicate, intuitively, that this 
cognitive ability affects eye-tracking features related to the 
main textual element of a visualization, and thus may be 
detectable in real time by tracking these features. In our 
experiment, the textual element was the question text, but in 
other settings this could be the visualization caption or the 
portion of text in which the visualization is embedded (e.g. 
possibly providing verbal descriptions of the displayed 
data). In terms of adaptation, it is plausible that users with 
low verbal WM may benefit if textual elements of a 
visualization were given more emphasis than the purely 
graphical elements. However, because we do not have 
information on whether verbal WM affects performance 
during Infovis processing, it remains a topic for future 
research to investigate if and how adaptive interventions 
would impact visualization effectiveness for users with 
different levels of verbal WM. 

We discussed two non-significant main effects of the 
expertise-related user characteristics because of their large 
effect sizes. Bar expertise had a large effect on label access, 
while radar expertise had a large effect on legend access. 
These results may indicate that non-experts could benefit 
from adaptive interventions that guide them to access these 
elements in a way that is more similar to experts.  However, 
we need to run further studies with more reliable, objective 
measures of expertise (the ones used in this study were self-
reported) before we can make a more informed decision on 
how to provide adaptive support for novice users. 

In summary, we have identified a set of user abilities that 
have a strong impact on gaze measures related to specific 
AOIs of a visualization, and discussed how adaptive 
interventions driven by these abilities and targeting such 
AOIs may improve a user’s experience with a given 
visualization. While our study has only investigated two 
simple visualization techniques, several results may be 
generalized to a wider array of visualization designs, since 

they involve AOIs that are common to most types of 
visualizations (such as a graph’s labels or legend). In fact, 
the majority of our results are effects that are actually 
independent of visualization design. Similarly, while the 
study has focused on an artificial data set involving student 
grades (in order to eliminate domain expertise as a study 
factor), the actual tasks were derived from an established 
set of general, low-level analysis tasks for information 
visualization [1]. Lastly, while this work has focused on an 
analysis for the purpose of adaptive information 
visualization, similar user studies could be performed in 
other areas of HCI (e.g., desktop interfaces), to determine 
whether the influence of individual user differences can 
also be detected in those scenarios.  

CONCLUSION AND FUTURE WORK 
We presented research aimed at investigating the 
relationship between a set of user cognitive and expertise 
measures, task difficulty, and user attention patterns when 
using different visualization techniques. Our analysis 
reveals that some of the tested user characteristics  do have 
a significant influence on user gaze behavior, and that this 
influence is detectable through a variety of eye tracking 
metrics. Based on these findings, we provided general 
suggestions for adaptive visualization design in relation to 
components that are common to most types of 
visualizations, for example suggesting that low perceptual 
speed users may need support in processing legends. Our 
results may therefore be of interest when designing systems 
for specific user groups that are known to have high/low 
cognitive abilities (e.g., older adults and people with autism 
are known to have lower values for perceptual speed).  

We see the analysis presented here as a first step towards 
understanding the complex relationships between user 
traits, visualizations, and gaze patterns. However, additional 
studies are necessary to investigate these relationships at the 
level of more basic Infovis properties such as color, size, 
and shape. Similarly, studies should be run to investigate 
these relationships in more complex visualizations such as 
time series, networks, as well as interactive visualizations. 
Along these lines, we are currently applying the 
experimental design described in this paper to investigate 
the impact of user traits on different versions of a complex 
interactive visualizations involving multiple, aligned bar 
charts [2] for preference elicitation. Because of the added 
complexity, we expect the impact of user characteristics, 
task difficulty, and visualization type to be even more 
pronounced than in the current study. The next step of our 
research is to show that the relevant user characteristics can 
be detected in real-time to drive adaptive interventions 
benefiting users with those characteristics. We are currently 
investigating a variety of machine learning techniques to 
perform this real-time inference task, and we already have 
encouraging results [25]. Lastly, we are in the process of 
running a user study to test different ways of providing 
adaptive interventions, both in general, and in relation to 
individual user differences. 
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