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Abstract

Modern tools to create 3D models are cumbersome and time-consuming.
Sketching is a natural way to communicate ideas quickly, and human ob-
servers, given a sketch, typically imagine a unique 3D shape; thus, a tool to
algorithmically interpret sketches recovering the intended 3D shape would
significantly simplify 3D modeling. However, developing such tool is known
to be a difficult problem in computer science due to multitude of ambiguities,
inaccuracies and incompleteness in the sketches. In this thesis, we introduce
three novel approaches in CAD and character modeling that successfully
overcome those problems, inferring artist-intended 3D shape from sketches.

First, we introduce a system to infer the artist-intended surface of a
CAD object from a network of closed 3D curves. Second, we propose a new
system for recovering a 3D model of a character, given a single complete
drawing and a correspondingly posed 3D skeleton. Finally, we introduce a
novel system to pose a 3D character using a single gesture drawing. While
developing each system, we derive our key insights from perceptual and
artist literature, and confirm our algorithmic choices by various evaluations
and comparisons to ground truth data.
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Chapter 1

Introduction

3D modeling is used ubiquitously in manufacturing, entertainment, con-
struction, and its influence is rapidly expanding to health care, education,
and other industries. It is next to impossible to find a new building, a new
car, or a top-selling movie made without 3D models. At the same time,
creating 3D models in modern software packages is time consuming, cum-
bersome, and requires expert 3D modeling skills. Typically 3D modeling
software relies on the use of specialized complex 3D modeling tools (Figure
1.1), which to regular artists are far from natural [83].

Sketching is a natural way to communicate ideas quickly [98]. Sketching
is often a first step in making fine art, creating illustrations or cartoons, 3D
modeling, etc. The expressive power of sketching along with its accessibility
make it a method of choice to visually convey an idea.

A tool for automatically interpreting sketches and creating 3D models,
envisioned by the designer of the sketch, could be the Holy Grail of mod-
eling [98]. Such a tool may benefit numerous applications, enabling rapid
prototyping, creating animations or models quickly and, perhaps even more
importantly, enabling more people to use 3D modeling.

To embark on a quest for the tool, one may look at the core components
of a sketch, which are its curves. They are the first elements to be drawn
before shading or color, and are essential to conveying geometric information
[49]. Interpretation of a sketch is largely through interpretation of its curves.

Unfortunately, while curve drawings are a natural and well understood
representation for humans, they are hard to interpret algorithmically [80].
The complexity of an algorithmic interpretation roots in the complexity of
the human perception of such drawings, which we are yet to understand.
The fundamental problem of algorithmic interpretation is that mathemati-
cally, each 2D curve has an infinite number of 3D interpretations [86]. Even
if curves are embedded in 3D, there is an infinite number of surfaces passing
through the curves. Moreover, sketches typically contain occlusions, ambi-
guities, and distorted proportions that complicate the matter even further.

Nevertheless, as we discuss in Chapters 3-5, for artist-drawn 2D sketches,
human observers tend to imagine unique 3D curves, successfully overcoming
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Chapter 1. Introduction

Figure 1.1: Graphical interface of a commercial industry-standard 3D mod-
eling package.

ambiguities and inaccuracies. Furthermore, given such imagined or artist
modeled 3D curves, human observers tend to imagine unique 3D shape.
The key to understanding why, we believe, is the intent of sketches: they
are drawn to convey shape. This intent drives artists to draw a sufficient
number of significant curves, unambiguously depicting the object from a
non-accidental view. Such an intent is the crucial trait for modeling and per-
ception research with the purpose of discovering the mathematical nature of
sketch curves, and therefore give a hope of algorithmic sketch interpretation.
Particularly,

• Significant curves. Depending on the context, 2D sketches and 3D
curve networks typically include ridge/valley lines [26], curves depict-
ing sharp features, and the lines of principle curvature [42, 119]. 2D
sketches also include occlusion contours in the selected view.

• Sufficient number of curves. While arbitrary 2D curve drawings
or 3D curve networks may have vastly different interpretations, artist
created sketches typically have enough curves to uniquely convey the
imagined 3D object.

• Non-accidental view. For 2D sketches, designers tend to choose
non-accidental views with few occlusions and least foreshortening [93].
This suggests that observers interpret 2D geometric properties as strongly
correlated with 3D geometry rather than being caused by a particular
choice of viewpoint [138].

Such observations are the cornerstones of our research, serving as a
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1.1. Overview of Contributions

base for our algorithms. Additionally, we derive cues on sketch interpre-
tation from well-studied features of human perception. Those features, by
large introduced by Gestalt psychologists, include anticipation of symmetry
and simplicity (Good Gestalt Principle), alignment and regularity, et cetera
[132]. In our algorithms, we aim to mimic such behavior.

Apart from information in the sketch itself, human perception of curves
also depends on context and prior knowledge [102, 121]. Correctly interpret-
ing sketches requires knowledge of the context and the relevant priors. In
our research, each project’s scope of applicability defines such context and
provides the necessary priors for interpreting curve shape. For instance,
an observation that body parts of most characters can be represented as
surfaces of revolution, provides missing necessary information when inter-
preting a character sketch (Section 4). In other words, prior information of
this kind allows us to approach problems that otherwise would be ill-defined.

To summarize, this thesis is focused on using specific prior knowledge,
findings in perception research, and insights from artist literature to algo-
rithmically interpret sketched objects, in the areas of direct practical appli-
cations. To validate our results, we compare them with the ones manually
created by professional artists, and, whenever possible, compare our algo-
rithmic choices with human ones.

1.1 Overview of Contributions

The contributions of the dissertation can be split into two main categories.
First, in each chapter we distill the artistic knowledge of the area, along with
cues drawn from perceptual evaluations, into a set of principles that guide
the interpretation of curve drawings. And second, we use those principles to
build systems allowing us to algorithmically interpret curve drawings within
a particular domain. We then confirm our analysis and intuition with various
evaluations and direct comparison with artists’ results.

Thus, we introduce three novel systems for algorithmically interpreting
sketches and recovering the depicted 3D shape. Our work encompasses two
separate shape domains: CAD objects (Chapter 3) and characters (Chapters
4 and 5).

• In Section 1.2 and Chapter 3, we introduce our first contribution, an
approach to automatically generate 3D surfaces of CAD objects from
artist-drawn 3D curve networks. Such an approach complements 3D
curve sketching interfaces such as ILoveSketch [7] or systems for lifting
2D sketches into 3D [138] to rapidly create CAD models.
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1.2. Recovering Artist-Intended Surfaces from 3D Curves

input curve network shape-aware quad-mesh

Figure 1.2: A brief overview of Chapter 3.

• In Section 1.3 and Chapter 4, we introduce a new technique to recover
3D character shape from a 2D cartoon drawing and a correspondingly
posed 3D skeleton. We demonstrate that this system can be used to
create believable 3D models from a single drawing and a 3D skeleton,
sidestepping the tedious 3D modeling step.

• In Section 1.4 and Chapter 5, we introduce a system to pose a 3D char-
acter directly via a gesture drawing. This system is intended to replace
the tedious and cumbersome rig-based posing process in a traditional
3D modeling package.

1.2 Recovering Artist-Intended Surfaces from 3D
Curves

Advances in sketching interfaces enable artists to directly draw early concept
sketches in 3D while following their pen-and-paper drawing style, creating
3D curve networks [7]. Such curve networks are known to effectively convey
complex 3D shape [87], and, if drawn by an artist, typically convey the shape
unambiguously. In Chapter 3 we introduce the first solution to construct-
ing the imaginary surface interpolating a general 3D design curve network,
consistent with artist intent.

To approach the informal notion of artist intent when defining a surface,
we derive our insights from ideas in 3D modeling and perception literature.
Namely, we observe, based on design literature, that the artist-drawn 3D

4



1.3. Recovering Character 3D Model from a Cartoon Drawing
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Figure 1.3: A brief overview of Chapter 4

curves can be treated as representative flow-lines, an input-derived sparse
set of curves, correlated with lines of curvature. We further observe that
viewers complete the intended shape by envisioning a dense network of
smooth, gradually changing, flow-lines that interpolates the input curves.
Components of the network bridge pairs of input curve segments with sim-
ilar orientation and shape.

Consequently, we introduce the novel algorithm that mimics this behav-
ior by iteratively segmenting and matching the input curves, and then uses
the matching to effectively construct an interpolating surface consistent with
artist intent (Fig. 1.2).

1.3 Recovering Character 3D Model from a
Cartoon Drawing

Traditional 2D cartoon characters are a mainstay of computer animation.
Viewers appreciate the feel of hand-drawn art, while animators enjoy the
flexibility and explicit control offered by this medium. This flexibility, un-
fortunately, comes with the tedium of drawing numerous individual frames,
and the cumbersome burden of managing view and temporal coherence.
Recent research [112] and practice [104] advocate the use of an underlying
3D model to enable easy 3D control over the view, pose, deformation and
painterly rendering effects of cartoon characters. In current animation prac-
tice, such models are manually constructed using 2D cartoon drawings as a
visual reference, and are then manually rigged to suitably designed skeletons
for posing and animation. In chapter 4 we introduce a novel technique for
the construction of a 3D character model directly from a 2D cartoon draw-
ing and a user-provided correspondingly posed 3D skeleton, enabling artists
to directly articulate the drawn character in 3D.

We observe that traditional cartoon characters are well approximated
by a union of generalized surface of revolution body parts, anchored by a
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1.4. Recovering 3D Character Pose from a Gesture Drawing

Figure 1.4: A brief overview of Chapter 5.

skeletal structure, which motivates our choice of input. We also observe that
while typical 2D character contour drawings allow ambiguities in 3D inter-
pretation, our use of a 3D skeleton eliminates such ambiguities and enables
the construction of believable character models from complex drawings. We
analyze and distill the insights on the nature of character sketches from
perception and art literature, namely, we explore the principles of Gestalt
continuity, simplicity, and contour persistence.

Beyond this analysis, our contribution is the method based on those in-
sights that enables generating 3D character models from curve drawings.
The core of the method consists of two algorithms: first, the algorithm of
body part delineation that segments the input 2D contours into sections out-
lining individual body parts and resolves inter-part occlusions; and second,
the algorithm that imbues the outlined contours for each body part with
depth and creates the 3D model, balancing perception cues, image fidelity,
and shape priors (Fig. 1.3).

1.4 Recovering 3D Character Pose from a
Gesture Drawing

While posing 3D characters is a common task in digital media production,
performing it using traditional 3D interfaces is time consuming and requires
expert 3D knowledge. Alternative approaches which use stick figures or lines
of action as a posing reference are problematic, since these representations
are inherently ambiguous even to human observers.

In contrast to these representations, gesture drawings - rough yet ex-
pressive sketches of a character’s pose - are designed by artists to facilitate
a single perceptually consistent pose interpretation by viewers. Artists are
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skilled at quickly and effectively conveying poses using such drawings, and
use them ubiquitously while storyboarding. Actual animation, however, is
typically done by manual manipulation of the skeleton, and those draw-
ings are often used only as a reference [83]. In Chapter 5 we introduce the
first method to pose a 3D character directly via a single vectorized gesture
drawing as the only input.

The contribution of the chapter is two-fold: we formulate the properties
of effective gesture drawings, bringing together insights from various fields,
such as psychology, art, and computer graphics, highlighting key perceptual
cues which enable viewers to perceive the artist intended character poses;
we then use these observations to introduce the first gesture drawing based
algorithm for posing 3D characters. Our method enables artists to directly
convert their ideated posed character drawings into 3D character poses, and
supports complex drawings with occlusions, variable body part foreshorten-
ing, and drawing inaccuracies (Fig. 1.4).
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Chapter 2

Previous Work

2.1 Sketch-based 3D Modeling

Algorithmic sketch interpretation has a long history rooted in computer
vision and artificial intelligence research [25, 59]. Those early works focused
on providing semantic descriptions of elements in the drawing, rather than
a complete 3D model [79, 129]. For instance, Huffman [59] and Clowes
[25] studied the problem of line-labeling of polyhedra drawings. Waltz [129]
extended the line labels idea to include shadows, grouping lines into bodies.
Mackworth’s work [79] deals with ’naturalistic’ drawings of sketch maps,
classifying lines into shorelines, rivers, roads, and mountains.

The research question of how to infer 3D model from a line drawing
emerged not long after 3D modeling itself [86]. The review literature [98]
often name 3D Paint by L. Williams [135], Teddy by Igarashi et al. [60],
and SKETCH by Zeleznik et al. [140] the first sketch-based 3D modeling
systems.

2.1.1 Incremental Approaches

Those early methods were incremental, i.e. complex 3D shapes were mod-
eled via a sequence of simple operations. They did not aim to interpret
natural drawings; instead, they provided interfaces with a set of sketch-
based modeling operations to create a limited variety of shapes: geometric
primitives in SKETCH [140] or ’inflation’ surfaces in Teddy [60].

As incremental approaches developed and matured, the range of sur-
faces they could model expanded [90], and their input method gradually
transitioned closer to the pen-and-paper drawing process [99].

We can categorize the more recent methods into single- and multi-view
incremental approaches. A more extensive review of related literature can
be found in the survey by Olsen et al. [98], here we focus on the works most
relevant to our thesis.
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2.1. Sketch-based 3D Modeling

Multi-view. Many systems employ a multi-view approach: users build
models by drawing contour strokes in views where they are expected to
be parallel to the screen, or to project with little foreshortening onto the
evolving geometry [95, 123]. Frequent view changes and incremental draw-
ing order are critical when modeling characters using such approaches, as
it is next to impossible for all contours of a 3D model to be entirely flat
(Fig. 2.2). Borosan et al. [17] proposed simultaneously creating and rigging
3D characters using an interface where body parts are added incrementally,
one at a time, and the associated skeleton is generated on the fly. Our sys-
tems introduced in Chapters 4 and 5 are independent of drawing order; they
allows artists to freely sketch the characters they envision and to interpret
legacy sketches without need for oversketching.

The general issue with incremental approaches, however, is that the re-
sult strongly depends on the order in which the artists draw strokes, which
makes interpretation of complete natural drawings highly unlikely. Similarly,
choice of views to draw may not be an easy task for a user. Moreover, they
often require additional user input, such as annotations, correct drawing
order, etc.

Single-view. Single-view incremental modeling approaches, such as the
ones by Cherlin et al., Gingold et al., Shtof et al., and Chen et al. [21,
23, 46, 118] rely on additional information to facilitate modeling of complex
shapes. Namely, some methods [99], for the purpose of modeling smooth
shapes from existing drawings and photographs, leverage contour drawing
order and user annotation; others, such as Shtof et al. [118] and Chen et
al. [21] snap parameterized primitives to input contours via a combination
of optimization and user annotation, and rely on user assistance to generate
3D models from annotated sketches and photographs respectively. Gingold
et al. [46] interactively place tubular and elliptical 3D primitives to match
artist drawn contours; as they note, their system does not directly use the
2D image. Cherlin et al. [23] treat each new pair of contour strokes as
2D profiles defining a new generalized surface of revolution part, whose
trajectory is either circular or manually defined.

2.1.2 Shape and Pose Reconstruction from Photographs
and Video

In the meantime, in computer vision, a very relevant problem was being
solved – shape and pose reconstruction from monocular images and video
(for historical review see [3]). Compared to sketch-based modeling, much
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2.1. Sketch-based 3D Modeling

(a) (b) (c) (d) (e)

Figure 2.1: Stick figure drawings (a), lines of action (b), and outer silhou-
ettes (c) allow for multiple perceptually valid pose interpretations. (d) Poor
view selection results in highly foreshortened contours leading to loss of
pose information (e.g bends on the left arm or the curved spine). Gesture
drawings, consciously drawn from descriptive views (e) effectively convey
the intended pose.

more data is accessible here, though the range of shapes, poses, and motions
is severely limited compared to non-realistic animation demands.

A variety of recent multi-view reconstruction methods model human
subjects from silhouettes, potentially aided by skeletons [110, 139]. They
work with large collections of silhouettes captured from a range of views
and poses [92]. The main drawback of this class of methods is that a large
number of input drawings is very unlikely to be produced by hand; instead,
those methods aim at reconstructing from a series of photographs or video
sequences.

Reconstruction from video aims to capture a continuous motion, where
the pose in each frame is very close to a previously reconstructed pose in the
preceding frame, and heavily relies both on this existing previous pose and
on fine image-level correspondences between frames (e.g. [34, 44, 125]). Our
thesis has more in common with pose estimation from a single frame, or pose
initialization, where no such priors are available (e.g. [22, 43, 61, 111]). As
we show in Chapter 5, both outlines and incidental-view occlusion contours
(Figure 2.1c,d) are insufficient to deduce a pose; single-frame pose estimation
methods therefore frequently combine this information with textural and
shading cues which are unavailable in our setup.

Recent posing approaches (e.g. [61]) predict the most likely 3D pose by
learning from large databases of real and synthetic human motion data. Such
databases bias the results toward more frequent poses and can be difficult
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2.1. Sketch-based 3D Modeling

to obtain for non-humanoid or non-realistic characters, or for extreme/non-
physical poses. The frameworks introduced in the current thesis overcome
the lack of extensive anatomic pose priors, and allow recovery of atypical
character shapes and poses by leveraging the descriptive cues artists provide
when creating gesture and concept drawings.

For a more complete recent review of this area please refer to [125] and
the references therein.

2.1.3 Character Shape Reconstruction from Complete
Drawings

Incremental approaches allow users to provide guidance and control over
the modeling, and, in general, allow for more varied user input. However,
in an incremental framework, the input method is often not natural, and
reusing existing drawings is hard, if even possible. In contrast, methods for
recovering 3D shape from complete drawings are aimed at using existing
natural art as input. These methods allow us to preserve the standard 3D
model development process that often starts with sketches.

These methods can use either a single drawing to recover 3D shape, or
multiple drawings. Using multiple drawings, artists have the freedom to
specify some details or shape features invisible from a single view. At the
same time, using these methods typically requires more user input to spec-
ify correspondences between curves on different drawings. Single-drawing
methods are aimed at quick modeling and so typically don’t require extra
user input; instead, they often rely on simplifying assumptions about the
depicted 3D shape.

Using Multiple Complete Drawings. A number of methods, such as
the ones by Fiore et al., Rivers et al., Jain et al., and Levi and Gotsman
[41, 65, 74, 106] use collections of vector character drawings taken from dif-
ferent views to create a 3D shape proxy or enable direct rendering from
in-between views. The biggest problem this approach has is finding the cor-
rect correspondences between curves in different drawings. Those methods
rely either on user-annotated dense curve correspondences in between the
drawings [41, 106], or manually specified correspondence between each in-
dividual drawing and a user-positioned 2D [65] or 3D [74] skeleton. The
methods require at least three strategically posed drawings to achieve ac-
ceptable results. In contrast, our method in Chapter 4 generates reposed
character renders that are qualitatively comparable to renders produced by
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front front frontalternate alternate alternate

(a) (b) (c)

Figure 2.2: Character drawings do not conform to the assumptions made
in previous work. (top) The contours of a surface of revolution whose axis
is not in the view plane are typically not planar.(bottom) The contours of
a typical character include numerous occlusions; a single contour curve can
consist of multiple part outlines (see left arm and torso outline in (a)) and
as shown by the side view (b) the contour curves are far from planar or view
aligned. Our method introduced in Chapter 4 (c) successfully handles such
inputs generating a character model similar to the ground truth input (b).

these methods from a single, descriptive drawing and a matching skeleton
with no additional annotation (Fig. 4.24).

A related line of work is in the area of inbetweening [134], where the
task is to interpolate the motion of a character between given frames. The
geometry of a character is assumed to stay roughly the same throughout
the animation, and only the view and the pose might change. For complex
cases, these approaches also rely on user-annotated curve correspondences
between different frames.

Using a Single Complete Drawing. A range of methods attempt to
recover character models from single view sketches with no extra input [20,
28, 37, 68]. However, in doing so they by necessity enforce a range of strong
simplifying assumptions. In the domain of character models, Buchanan et
al. [20] lift an occlusion-free 2D contour into 3D by placing circular arcs
along a 2D geometric skeleton; they assume the entire contour to be pla-
nar and near-perpendicular to the view direction. Cordier et. al. [28] lift
contour drawings of reflectively symmetric and symmetrically posed char-
acters into 3D. They expect every part contour to be planar, and expect
each part to be represented as a separate curve in the drawing. Karpenko
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(a) (b)

Figure 2.3: (a) Lacking part information, character shape reconstruction
can at best exploit overall shape smoothness, e.g [68, 95]; (b) by using a
skeleton to facilitate contour partition and part modeling, we generate a
more believable character shape.

and Hughes [68] successfully process character drawings containing partial
occlusions and asymmetric poses, but assume that each contour curve is
planar and perpendicular to the view direction. Lacking part structure,
they cannot leverage geometric priors on individual body-part shape and
use surface inflation (Fig. 2.3) to generate the outputs. Entem et al. [37]
model animals from a canonical side-view sketch and rely on T-junctions to
segment the contours into separate part outlines. They assume all contour
curves to be planar and perpendicular to the view direction, and only handle
local T-junction type occlusions between immediately adjacent body parts.

The assumptions listed above do not hold for the vast majority of artic-
ulated character drawings: these drawings frequently contain general inter-
part occlusions, individual contour curves frequently extend across multiple
body parts, these parts are rarely perfectly symmetric, and part contours
are rarely planar (Fig. 2.2).

Research in this category is related to our work presented in Chapters 4
and 5, however, we do not impose such simplifying assumptions on the 3D
shape.

By leveraging the additional information provided by the 3D skeleton,
our method in Chapter 4 successfully relaxes all of these assumptions and is
able to handle inputs such as ’sneaky’ (Fig. 2.2 (bottom)) or the catwoman
(Fig. 4.1, 4.3) which repeatedly violate them.

Sýkora et al. [122] use user annotation to recover a bas-relief with ap-
proximate depth from a single sketch which they use to illuminate a 2D draw-
ing. Their method makes no effort to create a 3D canvas that is plausible
from all views; as they note, their proxy meshes ”expose their approximate
nature when rendered from sideviews using a perspective camera”.

In CAD domain, a variety of methods, e.g. one of Xu et al. [138] or one of
Lipson and Shpitalni [78] (see [138] for full references) infer 3D curves from
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a 2D sketch of a CAD model. Our research in Chapter 3 complements these
works by inferring the artist-indended surfaces, thus allowing the creation
of a complete 3D model.

2.1.4 Skeleton-based 3D Modeling

Another alternative approach to modeling 3D shapes is skeleton-based mod-
eling. Organic 3D forms created using implicit functions defined around
interactively manipulated skeletal primitives have existed for at least two
decades [13]. Recently, [8, 17] proposed to simultaneously create 3D shapes
and corresponding skeletons as a means to integrate skeletal deformation and
interactive shape sculpting. While those methods do not require a skeleton
as an input, neither framework can incorporate a complete 2D drawing into
the modeling process.

2.2 Posing Characters

Posing characters can be done either with explicit 3D model, or via 3D-like
effects on 2D sketches.

2.2.1 Adding 3D Effects to 2D Drawings

Existing 2D animation tools support a limited range of 3D effects. They en-
able occlusions via explicit layering [2, 4, 58] and approximate out-of-plane
deformation using non-uniform scaling that mimics foreshortening [64]. These
approaches use a fixed 2D contour topology and are inherently unsuitable
for generic 3D manipulation which requires topological changes in character
contour and reveals a priori occluded geometry (see Fig. 4.1(e)).

Recent industry-driven research (e.g. [104]) aims to enhance hand-drawn
animation with 3D effects such as volumetric textures [9, 113], or cloth
simulation [65], by utilizing separately created 3D models or proxies in the
background. In Chapter 4, we produce the underlying 3D proxy required
by these techniques using a single 2D cartoon frame and an appropriately
posed 3D skeleton as input. Our problem formulation is a novel intersection
of skeleton-driven 3D modeling, sketch-based single-view modeling, and 3D
character construction.

14



2.2. Posing Characters

2.2.2 3D Character Posing

Sketch Based Articulation Rather than creating a model from scratch,
methods such as [71] deform a 3D character template to fit a contour draw-
ing. They either expect the template and drawn poses to be aligned, or
expect users to manually specify coarse template-drawing correspondences.
They then use local shape compatibility between the input outlines and the
corresponding 3D geometry to obtain dense correspondences. Since contours
in gesture drawings are approximate and highly abstracted, local shape com-
patibility cannot be used as a reliable criterion in Chapter 5. Despite this
extra challenge, our method does not require manual correspondences nor
expects the drawn pose to resemble the input bind one.

Character Posing Interfaces In most industry setups, characters are
posed via 3D skeleton manipulation. Users either manually adjust joint
angles, or use Inverse Kinematics (IK) based tools to place bone end-points
at specific locations [141]. While IK-based frameworks relieve some of the
tedium of adjusting individual joints, they still require experience with 3D
modeling systems and non-trivial posing time.

Recent research demonstrates effectiveness of alternative posing approaches,
such as handles [63], selected regions and exterior cages [66, 130], or anima-
tion devices [47]. Handle and cage based approaches focus on expanding the
space of possible deformations, while animation devices focus on reducing
amount of work needed. However, when artists ideate their desired poses
they prefer to use pen and paper. Using these ideation drawings as-is to
create 3D poses saves artists time and effort.

Hahn et al. [51] and Guay et al. [48] propose incremental, multi-view,
sketch-based posing interfaces. Lines of action, imaginary lines running
down a character’s spine or other major bone chains (Figure 5.2b) are used
by artists for coarse pose communication [48]. Guay et al. use line-of-
action strokes to pose characters by placing user-specified corresponding
bone-chains along these strokes.

This input allows multiple pose interpretations for body parts not di-
rectly present on the line of action or its continuation, and requires an
incremental multi-view interface to pose non-coplanar bone-chains. Hahn et
al. [51] propose an interface where a user poses characters one limb at a time,
by first drawing a stroke along a limb in the current pose and then draw-
ing a corresponding stroke depicting its new pose. The system then poses
the limbs by aligning them to the strokes. It assumes uniform foreshort-
ening along the posed limbs, and requires multiple stroke pairs and view
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changes to generate complex poses. Our work in Chapter 5 complements
these approaches by providing a single-view drawing-based posing mecha-
nism, allowing artists to directly use their gesture and keyframe drawings
for character posing.

A number of recent methods use stick-figures [33, 54, 77, 82] - 2D pro-
jections of the desired 3D skeleton of the posed character (Figure 5.2a) -
to compute a corresponding 3D skeletal pose As the authors acknowledge,
stick-figures are inherently ambiguous and allow for multiple geometrically
valid and perceptually plausible 3D interpretations. Hecker and Perlin [54]
and Mao et al. [82] propose users to encode the relative depth of bones and
joints via pen pressure or stroke width. Such interfaces become unwieldy
for typical characters (e.g. Figure 5.1) which have dozens of bones. Davis
et al. [33] resolve ambiguities through user annotation, followed by users
selecting the desired character pose from multiple plausible solutions. Lin
et al. [77] use stick-figures to pose characters sitting in a chair, and reduce
ambiguities by using specific priors relevant only for sitting characters. Wei
et al. [131] and Choi et al. [24] use drawn stick-figures to query a database
of human poses. Such databases can be difficult to obtain for custom skele-
tons, especially of non-humanoid or non-realistic characters. Reliance on
databases inherently biases the reconstructed poses toward more frequent
database instances. In contrast to stick figures, gesture drawings are unam-
biguous to human observers, motivating our approach. At the same time
while matching 2D stick figures to 3D skeletons is straightforward up to in-
herent ambiguity between symmetric limbs, matching characters to gesture
drawings is an open and challenging problems we successfully address for the
first time. Small inaccuracies in 2D stick-figures can lead to large changes
in the recovered 3D pose [33]. To improve accuracy Davis et al. [33] advise
artists to first draw a gesture or bubble sketch of the target posed charac-
ter, and then use it to assist in positioning the stick-figure (Figure 5.17).
Our work in Chapter 5 operates directly on gesture drawings and robustly
overcomes artist inaccuracies by balancing image conformity against other
perceptual cues (Figure 5.15).

2.3 Surface Reconstruction from 3D Curve
Networks

One can create 3D curve models of CAD objects via a variety of tools, e.g.
via a sketch-based interface [7], or by lifting a 2D sketch into 3D [138]. Those
tools, however, are capable of creating curves only. The problem is therefore
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to find the interpolating surface envisioned by the designer, given such curve
networks.

Early approaches aimed to reconstruct polyhedra, given 2D or 3D straight
line drawings [85, 133]. In contrast, inferring a smooth surface from a set of
2D/3D freeform curves is a more ambiguous and challenging task.

There is a large body of work on interpolating closed curves, or cycles,
with smooth surfaces, much of it in the context of hole filling [81]. While a
small portion of the methods [1, 32, 40, 75, 95, 107] can operate on arbitrarily
shaped curves, the majority assume that the curve is pre-segmented into
n sub-curves and can be mapped to a planar n-sided polygon with little
distortion, e.g. [27, 45, 128].

Fitting to n-sided curve cycles A variety of popular techniques are
available for interpolating and approximating networks of regular quad or
triangular patches [38], see [100] for a recent sketching motivated approach.
These methods, including the well-known Coons patches [27], and their dis-
crete extension [39] provide an effective solution. We show in Chapter 3
that unlike other fitting approaches, these are widely used by modelers and
designers as the resulting surfaces closely reflect designer intent.

For cycles with n > 4 existing approaches can be classified into single
surface fitting, e.g. [45, 128], or subdivision into quad or triangular cycles,
e.g. [94, 112]. The first category of methods interpolate the cycles with
a single surface patch by utilizing suitable n-sided convex 2D polygons as
parameter domains. As acknowledged by Varady [128] the fitted surface
quality is strongly dependent on the quality of the 2D parameterization.

Subdivision approaches, e.g. [94, 112], quadrangulate the input cycles,
and then use available techniques to interpolate or approximate the resulting
quad network. In the basic midpoint scheme a single vertex is placed in the
center of a patch and then connected to the middle of each side. To generate
a watertight surface across heterogeneous networks, Schaefer et al. [112] and
Nasri et al. [94] introduce more sophisticated quadrangulation schemes that
maintain a fixed number of intervals, or sub-segments along each side while
aiming to control both the number and valence of the added extraordinary
vertices [94]. Note that all these approaches require n to be specified by the
user, which may not be evident from the topology of the network.

A variety of techniques are available for interpolating and approximating
networks of regular quad or triangular patches [38], see [100] for a recent
sketching motivated approach. These methods, including the well-known
Coons patches [27], and their discrete extension [39] (Figure 2.4, (d)) pro-
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2.3. Surface Reconstruction from 3D Curve Networks

vide an effective solution which naturally aligns the surface iso-lines with
the flow-line sequences indicated by the boundary curves. Design and per-
ception literature indicate that designers expect the curve cycle boundaries
to correspond to representative flow-lines implying surface curvature direc-
tions, a behavior captured by Coons interpolation (Figure 2.4, (d)), but not
the other fitting approaches. These methods are widely used by modelers
and designers as the resulting surfaces closely reflect designer intent.

Surface Fitting to Arbitrary Curve Cycles These more generic ap-
proaches typically utilize a diffusion process that optimizes surface fairness.
As we show in Chapter 3, those traditional approaches fail to capture de-
signer intent on structured inputs, even if supplied with pre-defined normals
along the input curves[75, 89]. Moreover, such normals are not part of a
typical curve-based modeler output [7, 95, 115]. Other approaches impose
very strict constraints on the inferred surface, e.g. developability, often in-
compatible with artist intent [107]. This approach is too restrictive for a
general modeling setup, where many inputs, including the cycle in Figure
2.4 (a), aim to convey non-developable surfaces.

Quad Meshing: Our work draws on ideas from coarse-to-fine planar
meshing approaches, such as sub-mapping [101, 108]. In contrast to those
it supports irregular quad connectivity, automatically introducing irregu-
lar interior vertices when warranted by the boundary shape (e.g. Figure
3.10). More significantly it operates on 3D curves, without the benefit of
a well defined planar domain. While planar meshing methods focus on el-
ement quality or shape, our goal is to recover and quadrangulate a surface
enclosed by designer-drawn curves.

Many recent publications addresses quad meshing of existing 3D surfaces
[14, 15, 30, 67, 76, 84, 127]. These methods aim to align the output quad
meshes with the principal curvature directions in anisotropic regions gener-
ating smooth orthogonal families of flow-lines. In our setup no underlying
surface is available. Instead we aim to align the output meshes with the
flow-line directions conveyed by the input designer curves, which as noted
above strongly correlate to curvature lines.

As shown by figure 2.5 (top) using the actual shape of the curves to deter-
mine the end-point locations and induced topology as done by our method
in Chapter 3 can significantly improve both the flow line layout and the
resulting surface shape. Contrary to all the approaches above our method
can operate on curve cycles with large concavities (Figures 2.5 (bottom)).
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2.3. Surface Reconstruction from 3D Curve Networks

Figure 2.4: Using Laplacian diffusion (b) or Thin-Plate Splines [40](c) to
surface a four-sided cycle leads to unintuitive results. (d) In contrast the
flow lines on an interpolating Coons patch, by construction, bridge opposite
cycle sides.

Figure 2.5: (top) Using a purely topological approach and applying mid-
point subdivision (forming either four or six sides) generates a quad mesh
with poor flow line layout (left and center). Our method in Chapter 3 (right)
uses geometry driven segmentation and matching to generate smooth flow
lines and a predictable surface. (bottom) On a concave cycle, parameteriza-
tion onto a convex domain (a rectangle) leads to foldovers (left), our method
automatically segments the cycle into convex quadrilaterals leading to a fair
surface (right).
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Chapter 3

Design-Driven
Quadrangulation of Closed
3D curves

3.1 Introduction

In this chapter we present our first contribution, Design-Driven Quadran-
gulation from Closed 3D Curves. Here we introduce a new approach to
creating surfaces interpolating closed 3D curves created by sketch-based or
other curve modeling systems. The project has since been published in ACM
Transactions on Graphics [11].

Sparse networks of closed 3D curves are the foundation of shape in both
traditional CAD modeling [39] and increasingly popular sketch-based mod-
eling interfaces [7, 95, 115]. As we mentioned in the introduction of the
dissertation, recent research affirms that such 3D curve networks do effec-
tively convey complex 3D shape [35, 88, 89] (Figure 3.1 (a)). We aim to
recover and compactly represent this conveyed shape (Figure 3.1 (f)), for
designer-drawn curve networks,such as those generated by Abbasinejad et
al. [1] from sketched 3D curves [7].

While arbitrary 3D curve cycles have highly ambiguous interpolating
surfaces (Figure 3.2 (top)), designer created curve cycles, even when highly
complex, typically convey a uniquely imagined surface (Figure 3.2 (bot-
tom)). These curves are designed to serve as a visual proxy of the 3D object,
with the expectation that every element of surface detail is explicitly cap-
tured by the network [42]. To this end, design texts repeatedly emphasize
the significance of using representative flow-lines of the object [16, 42], as
curve network elements. While design literature provides no precise math-
ematical definition of flow-lines, design and modeling references [42, 119]
suggest that flow-lines are strongly correlated to sharp features and lines of
curvature but allow for artistic license at surface discontinuities, over fine
details and in umbilic regions.
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3.1. Introduction

(e) design-driven quadrangulation

(a) input curve network

(b) initial segmentation

(c) pairing and iterative refinement

(d) final quadrangulation and quad-mesh

fine

(d) final quadrangulatio

(f) design rendering

Figure 3.1: Steps to quadrangulating a design network of closed 3D curves
(a) : Closed curves are independently segmented (b) and iteratively paired
and refined to capture dominant flow-lines as well as overall flow-line quality
(c); final quadrangulation in green and dense quad-mesh (d); quadrangula-
tions are aligned across adjacent cycles to generate a single densely sampled
mesh (e), suitable for design rendering and downstream applications (f).

These observations, confirmed by perception studies [120], suggest that
any additional flow-line on the surface must be expressible as a blend of the
explicitly defined flow lines on the designer-created curve cycles. Viewers
complete the intended shape by envisioning a dense network of such blended,
gradually changing flow-lines. An examination of artist-drawn dense net-
works (e.g. Figure 3.3) confirms this observation; moreover, artists take
advantage of this property by implicitly pairing opposite representative flow-
lines, and constructing curve sequences that smoothly evolve from one input
flow-line to its mate along the interior surface. The resulting surface is de-
scribed by the union of these sequences, and forms a quad-dominant mesh.
Consistent with this examination, popular CAD tools capture the geometry
of four-sided curve cycles using Coons patches [27] (Figure 2.4 (d)), whose
iso-lines implicitly define a sequence of flow-lines that bridge the opposite
sides of each cycle.

Our surface-fitting algorithm aims to replicate this behavior. Before
formally describing the algorithm, we introduce some terminology. A 3D
curve network is a graph of connected 3D curves, where one or more curve
cycles have been marked for surfacing by the designer. A quadrangulated
curve network (left, black) requires that all curve cycles marked for surfacing
be four-sided. A single quad-mesh can be created from quadrangulated
curve network cycles by sampling parametric four-sided patches. The dual
of a quad network is a graph whose vertices correspond to quad cycles, and
whose edges correspond to shared cycle sides. Each dual poly-chord, drawn
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3.1. Introduction

Figure 3.2: Closed 3D curves: ambiguous hexagonal 3D curve (top) com-
pared to complex curves with a clear design intent (bottom).

on the left in a different color, is a sequence of dual edges that corresponds
to a chain of quadrilaterals sharing opposite sides [31].

If we can extract the flow-line pairings that artists
use, we can then reconstruct the surface in a natu-
ral manner using a dual quadrangulation approach, de-
scribed below. The grand challenge, therefore, is in ob-
taining a suitable segmentation of a curve cycle into
pairs of matching opposite flow-lines. As we expect in-
ternal flow lines to change smoothly and gradually, these

bridged segment pairs should have similar orientation and shape. When ex-
amining artist generated flow-networks, we observe that the preference for
pairing segments becomes more pronounced as the degree of compatibility
between them increases, often at the expense of sub-optimal pairing of other
segments. This effect is evident in the highlighted regions in Figure 3.3. On
the left, the strong preference for the blue pair enforces the far less obvious
red one. On the right, the dominant yellow and blue matches enforce the far
less attractive purple one. Such dominant preference order can be formally
described as a stable matching, where a matching is considered stable when
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3.1. Introduction

Figure 3.3: Artist designed interpolating quad-meshes.

there are no two elements that prefer each other to their current match [62].
We simultaneously compute the segmentation and its corresponding sta-
ble pairing using a tailored discrete optimization strategy which interleaves
matching and segmentation steps.

Given the computed segmentation and pairing (Figure 3.1 (c)), we con-
struct a network of quadrilateral cycles (Figure 3.1 (d)) whose dual poly-
chords connect the matched flow-line curve segments and interpolate those
with tensor-product surface patches. Using this construction, the iso-lines of
the patches naturally align with the matched curves, forming a dense flow-
line network conveying the intended surface. An arbitrarily dense quad-mesh
describing the target shape is then created by tracing patch iso-lines (Figure
3.1 (f)).

We demonstrate the quad meshes created by our method on a variety
of challenging inputs, including both synthetic models and curve networks
created by different modeling softwares, comparing our outputs against those
manually created by design professionals (Section 3.4).

Contribution:
The main contribution of the chapter is the first solution to constructing

the imaginary surface interpolating a general 3D design curve network. We
represent this surface using a quad mesh whose iso-lines capture the design
flow inherent in the network. Lacking a mathematical model of human per-
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3.2. Quadrangulating a Closed 3D Curve

Figure 3.4: After the initial segmentation (a), we alternate matching and
refinement steps to obtain a pair-based curve segmentation which is con-
verted into a quadrilateral network (c) . To minimize T-junction count (d)
we compute global interval assignment, and use it to sample iso-lines on
discrete Coons patches.

ception, we distill perception studies and guidelines from design literature
into a mathematical formulation of flow-line matching and segmentation.
We evaluate this formalism by showing results that match both viewer ex-
pectation and artist created surfaces.

Our key technical innovation is a simultaneous segmentation and pairing
algorithm that locates suitable end segments for the dual poly-chords of the
interpolating quad mesh based on analysis of the input curve geometry.

Quad-remeshing techniques often strive to generate rectangular quad el-
ements. We note that our primary objective is to capture flow-lines; since
these lines are often related to lines of curvature, we will typically generate
well-shaped quads. However, when flow-lines conflict with quad orthogonal-
ity, we focus on capturing the flow at the expense of irregularly shaped quads
(see Figure 3.1). This ensures that our output is consistent with designer
expectations (Figure 3.3).

3.2 Quadrangulating a Closed 3D Curve

This section describes our approach for quadrangulating the interior of a
closed curve such that the iso-lines induced by the 4-sided curve cycles cap-
ture designer intended flow-lines. The extension of this method to networks
of curves is discussed in Section 3.3. We use a dual based quadrangula-
tion approach, where we first compute the dual graph of the quadrangu-
lation (Section 3.1), and then use it to induce the primal quad connectiv-
ity and geometry (Section 3.2). This workflow is illustrated in Figure 3.4.

i

j
flow

br
idg

e

segment pair (i,j)

To assemble the dual, we segment the input curve into a
small number of matching segment pairs that serve as op-
posite ends of dual graph poly-chords and corresponding
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3.2. Quadrangulating a Closed 3D Curve

primal quad-chains. In this respect, paired segments are
analogous to river banks that both bound and define the

flow between them; the poly-chord represents a bridge across the flow, con-
necting the paired segments.

Simultaneously computing this segmentation and pairing is an ambitious
problem; we want to explicitly minimize the average matching cost, while
avoiding outlier matches with very high cost. We consider the average,
rather than the sum, so that the cost is not affected by the number of
segments. To render this problem tractable, we use a discrete iterative
optimization strategy that interleaves matching and segmentation. Given
an existing segmentation and an appropriate cost metric, the right pairing
strategy is not simply one that minimizes an overall cost, but instead one
that prioritizes strongly compatible segment pairs that define dominant flow-
lines. As noted in the Introduction, this can be mathematically formulated
using the concept of a stable matching; we can find such a stable matching
using the method of Irving [62].

Once we have obtained such a pairing, we can then refine our segmen-
tation by looking for a subdivision that maximally decreases our average
matching cost without increasing the worst match cost (Section 3.1.5). To
find the optimal splitting point(s), we examine the pairings in the current
stable matching and consider strategies that improve the current high-cost
matches. This new segmentation can then be fed back into the matching
stage. To generate the desired segmentation and pairing, we start from an
initial segmentation and interleave segmentation and matching steps. Since
we aim for a compact quadrangulation, we use a coarse to fine segmentation
update strategy, starting with the minimal segmentation for which the no-
tion of opposite segments, or bridging directions, is well defined. To avoid
over-segmentation we stop the refinement process once the improvement to
the average match cost becomes insignificant.

The final segmentation induces a poly-chord graph, which we use to
generate quad network connectivity. The generated interior curves are posi-
tioned using an extension of the quadrangulation scheme of Nasri et al. [94]
(Figure 3.4 (c)). A mesh of the entire network is then computed as discussed
in Sections 3.2 and 4 (Figure 3.4,(d,e)).

3.2.1 Segmentation and Matching

The pseudocode below describes the flow of our iterative segmentation and
matching process. Every iteration, we subdivide one or more segments to
maximally reduce the average matching cost, without increasing the worst-

25



3.2. Quadrangulating a Closed 3D Curve

match cost (Section 3.1.4). While the number of curve segments, at in-
termediate steps of the algorithm may be odd, each iterative refinement
increments the number of segments, typically by one, admitting a perfect
segment matching after one or two iterations. We continue to iterate until
there is no significant drop in the average matching cost, rolling back to the
last even segmentation when significant improvement is no longer possible
(Figure 3.5). While this algorithm does not guarantee a globally minimal
average match cost, it captures our design goals admirably in that it finds
and preserves dominant segment pairs early and then refines segments as
necessary to reduce the matching cost of poorly paired segments.

Notation: The above steps are described succinctly using notation and
pseudo-code as follows: Given a curve segmentation σ = 1, .., n, we refer
to (i, j) as a distinct segment pair with a matching cost ci,j ((i, j) and ci,j
are symmetric). ci,j captures the compatibility of any two curve segments
to form opposite sides of dual poly-chord in our target quadrangulation.
M(σ) is a perfect matching of σ, where each segment is uniquely paired,
barring a solitary unmatched segment when the number of segments ||σ||
is odd. We define the average cost of a matching M(σ) as cost(M,σ) =
(
∑

(i,j)∈M(σ) c
2
ij)/(2 · �||σ/2||�). A constant drop = 1.25 captures the factor

of average cost reduction below which the iterative algorithm terminates.

σ= initial segmentation (Sec. 3.1.1);
M(σ)= stable matching of segment pairs (i, j) using match cost ci,j (Sec. 3.1.3);
U∗
b = ∞;

cost∗ = ∞;
repeat

if then||σ|| is even:
σ∗ = σ;M∗ = M ; cost∗ = cost(M,σ)
U∗
b = maxM ci,j ;

end if
σ′=refine σ (Sec. 3.1.4);
M ′(σ′)= stable matching of σ′; σ = σ′;

until (||σ′|| is even) and (drop ∗ cost(M ′, σ′) > cost∗ or U∗
b < maxM ′ ci,j);

create internal quadrangulation curves from poly-chord graph of M∗(σ∗);

We now elaborate on the rationale and details of each step.

Initial Segmentation

As described in the Introduction we expect the flow-lines induced between
any pair of segments to be smooth. Motivated by this continuity prop-
erty of flow-lines, we can use any robust corner finding technique, such as
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3.2. Quadrangulating a Closed 3D Curve

Figure 3.5: Iterative segmentation refinement: (a) initial segmentation
where the matching highlights correct dominant side matches. The match
quality is drastically improved by segmenting the bottom curve (b), and re-
peating the process (c) to obtain an even segment count. Further refinement
has no real impact on matching cost.

computing discontinuities of discrete curvature along the curve [87], for our
initial segmentation. We further refine this segmentation to ensure that the
line segments connecting curve end-points are near linear using a technique
similar to [88]. This property helps define coherent bridge directions for
matching cost evaluation, described next.

Segment Pairing Cost

Paired segments have a two-fold impact on the final flow-line network. They
explicitly define the sequence of flow-lines evolving from one segment to its
mate. They also impact the family of flow-lines intersecting this sequence.
Since the pairing defines a chain of quadrilaterals in the final quad network,
these intersecting flow lines connect the two segments by evolving from one
pair of end-points to another (see Figure 3.6 (a)). To generate the designer-
expected flow-line network, the matching cost must satisfy the following
criteria. First, to minimize the variation of flow-lines that evolve from one
segment to the next we aim for the segments to be similar. Matching impacts
the shape of the intersecting family of curves, or bridge, which in general we
want to be as straight as possible, minimizing its curvature. Internal flow-
lines should reflect input curve geometry, thus we would like the bridge to
be aligned with intersecting flow lines evolving from input curve chains con-
necting the two segments, or, since these chains can be very complex, to at
least align with intersecting sequences evolving from neighboring segments.
Lastly, to best capture the general correlation between flow-lines and lines
of curvature of the imagined surface, we expect intersecting sequences of
flow lines to be orthogonal. We capture the last two requirements through a
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(a) bridge curvature bi,j using bridge directions ti 

Figure 3.6: Estimated bridge curvature for different segment layouts mea-
sured as angle (red) between bridge direction ti and p − p′ (at a point p).
The dashed lines visualize representative intersecting flow-lines (a). Shape
similarity and distance cost terms (b).

per-segment preferred bridge direction, which depends on the segment and
its two neighbors. We use these directions to define bridge curvature bi,j .
Our matching cost combines bridge curvature, a term measuring similarity
between the segments si,j , and a weak distance term di,j used to prioritize
more close-by matches

ci,j = wbbi,j + wssi,j + wddi,j .

As the segments typically have fairly similar shape, bridge curvature domi-
nates the cost with wb = 0.8 and ws = wd = 0.1.

Bridge Curvature: To estimate the curvature of the anticipated inter-
secting flow lines, or bridge, between segments i and j, we use the predicted
bridge directions ti and tj for both ends of the bridge. As illustrated in
Figure 3.6, the flow-line shape depends both on these directions and the rel-
ative location of the segments. As start and end positions, plus directions,
allow for fitting of multiple flow-line curves, explicitly evaluating flow-line
curvature is problematic. Instead we use an angle based curvature predictor
defined as follows. Let p be a point on the segment i, and let p′ be the
point where the angle between the vectors ti and p − p′ is minimal on the
segment j, i.e. p′ = argminx∈j |∠(ti, x− p)|. Then, for a given point, the an-
gle ∠(ti, p′ − p) measures the angular difference between the shortest bridge
between the segments and the one taken when using the estimated bridge
direction ti. To compute deviation across the segment i, ai→j , we average
the angular difference over all points. Finally, we set the bridge curvature to
the maximum of the per-segment deviations, namely bi,j = max(ai→j , aj→i).
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3.2. Quadrangulating a Closed 3D Curve

Bridge directions: The bridge direction ti is the predicted optimal tan-
gent direction for the flow-lines intersecting the segment i.

As such, it depends both on the segment orientation, and on
the bridge directions at neighboring segments.

The initial bridge direction ti, for any segment i, is es-
timated from the initial segmentation (Figure 3.7(a-c)) and
then refined in every subsequent algorithmic iteration (Fig-
ure 3.7(d)). The initial bridge direction ti = ni, is set to
capture a direction orthogonal to the segment and lying on

the imaginary surface emanating from it. Specifically, we define ni as the
perpendicular to the straight line fi connecting its end-points, in the best-
fit plane of the segments i and its neighbors. Neighboring segments can
also strongly influence bridge direction. An adjacent segment m is consid-
ered to influence the bridge direction of i if it is of reasonable arc-length l
(1.5 ∗ lm > li), and if its general flow direction fm is likely to form flow-
lines intersecting those emanating from i (∠(fm, fi) ≤ 135 ◦). The bridge
direction ti is refined to be the average f of its influential neighbours (Fig-
ure 3.7(a)(b)), or left as ni if none exist (Figure 3.7(c)).

Then, at every algorithmic iteration, we update bridge directions (Fig-
ure 3.7(d)), using dominant pairs, i.e. pairs (i, j) such that cij < dom, where
dom = 0.15. First, we refine the bridge direction of the dominant pairs. We
update ti and tj of all dominant pairs (i, j) to their current average (thus
implicitly lowering their bridge curvature estimate bi,j). Next, for any seg-
ment i that is not dominantly matched but has a neighbor m that is part
of a dominant pair, we use tm to update ti. Specifically, we attempt to set
ti to either align, or to be orthogonal to, tm. if the angle between ti and
tm is less than 135 ◦, we set ti to be orthogonal to tm in the plane defined
by ni. If 135 ◦ ≤ ∠(ti, tm) ≤ 225 ◦, we set ti = tm. If ti has two dominant
neighbors, we use the one with lower matching cost for the update. The
remaining bridge directions are left unchanged in this iteration.

Distance and Similarity: The distance di,j is simply the Euclidean dis-
tance between the segment centers (Figure 3.6b). Given two curve segments
i, j, we measure their similarity in terms of shape and scale. We measure
scale as the difference in curve length ‖li − lj‖.To compare shape, we first
compute a best-fit affine transform Ti,j from i to j. We do this by resampling
the curves by arc-length using the same number of points, 50 for all our ex-
periments. We then use a linear least squares formulation to find the affine
transformation which minimizes the L2 distance between the two point-sets.
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(d) updating ti (magenta): average ti’s for 
dominant pairs (green), then set ti’s of their
adjacent segments (orange) to be || or    .
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Figure 3.7: Initial bridge direction ti of segment i is determined by adjacent
segment flow directions fm, fn and its normal.

We use a generic affine transform instead of a rigid one to allow for non-
uniform scale and shear. We then measure similarity as the L2 closest-point
distance between the transformed curve and its mate Li,j . All distances
are normalized by the diameter of the processed curve, i.e. by the maximal
distance between two points on the curve. Similarity between curves is then

set to si,j = 0.5‖li − lj‖ + 0.5(1 − e−L2
i,j/σ

2

). The second term measures
the affine invariant shape difference of two curve segments. Specifically, we
define a function that is zero if the curves are identical and 1 if they are max-
imally different. We achieve this mapping using a Gaussian fall-off function
applied to the L2 distance between the curves segments. Normalizing this
distance by the diameter of the curve loop and setting σ = 1/3, set using
the three-sigma rule, results in the desired shape difference function.

Stable matching of segment pairs

Given a curve segmentation and a cost of pairing any two curve segments
to form opposite sides of a poly-chord, this step aims to match segment
pairs in a manner that maximally satisfies the dominant pairing preferences
producing a stable matching.

The standard algorithm for computing a stable matching [62] consists of
two phases. First, each segment “proposes” to all other segments in order of
pairing preference, continuing to the next segment if and when its current
proposal is rejected. A segment rejects a proposal if it already holds, or
subsequently receives, a proposal from a segment it prefers. In our setup,
since matching costs are symmetric, if the number of segments is even this
step ends with each segment holding a proposal from another segment. If
the number of segments is odd, one segment is left out by the process and
is ignored by the subsequent step.
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Held proposals form a set S of ordered segment pairs (i, j), where i holds
a proposal from j (j is i’s current favorite). S is a stable matching if (j, i) ∈ S
whenever (i, j) ∈ S. A second phase of repeated co-rotations, described be-
low, transforms S into a stable matching. Suppose that (i, j) ∈ S, but not
(j, i). For each such i we identify the current second favorite to be the first
successor of j in i’s preference list who would reject their held proposal in fa-
vor of i. A rotation relative to S is a sequence (i0, j0), (i1, j1), ..., (ik−1, jk−1)
such that (im, jm) ∈ S for each m, and jm+1 is im’s current second fa-
vorite (all indices are modulo k). A co-rotation replaces pairs (im, jm), with
(im, jm+1)in S.

The standard method [62] is proven to provide a stable match for an even
number of participants, unless an odd party is found [124], i.e. a rotation
such that k is odd, and pi = qi+(k+1)/2 for all i. In that case no stable
matching exists. In the rare case of an odd party, we have an odd-length
cycle of segments with equal pairwise costs, e.g. an equilateral triangle
or three perfectly symmetric curves (Figure 3.10). This case can be seen
as a generalization of the standard midpoint splitting, and is resolved by
splitting each segment in the cycle into two. Once the split is performed, a
clear difference in cost emerges and the matching is repeated.

Segmentation Refinement

The refinement process looks for a segment, or segments, to subdivide so as
to maximally decrease the average matching cost. Our refinement examines
two segmentation strategies, first searching for a single edge refinement and
then a global mid-edge split. Since the number of segments is typically very
small, a stable matching computation is practically instantaneous. Using the
first approach, we quickly iterate over all segments, segmenting each one and
evaluating the cost of the match computed with the refined segmentation.
We then select the segmentation that maximally lowers the cost. Using this
strategy, the one question we need to address is where to place the split, as
the location can impact the subsequent segmentation cost.

The basic strategy of splitting the segment in half is tested first, then a
more targeted strategy that leverages the computed matching is applied to
the currently matched segments. Given a current segment i which is matched
to j we search for all segments k that are either unmatched, or that prefer
to be matched to i rather than their current mate l, i.e. ck,i < ck,l. In
such situations, for instance the bottom curve on the basket (Figure 3.5),
splitting the curve strategically into i1 and i2 can often satisfy this preference
by generating matches (i1, j) and (i2, k). To minimize the cost of (i1, j) and
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(i2, k) we break i into two possible subdivisions i1, i2 based on arc-length (l)
ratio, where li1/li2 = lj/lk or li1/li2 = lk/lj , and li1 + li2 = li, and test the
matches induced by these segmentations.

While theoretically more comprehensive or global segmentation refine-
ment strategies may exist, we found our approach to work well in practice.
It preserves dominant pairs and improves poor matches as intended by our
subdivision heuristic.

3.2.2 Quadrangulation

Once we have an acceptable perfect stable match whose cost cannot be re-
duced by further segmentation, we use this segmentation and matching and
its induced poly-chord graph (see Figure 3.4), to construct a quadrangula-
tion.

Extracting Quad Connectivity: Using standard dual notations [31] we
say that two poly-chords (i, j) and (k, l) intersect in the graph theoretic sense
if and only if their corresponding curve segments are interleaved on the closed
curve. For instance, the purple and red segments on Fig. 10 are interleaved,
resulting in intersecting poly-chords. To generate a valid quadrangulation we
require that the poly-chord graph be connected . This is easily accomplished
by adding curve segments connecting end-points of common segments of
components of the poly-chord graph and turning each graph component
into a smaller closed curve, for which our algorithm can be re-run (Figure
3.8). To avoid T -junctions we disallow the newly added segments from being
further refined. To make the quad layout more compact, we merge adjacent
poly-chord (i, j) and (i+1, j−1) when the transition between the consecutive
segments is smooth.

An intersection between two poly-chords corresponds to a quadrilateral
in the final network. Connectivity between these quads is determined by the
intersection order, e.g. determining the top-down order of the intersections
of the green poly-chord with the blue and red ones in Figure 3.9. We de-
fine the quad connectivity by incrementally embedding poly-chords into the
layout of cells, or regions, bounded by input boundary segments and pre-
viously added poly-chords. Given the graph whose vertices are these cells
and whose edges connect adjacent cells, we embed a poly-chord by comput-
ing the shortest path in this graph between the two vertices or cells, corre-
sponding to the boundary curve segments connected by the poly-chord. This
path minimizes the number of intersections between the new poly-chord and
those already embedded. This choice minimizes the number of dual graph

32



3.2. Quadrangulating a Closed 3D Curve

Figure 3.8: A disconnected dual graph (left) does not allow for a valid primal
quad mesh. Splitting the cycle into two by a temporary curve segment
(dashed) generates valid graphs for both parts which combined together
induce a valid primal quad mesh (right).

Figure 3.9: Two intersection orders induce different quad connectivity, with
the one on the right inducing a better quad shape, and consequently a
smoother flow.

cycles. Such cycles correspond to interior primal quadrangulation vertices
adding which, as discussed below, can reduce flow smoothness. Given two
equal length choices, we prefer one that induces better shaped quadrilaterals,
where quality is measured as the scaled Jacobian [19] (Figure 3.9).

Extracting quad geometry: The dual graph defines the connectivity of
our quadrangulation. To position the interior vertices and curves we use
a two step process which leverages the quad topology to generate interior
curves best reflecting the flow directions. Specifically we note that each chain
of quads can be seen as a four-sided uv patch interpolating two flow-line end
segments. Associating the v coordinate with the end segments, we expect
the patch u-isolines to smoothly interpolate them. Our geometry computa-
tion builds on the geometry construction in [94] which shares the same goal.
We first compute the interior vertex positions that best satisfy our require-
ments, using a global optimization of a per-vertex formulation [94], that sets
each vertex G to a weighted sum of vertex positions in neighboring quads:
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3.2. Quadrangulating a Closed 3D Curve

Figure 3.10: We first position interior vertices (left) and then use the chain-
long quads to position the interior curves (center). Finally, the resulting
quad cycles are quad-meshed using discrete Coons patches (right).

Figure 3.11: Our distance based weighing (right) generates smoother flow
line evolution than topology based one [94].

G =

∑n
i=1(Ei + Ei−1 − Ci)/ai∑n

i=1 1/ai
(3.1)

where Ei are quad network vertices that share side curves
with G, Ci are the diagonal quad corners between Ei+1 and
Ei, and ai = ‖Ei − Ci‖‖Ci − Ei+1‖ is an estimate of the

area of the corresponding quad (see inset). We then generate straight-line
edges connecting these and boundary vertices as an intermediate approxima-
tion of the quadrangulation. Using this initial network each interior curve
is now computed as a u-isoline on the quadrilateral patch containing two
bounding flow-lines and the curve paths connecting them, using a discrete
Coons formulation [38] (Figure 3.10). This formulation takes into account
the distance of the new curve from the bounding flow lines, improving on
the original formulation of Nasri et al [94] (Figure 3.11).

Meshing: To fit a surface in the interior of each quad-patch we can use
any number of methods. The examples shown in this chapter use a quad
mesh sampled on a discrete bicubic Coons surface [109]. This construction
provides continuity across shared boundaries when the cross tangents are
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3.2. Quadrangulating a Closed 3D Curve

Figure 3.12: Removing interior vertices: (Left) initial match (top) and in-
duced quadrangulation (bottom); (Right) the final match with purple and
green pairs flipped (top) has a slightly higher cost but the induced quadran-
gulation (bottom) has no interior vertices, leading to smoother flow-lines.

continuous. More sophisticated fitting tools which provide better cross-
patch continuity can be used as well.

Minimizing Flow Dislocation: The segmentation and pairing algorithm
optimizes the cost of the individual flow-line matches, does not explicitly
consider the impact of the quad patch connectivity on the final flow. Specif-
ically, at the matching stage it is hard to predict the impact of the intro-
duction of interior patch vertices on the smoothness of the flow lines. In
some cases these vertices are essential to forming a good surface such as on
the top of the espresso machine (Figure 3.17), but in other cases removing
them can improve the flow (Figure 3.12). Thus, given a quadrangulation,
we test if removing any of the interior vertices can improve the surface qual-
ity. Recall that each such vertex corresponds to a cycle in the dual graph.
We thus attempt to break cycles in the dual graph if the quadrangulation
quality improves and the increase in the overall matching cost is acceptable.
Specifically, for each edge 〈(i, j), (k, l)〉 of a cycle in the poly-chord graph we
evaluate the consequence of swapping segment pairs to (i, l) and (k, j), or
(i, k) and (l, j). A swap is valid if the following three criteria are satisfied:
the quad quality, measured using the scaled Jacobian, is improved, no new
cycles are introduced into the graph and the cost of the matches after the
swap is no greater than the worst match cost before it. We thus perform a
valid swap for the poly-chord edge of the cycle with the minimum increase
in matching cost (Figure 3.12).
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3.3. Processing Curve Networks

(a) (b)

(c) (d)

Figure 3.13: Separately processed cycles (a) introduce T-junctions. We first
resolve the T-junctions across pairs of neighbouring patches by propaga-
tion (b), generating a well defined hierarchy of matching primary segments.
We then use integer programming to compute interval assignments (c) that
minimizes the number of T-junctions, typically leading to a watertight mesh
(d).

3.3 Processing Curve Networks

Up until now, we have only considered the meshing of a single curve cy-
cle. The reason for this is that in curve networks, the majority of vertices
adjacent to two or more cycles define corners that induce our initial segmen-
tation. The remaining vertices form T-junctions that should not bias the
flow-lines within cycles where the incident curves are continuous. Once the
individual cycles have been quadrangulated however, we must ensure that
the geometry is watertight across the common boundary of adjacent cycles.
For a quad-mesh fitting this requires the sampling, or interval count, along
shared boundaries to be the same on both sides. This goal is easy to achieve
for a conforming quad-patch layout, such as those generated inside each in-
put cycle, using a fixed number of intervals per boundary curve. Special care
is needed though, when meshing curve networks where cycle segmentation
creates T-junctions.

We optimize interval assignment using two modifications to the basic cy-
cle quadrangulation algorithm described above. The first stage, performed
after segmentation and matching process, described above, for each cycle, re-
solves the initial, primary, T-junctions between pairs of neighbouring cycles.
A T-junction occurs when one curve has a segment end-point, or vertex, at
a boundary point and another curve does not. Given a T-junction, we first
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3.3. Processing Curve Networks

attempt to resolve it by merging adjacent vertices based on a threshold dis-
tance, while keeping in place both sharp corners and T-junctions present in
the original artist input. Throughout our experiments, we set our threshold
to 5δ, where δ is the minimum Euclidean distance between adjacent samples
of the input polylines. Intuitively, the finer the initial sampling, the more
precise the algorithm is, the smaller the merging threshold we need.

For any T-junctions that we cannot resolve in this manner, we split the
adjacent segment and its matching segment in the corresponding cycle. We
then refine the matching accordingly. This process resolves all the primary
T-junctions, but in turn introduces secondary T-junctions where the match-
ing segments are split (Figure 3.13, (b)). These T-junctions are further
reduced using another iteration of threshold based merging.

Contrary to primary T-junctions, the secondary T-junctions are guaran-
teed to be contained in primary segments that share clearly defined primary
vertices (Figure 3.13, (b)), a property we take advantage of in the final inter-
val assignment stage. At this point, the network is converted to quad-patch
topology using the method of Section 3.2. In the final step, when generat-
ing the per-patch meshes, we need to assign a consistent interval count to
each segment. For a given primary segment, we require that the number of
intervals on both sides of the segment are equal. We further require that
each secondary segment (one bounded by primary or secondary vertices) and
its matching segment have the same number of intervals. Finally, we wish
to minimize the total interval count while enforcing a minimum number of
intervals per edge based on its length.

If we formulate all of these requirements as a wishlist, as shown by
Mitchell [91], there may exist configurations where no valid assignment ex-
ists. We therefore relax our watertightness requirement, which allows us to
reformulate this problem in terms of a minimization. Consider a pair of
adjacent primary segments L and R. By virtue of the first step, we know
that L and R share common endpoints; however, they may each contain a
differing number of secondary segments. If l is a secondary segment on L
and r is a secondary segment on R, let nl,R and nr,R represent the number of
intervals that the secondary segments l and r are divided into, respectively.
We can then express our minimization condition as the following function:

min f(x) = w
∑
(L,R)

(
∑
l∈L

nl,L −
∑
r∈R

nr,R)
2 +

∑
L,l

(nl,L)

The first term in this equation seeks to minimize the number of mismatched
interval counts along a given pair of adjacent primary segments. The second
term seeks to minimize the total number of intervals for the entire mesh. We
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3.14: Quadrangulation and meshing of closed curves.

use w = 1000 to minimize the number of mismatches as much as possible.
This minimization is subject to a number of constraints. We require that
opposite segments of each quad patch have the same number of intervals.
Additionally, we require that the number of intervals on a given secondary
segment does not fall below a specified minimum. This minimum is deter-
mined by dividing the secondary segment length by a user-specified desired
(local or global) interval length. Together, the minimization function and
constraints form a quadratic, mixed-integer programming problem, which
we solve using Tomlab /CPLEX. This approach lead to valid assignments
for all the inputs we tested. The assigned intervals are used to optimize the
positions of the secondary T-junctions and generate the final meshes.

3.4 Results

Closed Curves: We generated a number of synthetic test inputs to eval-
uate the behavior of our method on a variety of closed curves with different
side configurations demonstrated in Figures 3.14 and 3.15. These included
a variety of convex regions (Figure 3.14 (a-f)) with different degrees of pla-

38



3.4. Results

Figure 3.15: Quad meshes of complex closed curves including interior cycles.

Artist

Artist Artist

ArtistOur method

Our method

Our method

Our method

Figure 3.16: Artist generated meshes (left) and ours (right) exhibit very
similar flow-line patterns.

narity and different number of boundary discontinuities. For some of the
inputs the expected surface shape, is best captured by introducing an ex-
traordinary interior vertex (c,d). For other regions with n > 4 sides such as
(e,f) a regular connectivity better captures the intended shape. Our method
makes the appropriate choice based on analyzing the relationships between
the input curve segments,and the degree of parallelism between them. This
is in contrast to purely connectivity methods, e.g. [94], where the choice is
strictly based on the number of segments. Figure 3.14 (b) shows an a-typical
two sided region, nevertheless reasonably fittted by our method, while (g,h)
show non-convex regions, where the optimal pairing is found automatically
through refinement of initial segments. The letters in Figure 3.15 show
the robustness of the method in the presence of complex non-convex curves
as well as processing of faces with interior loops. To handle such models,
we first locate a pair of matching segments on different loops with minimal
matching cost and introduce the shortest straight segment connecting those.
The method then proceeds as usual on the resulting single cycle.

Curve Networks: We tested our method on a variety of input curve
networks (Figure 3.1, 3.4, 3.17) generated by different modeling systems
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[7, 107, 115]. As demonstrated by the figures these networks contain a
variety of complex, non-convex cycles. Our method successfully captures
the designer intent conveyed by the networks generating predictable and
smoothly flowing quad-meshes interpolating the input curves. While the
airplane (Figure 3.17) was created using a classical CAD modeling system,
many of the other inputs (car, espresso maker, submarine, starcraft) (Figure
3.17) were generated using sketching tools, which easily introduce noise and
inaccuracies that hamper traditional surfacing. Our method is robust to
such artifacts.

We compare our outputs on the boat and starcraft to those generated by
an artist (Figures 3.3 3.16). The flow-line structure of our meshes is largely
identical to artist generated one, with only minor differences, such as flow
on the side of the boat cabin, where both our and artist interpretations are
feasible (our outputs contain a few extra cycles not present in the artist
models).

Quantitative Evaluation: On an Intel i7 CPU 870 2.93GH machine our
method takes on average two seconds to quadrangulate a single curve cycle
(most of the time spent on matching), making it amenable for interactive
surfacing in a sketch based modeler like ILoveSketch [7]. The most time
consuming regions are the front of the car (166s) and the top of the speaker
(66s) (Figure 3.17). Intervals assignment is practically instantaneous, tak-
ing 0.1s for a an average network and taking 2s to process the largest model
(plane). The quad statistics for the models we tested are summarized in
Table 3.1 and include numbers of input cycles, number of output quad cy-
cles, mesh size(s), and the number of added extraordinary vertices, All the
generated meshes are watertight.

Limitations: Our approach has three broad limitations which can be ad-
dressed by future research.

Global context: The biggest limitation of our method is lack of global
context. Our flow-line analysis for each input cycle in a network is inde-
pendent. In practice however, most adjacent cycles meet at sharp corners,
typically resulting in a similar segmentation and flow across shared curve
segments. The context of adjacent cycles could be useful in enforcing flow
line continuity across cycles and predicting the flow within an individually
ambiguous cycle.

Failure cases: While our algorithm works well on design curve inputs
from a variety of sources, it may not provide meaningful results for arbi-
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input output quad mesh interior
cycles cycles size vertices

Sphere Bag 3 9 987 0
Boat 30 82 4464 9
Spaceship 41 94 5008 6
Car 26 70 5020 13
Espresso 54 75 6904 5
Speaker 13 42 8548 1
Plane 140 192 10705 10
Submarine 39 103 16600 31

Table 3.1: Algorithm statistics for different curve networks.

trarily shaped curve cycles with no perceptible flow-lines. The absence of
corners on a completely smooth curve cycle will not provide us a meaning-
ful initial segmentation to refine. In such cases we can impose an initial
segmentation based on curvature maxima and arc-length of the input curve.

Algorithmic complexity: While our central idea of flow-line segmentation
and matching is conceptually clear, various aspects of our implementation
could be streamlined. For example, while most of the parameters used by
the method were derived based on clear algorithmic goals, a few such as
drop in Section 3.2.1) are based on trial-and-error, and could be learned
from designer quadrangulated examples.

3.5 Conclusions

We presented the first, to our knowledge, method for quadrangulating gen-
eral designer specified closed 3D curves and curve networks. Our results
show the approach to robustly process complex curve networks, generating
interpolating quad meshes consistent with designer intent. Our key insight
is an interleaved segmentation and matching algorithm, that pairs domi-
nant flow-lines and uses poor matches to guide segmentation refinement,
computing a poly-chord graph that captures user-intended bridging direc-
tions across a closed curve. We advocate the use of stable matching as the
principled way to formulate our quadrangulation goals and anticipate it to
be well-suited to other problems relating to shape matching or coherence,
where both dominant components and their correspondence is sought.

Our work points to a number of future directions. Rather than restrict
our input to a constrained geometric definition of a design curve network,
we attempted to quadrangulate any 3D curve network as a designer would,
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Figure 3.17: Quadrangulation and meshing of curve networks. The stars
indicate the network locations of the highlighted complex regions.

using the principle of flow-line segmentation and matching. A formal per-
ceptual study of the precise difference between ambiguous and design curves
(Figure 3.2) is thus an ambitious but worthy goal. While our segmentation
refinement strategy works well in general, approaches with theoretical guar-
antees of match quality are also worth exploring. Our method focuses on
quad-only meshing, however in some cases designer intent is better served by
allowing a small number of triangular elements (e.g. Figure 3.14 (b)), mo-
tivating a technique for mixed but predominantly-quad meshes. We would
also like to apply our technique as-is to the finite-element meshing of closed
planar domains, balancing flow-line alignment against mesh quality.
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Chapter 4

Modeling Character
Canvases from Cartoon
Drawings

4.1 Introduction

(a) (b) (c)

(d)

(e)

Figure 4.1: Character drawings (c) are traditionally anchored around a skele-
ton (a), surrounded by generalized surfaces of revolution (b). We use the
drawn character contours (d) and a corresponding 3D skeleton (red-to-blue
coloring reflects near-to-far skeleton depth variation), to automatically com-
pute a 3D canvas, employed to freely manipulate the character in 3D (e).

In this chapter we describe our second main contribution, a novel ap-
proach for automatically constructing a rigged 3D character proxy, or can-
vas, directly from a single 2D cartoon drawing and a correspondingly posed,
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(a) (b) (c)

(d) (e) (f )

Figure 4.2: Character contours alone (left) frequently do not provide suffi-
cient information to conclusively determine 3D shape both on occlusion free
(top) and partially occluded (bottom) inputs. A 3D skeleton, shown in the
insets, resolves much of the ambiguity present in contours alone facilitating
plausible shape interpretation.

user-supplied, 3D skeleton. Such approach allows users to sidestep the time-
consuming manual modeling and rigging steps (Fig. 4.1(d,e)). The project
has since been published in ACM Transactions on Graphics [10].

Our 3D canvases allow artists to directly articulate the drawn characters,
generate convincing cartoon style character renders from alternate views
(Fig. 4.1(e)), and provide support for various 3D effects created by draw-
ing on and around the canvas (Fig. 4.23). Using a skeleton as an aid, our
framework infers complex, complete character shapes from individual 2D
drawings with significant contour depth variation, foreshortening, and mul-
tiple inter-part occlusions (Fig. 4.3 (left)) - a significant deviation from prior
art, which assumes drawn contours that are largely occlusion free, flat, and
nearly perpendicular to the view direction (Section 2.2).

Our choice of input and subsequent construction methods are motivated
by the observation [57, 136] that cartoon character anatomy is well described
by a union of body parts supported by a skeletal system, where each part
is approximately a generalized surface of revolution (Fig. 4.1(a,b)). Artist-
drawn character contours are inherently ambiguous (Fig. 4.2) and human
observers frequently rely on either explicit familiarity with the drawn ob-
jects, or on semantic information encoded by additional drawing elements,
such as facial features, to consistently interpret the 3D character shape.
Such extra information is hard to enumerate or formalize algorithmically;
our input skeleton, posed to reflect the character’s structure, helps resolve
these shape ambiguities.
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Trajectories

Profile

Figure 4.3: The canvas (center) of the catwoman in Fig. 4.1: (left) thick
black line shows reconstructed 3D contour curves, (right) insets visualize
representative trajectories and profiles.

Overview Our guiding premise is that when artists create descriptive
character drawings, they inherently rely upon and exploit the same percep-
tual principles that viewers use to lift drawings off paper and into 3D [116].
Following previous work, we rely on viewer preferences for conformity and
simplicity (Section 4.2, Fig. 4.5) in reconstructing individual part geometry.
Conformity is the unstated belief that the drawing is an accurate repre-
sentation of the 3D character, and that the projected contours of the 3D
characters will conform to the drawn contours in the input view and pose.
Simplicity (or the law of Pragnanz [69]) states that viewers rely on sym-
metry assumptions as strong cues for image understanding [56, 105]. Given
viewer familiarity with character anatomy expected to resemble partwise
surfaces of revolution, this principle suggests a strong viewer preference for
envisioning body-parts with maximal rotational symmetry around the bone
axis (Fig. 4.5 (b)).

We augment these two principles with observations about Gestalt contin-
uation and shape persistence which help us parse complete, complex draw-
ings and reconstruct coherent overall character shapes. To handle inter-part
occlusions in the drawings, we exploit Gestalt continuation by noting that
viewers resolve occlusions in line drawings by grouping together disjoint
curves whose end-points can be smoothly connected [69] (e.g. the outlines
of the tights of the catwoman in Figure 4.1). In reconstructing the complete
character geometry from a single view drawing, we rely on the notion of
shape, or contour, persistence. Contour persistence or the non-accidental
view assumption [93, 138] indicates that viewers perceive the artist-selected
view and pose as non-accidental and expect the drawn contours to be in-
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dicative of contour shape in alternate, and especially nearby, views.
We begin the modeling process by segmenting the input 2D contours into

sections outlining individual body parts corresponding to the bones of the
input skeleton. We resolve inter-part occlusions and group disjoint outline
segments by leveraging skeletal depth and Gestalt continuation. We use the
computed contour segmentation to generate the 3D canvas geometry, mod-
eling body parts using generalized surfaces of revolution. While a canonical
surface of revolution is defined by rotating a fixed planar profile curve along
a circular trajectory around an axis, we account for a range of body shapes
by supporting both more complex closed planar trajectory curves, and by
allowing the profile shape to vary smoothly as the profile rotates around
the part’s bone or axis (Fig. 4.3). Supporting profile variation is critical
for processing asymmetric part contours, such as those on the catwoman’s
hoofs. To balance conformity against simplicity we first refine the artist
given straight-line skeleton to a geometric curve-skeleton [29], and symmet-
rically locate it with respect to the artist-drawn contours. The surfaces
of the different body parts are then optimized to form a unified 3D canvas
centered around this curve-skeleton by enforcing conformity while balancing
individual part simplicity against contour persistence across the canvas. Our
final canvases are represented as quad-dominant meshes (Fig. 4.3 (center))
with explicit angular and axial parameterization which supports a range of
texturing effects (Fig. 4.23).

Contribution Our overall contribution is a framework for computing a
believable 3D character canvas from two pieces of user input: a vectorized,
single-view, descriptive, 2D contour drawing and a correspondingly created
and posed 3D skeleton. Our key technical contributions are two algorithms
derived from perception principles. First, we present a novel algorithm for
correctly segmenting artist-drawn contours into body part outlines asso-
ciated with individual skeletal bones, which can robustly handle multiple
inter-part occlusions (Section 4.3). Second, we show how to use this seg-
mentation to generate believable 3D character canvases which balance sim-
plicity and persistence, allowing for variable contour depth and overcoming
inaccuracies in skeleton posing (Section 4.4). Our resulting 3D character
canvases are, as the name suggests, an ideal support structure for painterly
strokes and cartoon rendering; however, they are not designed to capture
the complex detail of realistic 3D character models.
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(a) (b)

Figure 4.4: (a) Lacking part information, character shape reconstruction
can at best exploit overall shape smoothness, e.g [68, 95]; (b) by using a
skeleton to facilitate contour partition and part modeling, we generate a
more believable character shape.

Evaluation We evaluate our approach in a number of ways (Sections 4.5, 4.6).
We show that the task of positioning a 3D skeleton to match a 2D cartoon
drawing is well-defined and intuitive, taking most artists less than ten min-
utes for typical cartoon drawings. We validate our segmentation algorithm
via an informal evaluation, verifying that viewers consistently segment and
associate character contours to skeletal bones and that this segmentation
matches our algorithmic output. We reproduce ground truth 3D character
shapes from a contour rendering and 3D skeleton, and compare our results
to both ground truth and artist drawings created from the same input and in
the same views, validating that our results are visually similar to both. We
show a variety of character canvases created from diversely sourced contour
drawings and 3D skeletons, demonstrating our approach to be resilient to
complex views, and poses with multiple occlusions and significant foreshort-
ening. These canvases are illustrated using cartoon shading and other forms
of non-photorealistic rendering, and are confirmed by artists to show plau-
sible alternate-view renders of the drawn inputs. Finally, we compare our
method to prior work, producing similar output quality with significantly
less user-input.

4.2 Framework Overview

We now describe the three key components of our canvas computation frame-
work, and the observations that motivate them (Fig. 4.6).

Algorithm Input The input to our system is a 2D vectorized cartoon
drawing and a correspondingly posed 3D skeleton with no extra annotation.
Like other research in articulated figure modeling [8, 17, 123] our approach
is based on the proposition from cartoon drawing literature [57, 136] that
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(a) continuation

(c) persistence

(b) simplicity

Figure 4.5: (a) Perceptual studies indicate that viewers group curves that
can be smoothly joined together ((a), right), seeing those as a continuation
of one another; while treating those with non-smooth transition ((a), left)
as distinct; viewers tend to prefer interpretations that balance part simplic-
ity (b) against contour persistence, preferring interpretations that preserve
contour shape under small view changes (c).

character shape is well approximated by a union of body parts represented
by generalized surfaces of revolution around a skeletal structure. As the
shape of a surface of revolution is driven by the choice of an axis, leveraging
this observation for modeling requires a skeletal structure (Fig. 4.4). While
curvature extrema and discontinuities in character contours hint at the un-
derlying skeletal structure, automatic skeleton extraction [17, 20] may not
reflect the artist-intended shape as it always aligns the skeleton with the
dominant axis in elliptical regions. This is illustrated by Fig. 4.2 (top),
where using a geometric skeleton would lead to the ”snake swallowing an
elephant” reconstruction on the right. This bias is confounded by ambiguous
skeleton topology in the presence of occlusions (Fig. 4.2, bottom). Fortu-
nately, artists can consistently and efficiently pose a 3D skeleton to match
a 2D contour drawing (Section 4.5.1), motivating our choice of input.

Skeleton-Driven Contour Segmentation To successfully capture body
parts with surfaces of revolution, we must first identify which portions of the
input contour belong to the same body part (Fig. 4.6 (a)). Our algorithm
therefore begins by segmenting the input contours into sections associated

48



4.2. Framework Overview

(b) (c)

+

(a) (c)

canvas 
surfacing

part
segmentation
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curve-skeleton

Figure 4.6: Canvas construction: Given a sketch and a skeleton (shown
in side view) we first segment the input contours into sections associated
with skeletal bones (a), correspondences shown by matching color), cor-
rectly resolving occlusions; we use the segmentation to replace the straight-
line skeleton by a curved-skeleton optimized for symmetry (b); and finally
generate maximally simple body part geometries around this new skeleton
while maintaining contour persistence with respect to the input drawing (c).

with each bone. This segmentation is guided by the principles employed in
3D skeleton-driven surface segmentation algorithms, e.g [6, 29]. These meth-
ods construct surface charts whose connectivity reflects skeletal adjacencies,
associating charts with proximal bones, and aligning chart boundaries with
curvature extrema. We apply these principles of surface segmentation to
2D contour drawings. Since, in the presence of occlusions 2D proximity is
not a reliable proxy for 3D proximity (Fig. 4.8), we leverage skeletal depth
information to facilitate correct proximal bone-to-contour association and
use Gestalt continuity [69] to correctly group disjoint contour segments (see
Section 4.3, Fig. 4.5 (a)).

Canvas Modeling We construct a 3D canvas from our segmentation by
exploiting the perceptual cues of sketch conformity, simplicity, and contour
persistence (Fig. 4.6 (c)). In our context, conformity requires that the con-
tours of the created 3D canvas project onto the 2D character contours in the
input drawing with reasonable accuracy, and simplicity implies a preference
for maximally symmetric surface-of-revolution part geometries (Fig. 4.5 (b)).
Maximizing symmetry when recovering 3D part geometry requires an opti-
mal local axis of revolution. However, while the artist-posed straight-line
skeletons adequately describe the character structure, they are not detailed
or accurate enough to capture a geometrically centered curve skeleton [29]
of the target character surface. We therefore generate the desired curve
skeleton by leveraging a correspondence between the straight skeleton and
the segmented 2D contours (Fig. 4.6 (b)), before computing the final canvas
surface. We position the curve skeleton to maximize the symmetry of body
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parts. (Section 4.4.1). Using only conformity and simplicity to compute the
canvas geometry around this curve skeleton leads to plausible individual part
geometries, but ignores the shape correlation between adjacent body parts
outlined with a single contour. Contour persistence (Fig. 4.5 (c)) argues for
these joint contours to retain their shape when the viewpoint changes, and
especially to avoid introducing sharp discontinuities [138]. Accounting for
simplicity alone can introduce such undesirable artifacts (see Fig. 4.5 (c))
and the accompanying video). We therefore enforce persistence across the
character model by restricting the change in local profile slope with respect
to its corresponding axis, allowing trajectory shape to deviate from a perfect
circle to accommodate this constraint (Section 4.4, Fig. 4.3).

4.3 Part Segmentation

Existing research on skeleton-assisted part segmentation of 3D shapes [6, 29]
employs a number of perception-driven segmentation criteria, variants of
which apply to the segmentation of 2D contours (Fig. 4.7). The primary
criterion is topological - in 3D each bone corresponds to a single segment, and
segments are adjacent only if the corresponding bones are. The secondary
criterion is bone proximity - segments are computed so as to be closest to
their associated bones. Lastly, while the placement of segment boundaries is
dominated by proximity to the corresponding bones, boundary locations are
aligned with local curvature extrema on the surface to better match bends
at skeletal joints. In describing how to apply these criteria for 2D contour
segmentation we first address the simpler, occlusion-free setup, and then
describe the extension to the general case.

Bisector-Based, Occlusion-Free Contour Segmentation Absent oc-
clusions, the contour of a drawn character is a single closed curve. In this
scenario (Fig. 4.7) each terminal bone corresponds to a single segment and
each interior bone (purple in the Figure) corresponds to two segments, one
on each side. A circular ”half-edge” traversal of the contour uniquely de-
fines the connectivity between the segments (Fig. 4.7(b)). We can therefore
generate a segmentation by appropriately positioning the boundary points
between these topological segments. While we can optimize for proxim-
ity by segmenting the contours using the Voronoi diagram of the bones
(Fig. 4.7(c)), as-is this segmentation results in a different, undesirable, seg-
ment connectivity; note in particular the green and blue segments at the
bottom. However, using a subset of the diagram intersections - specifically,
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Figure 4.7: Skeleton-driven segmentation of a simple contour (a) must match
skeletal topology (b) and reflect bone proximity. Proximity alone does not
guarantee skeleton matching segment topology (c). A more topologically
consistent segmentation (d) may need to be refined by bisector rotation to
avoid segment overlap (e). Boundaries are then adjusted to best align with
negative curvature extrema (f).

the first intersection between the contour and a ray emanating from each
skeletal joint along its angular bisector - to define boundaries of contour
segments associated with the participating bones (Fig. 4.7(d)) - results in a
solution largely consistent with the circular ordering. Inconsistencies show
up only at locations where the contours veer far from the skeleton; at these
locations bisector rays starting at adjacent joints can cross prior to intersect-
ing the contour, resulting in ill-defined, overlapping, segments. Such interior
intersections can be trivially detected and fixed by rotating the offending bi-
sectors in opposite directions to move the intersection onto or outside the
contour (Fig. 4.7(e)). The resulting segmentation has the desired connec-
tivity and each segment is adjacent to its associated bone. As a last step,
we adjust boundary locations to align them with bends at skeletal joints by
moving them to nearby curvature extrema (Fig. 4.7(f)).

Contour Segmentation with Occlusions While the algorithm above
works extremely well for occlusion-free closed contours, real-world character
contours contain inter-part occlusions which pose two further challenges
(Fig. 4.8). First, in the presence of occlusions, 2D distances are not a reliable
proxy for 3D distance; in Figure 4.8(b), for example, the contour between the
pinkie and ring finger bones is closer, in 3D, to the ring finger bone despite
being closer in 2D to the pinkie bone. Second, occlusions fragment the
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(a) (c) (e)(b) (d)

Figure 4.8: A character drawing with inter-part occlusions contains multiple
contour curves and the left and right outlines of a body part may now
contain multiple Gestalt continuous segments (a); thus 2D proximity based
segmentation is no longer adequate (b). Taking into account skeletal depth
as well as 2D proximity but neglecting Gestalt continuity leads to better,
but still perceptually wrong results (c,d). Our framework accounts for both
considerations resulting in the desired segmentation (e).

single closed contour into multiple disjoint contours, complicating the use of
topological criteria for segmentation. When contours are fragmented a bone
can be associated with any number of disjoint segments; e.g. in Figure 4.8,
the terminal bone of the partially occluded ring finger should be associated
with two disjoint contour segments. Furthermore, adjacent skeletal bones
may correspond to segments on different contour strokes. Nevertheless, as
we discuss below, the overall bisector-based segmentation strategy remains
applicable, but requires modifications that leverage the depth information
provided by the input 3D skeleton to better estimate proximity, and use
Gestalt continuation to analyze disjoint contours.

2D to 3D Proximity We first note that 2D proximity is still a good proxy
for 3D proximity; a bone can be associated with a farther away contour
using the bisector based approach only if the body part associated with
this bone is partially occluded and the contour in question belongs to the
occluder. For typical 3D character geometry, the depth ordering between
bones reflects depth ordering between their corresponding body parts, as
well as their contours. Thus in general, a contour closest to a bone in 2D,
should be associated with a different bone only if that bone is nearer to the
viewer than the original one. While it is conceivable to create geometry and
poses that violate this assumption, drawings of such shapes are inherently
ambiguous even to human observers and are thus beyond the scope of this
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(a) (b) (c) (d) (e)

Figure 4.9: Segmentation algorithm: iterating between a z-ordering based
pass and consistency validation.

chapter. Consequently for closest to the viewer bones we can still use 2D
proximity as a reliable proxy for its 3D counterpart. Similarly, for bones
farther away we can still continue to rely on 2D proximity as long as we
ignore, or skip, contours associated with nearer to the viewer bones.

While a total depth ordering of bones may not exist, a total ordering of
mini-bones is readily created by precisely subdividing bones that overlap in
depth (a la the painter’s algorithm) or approximately by simply subdividing
all bones into mini-bones of some small maximum length (one tenth of the
shortest bone in our implementation). As discussed below, the latter ap-
proach helps address the one-to-many bone to segment matching problem,
as we can plausibly assume that each mini-bone has at most one visible con-
tour segment on each side. Mini-bones resulting from subdividing a skeletal
bone are seen as meeting at unarticulated valence two joints.

Topological Consistency The bisector-based segmentation algorithm for
occlusion-free inputs ensures topological consistency along the closed input
contour - that is, adjacent bones are mapped to adjacent, continuous, con-
tour segments. When occlusions are present, adjacent mini-bones can be
associated with different, disjoint, contour segments (Fig. 4.8(c,d)) or al-
ternatively with hidden, or imaginary, segments. Unlike the occlusion-free
case, a traversal of a single input contour curve in a circular fashion does
not induce a traversal of the skeleton and vice versa; at most, we can hope
that, as we traverse along mini-bone half-edges on the skeleton using the
same counter-clockwise traversal, the associated contour portions should ei-
ther be continuous, or plausibly connected by an obscured contour portion.
We argue that humans employ the Gestalt continuity principle to evaluate
association probability in such cases, and ignore associations inconsistent
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with this principle (Fig. 4.8(c,d)).
Rather than directly assigning contour segments to bones so that every

assignment is Gestalt continuous, we employ a restart mechanism with a
taboo list. After assigning mini-bones to contours, we evaluate all assign-
ments of adjacent mini-bones for Gestalt continuation. When assignments
are inconsistent, as is the case in Figures 4.8(c,d), the proximity criterion
argues for keeping the correspondence for the segment closer to the bone in
2D, while disassociating the segment further away from the bone. If and
when an assignment is deemed inconsistent, we restart the near-to-far pro-
cessing algorithm as the disassociated segment needs to be associated with
a different bone.

Final Algorithm Our final segmentation algorithm that accounts for
both proximity and topological consistency proceeds as follows (Fig. 4.9):

• We traverse all mini-bones in near-to-far depth order (Fig. 4.9(a)).
The rationale for the ordering is that shallower bones, closer to the
viewer, have priority over deeper bones in associating with visible con-
tours as a consequence of the 2D to 3D proximity linkage.

• For each joint of a mini-bone we compute two joint bisector rays in 2D,
one on each side of the joint as described in Section 4.3, and associate
each ray with the first intersecting contour segment that has not yet
been mapped to a shallower bone. The ray intersections (from a single
joint for a terminal mini-bone, or from two joints on the same side
of internal mini-bones) demarcate contour segments that are mapped
to the mini-bone. Joint bisector ray intersections for deeper bones
segment and associate with the closest intersecting contour segment
that has not already been mapped to a shallower bone. The orange
bone for example, does not associate with the tip of thumb since this
tip is already mapped to the shallower blue bone in Figure 4.9(b).

• Once all the mini-bones for a sequence of bones connected via valence
two joints have been traversed (or an individual bone if it has no va-
lence two joints), we evaluate the contour segments associated with
these mini-bones for Gestalt continuity (Section 4.3).

• If erroneously mapped contour segments are detected, we disassociate
them from their current bones, forbid them from being associated to
these bones in the future, and restart the algorithm. In Figure 4.9(b),
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once the incorrectly associated segment on the right side of the hand
is found, we restart the algorithm and prohibit the ring finger from
associating with that segment. In the next iteration we generate the
configuration in Figure 4.9(c). Similarly, a new incorrect segment for
the pinkie bone is found and the algorithm is restarted (Fig. 4.9(d)).
Finally, we finish with the correct assignment in Figure 4.9(e).

Mini-joint bisector rays

Strictly speaking the joint bisectors for internal mini-bones are simply the
two opposing directions orthogonal to the bone in 2D (blue in the inset).
For mini-bones close to the end-joints of an original bone, such orthog-
onal internal bisectors are likely to intersect the joint bisectors emanat-
ing from these end-joints before reaching the contours resulting in over-
lapping segments which would need to be fixed later on (Section 4.3).

1/3

1/3

To reduce the number of subsequent fixes we preemptively
rotate the internal bisectors. Specifically, we split the bone
into thirds; the joint bisectors of the mini-bones in the mid-
dle third are left orthogonal to the bone, while at both ends
of the bone we set the internal bisector angle to smoothly
change from orthogonal to aligned with the end-joint bisec-

tor (see inset).

Evaluating Segment Continuity

For each pair of rays bounding a mini-bone, or sequence of mini-bones,
we evaluate whether the mini-bone joint assignments are consistent with
the Gestalt continuity principle by testing if their associated contours are
perceived as a continuation of one another. We consider all the possible
scenarios enumerated in Fig. 4.10:

A. In the most common scenario where both rays intersect the same con-
tour segment (Fig. 4.10(a)) this contour is clearly continuous.

B. If neither ray is associated with a contour intersection (Fig. 4.10(b))
we similarly deem the assignments as consistent; this case suggests that
the contour segment associated with the mini-bone chain between them is
occluded.

C. In more rare cases, the two rays intersect different contour segments im-
mediately next to a shared T-junction (Fig. 4.10(c)).
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(a) (b) (c) (d) (e)

Figure 4.10: Possible scenarios of contour intersections (filled circles) for
rays bounding a mini-bone. Empty circle means the ray has no associated
contour intersection.
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This scenario is consistent with a local occlu-
sion (see inset). To associate each mini-bone
with a single contour, we move the intersection
point on the occluded contour (see inset) to the
T-junction. The current mini-bone is now asso-

ciated only with the occluding contour.

D. In the fourth scenario, the two rays may intersect different contour
segments while not next to a common T-junction (Fig. 4.10(d)).

This is the first scenario where Gestalt continuity needs to
be taken into account to decide if the assignment is topologically
consistent. According to perception studies [55], more than 90%
of viewers visually connect disconnected curve segments into a
single contour if the angles between the segments and a straight
line connecting their end-points (see inset) are less than 18◦. We

employ this test as-is to evaluate Gestalt continuity for pairs of ray-contour
intersections along different contours. If the two contours are deemed dis-
continuous, we assume that the ray intersection, or contour assignment, that
is closest to the bone in 2D is more likely to be correct, and disassociate the
farther away contour segment.

E. One ray intersects a contour segment and the other ray has no associ-
ated intersection (Fig. 4.10(e)). Here we test whether Gestalt continuity is
satisfied across a sequence of mini-bones that have no associated intersec-
tions due to occlusion using the same test as above.
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Rotating intersecting rays

Similar to the occlusion free scenario, if two rays intersect prior to intersect-
ing the same contour curve, they conceptually create overlapping segments.
Thus, to preserve consistency we rotate them to flip intersection order. We
apply the same rule to rays intersecting disjoint but Gestalt continuous
curves, using the criterion above to determine continuity.

Once the distance and continuity driven segmentation is complete, we
locally slide the boundary points on their associated curves towards local
curvature extrema. Whenever a section of a contour remains unmapped,
we split it between the closest adjacent mapped segments. In our exper-
iments the resulting contour segmentations agreed with viewer intent (see
Section 4.5.3), and we never observed an entire curve left unassigned.

4.4 Canvas Modeling

A canonical surface of revolution can be computed analytically from its 3D
axis of revolution and its 2D contours (Fig. 2.2 (top)) by first positioning the
contours in 3D by leveraging rotational symmetry at all contour points, and
then defining the surface by setting the radius of revolution at each point on
the axis to the orthogonal distance from the axis to the 3D contours [137].
In this scenario, the part segmentation computed in Section 4.3 would be
sufficient to precisely define a 3D canvas for contour drawings that depict
canonical surfaces of revolution around corresponding bones of the input 3D
skeleton. Unfortunately, character body parts are rarely perfectly symmet-
ric. Furthermore, our input, artist-provided 3D skeletons are typically only
a coarse piece-wise linear approximation of a geometrically centered exact
curve-skeleton [29] of the target character surface (Fig. 4.11).

To recover a plausible canvas surface despite inexact skeleton posing and
imperfect part symmetry we use a three-step process. We first compute a
3D curve-skeleton which is close to the artist defined straight-line one, but
well-centered with respect to the drawn contours (Section 5.1). We then use
continuity along contour curves to determine the canvas connectivity across
input skeleton joints, and construct a quad dominant mesh to represent the
canvas (Section 5.2). Finally, we compute the optimal 3D vertex positions
across the canvas (Section 5.3), balancing rotational part symmetry with
respect to the curve skeleton against contour conformity and persistence.
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4.4.1 Computing a 3D Curve-Skeleton and 3D Contours

We define the curve skeleton to have the same topology as its straight-
line counterpart, and aim to position each branch so that it is maximally
centered with respect to the contours of its corresponding body part. We
initialize the curve skeleton by evenly sampling the straight-line skeleton,
adding samples along the continuation of terminal bones until the point
where that continuation’s projection into 2D space intersects with a drawn
contour, to support surface formation in these areas. Each curve skeleton
vertex ot is associated with a planar trajectory t with the vertex serving as its
origin. We simultaneously compute the positions of both the curve skeleton
vertices and the right and left contour points on their trajectories, balancing
contour symmetry with respect to the 3D curve-skeleton, similarity between
the curve- and straight-line skeletons, and 3D contour smoothness subject
to input conformity (Fig. 4.11).

Symmetry In our computation we seek three-fold symmetry. First, we
aim for left and right contour curves to be maximally mirror symmetric
around the curve skeleton.

trajectoryctt

contours

tttotoryy
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toryrytory
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Given a planar trajectory with center ot and nor-
mal nt that intersects the 3D contours at points cLt
and cRt , mirror symmetry is satisfied if the contour
points are symmetric around the plane (with plane
normal it) containing the axis of revolution ((ot, nt)
and the view direction (z-axis) as shown in the in-
set. We also seek local front-back symmetry at each
contour point expressed as an expectation for the
surface normal along the contour to be inside the

plane spanned by the local axis of revolution and the contour point. Fi-
nally, to optimize the rotational symmetry of the surface profiles connecting
adjacent trajectories we expect the lines connecting adjacent trajectory ori-
gins to be aligned with their respective normals. The combined symmetric
energy is formulated as,

Es =
∑
t

‖(cLt − ot) · it + (cRt − ot) · it‖2 +
(
nL
t · (nt × (cLt − ot))

)2
+

(
nR
t · (nt × (cRt − ot))

)2
+

∑
(t′,t)

‖(ot′ − ot)× (nt + nt′)/2‖2 (4.1)
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Figure 4.11: Curve skeleton computation: (a) user posed straight-line skele-
ton with the initial trajectory centers and their corresponding trajectory
contour points marked; (b,c) front and side views of curve skeleton and 3D
contours; (d) final surface with contours highlighted.

where it = nt × (0, 0, 1), and the last term’s summation index (t′, t) repre-
sents all adjacent pairs of trajectories. The first term expresses the mirror
symmetry between contours; the next two express the local front/back sym-
metry at each contour; and the last term encodes origin alignment. Since
this term is direction invariant, we explicitly constrain the lines connecting
pairs of adjacent trajectory origins to have the same orientation as the nor-
mals (ot′ − ot) · (nt + nt′) > 0 with consistently oriented nt and nt′ . Lastly
to ensure trajectory planarity we enforce

(cLt − ot) · nt = (cRt − ot) · nt = 0. (4.2)

Skeleton similarity Since we expect the artist skeleton to approximate
the target curve skeleton shape, we minimize the distance between the joints
jc and jl on the two skeletons,

Ec =
∑
j

‖jc − jl‖2. (4.3)

Contour depth Finally, we minimize depth change along contours,

Ez =
∑

(cst ,c
s
t′ )

(cst .z − cst′ .z)
2 (4.4)

where cst and cst′ , s ∈ {L,R} are consecutive points on the same contour
curve. This term is most important at joints, where it communicates depth
information between adjacent body parts.

In the combined energy functional, symmetry and skeleton similarity are
assigned unit weights, while contour depth is assigned a smaller weight of
0.1:

E = Es + Ec + 0.1Ez. (4.5)
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Trajectory Normal Computation Simply including the trajectory nor-
mals nt as unknowns in Equation 4.5 results in a highly nonlinear for-
mula that is challenging to optimize efficiently. We therefore reduce the
energy complexity to a simple quadratic formulation by independently pre-
computing these normals. In general we expect trajectory normals to be
close to the directions of the straight-skeleton bones that the trajectories
are originally associated with. On a curved skeleton, however, we expect
these directions to change smoothly at valence 2 joints. We use the segmen-
tation to determine the best transition angle by considering whether the joint
has visible segment boundaries associated with it (see in-
set). If so, we rotate the axis at the curve-skeleton vertices
closest to the joint so that the plane will intersect the con-
tour just next to the boundary point. If both boundaries
are visible we use an average rotation to best fit both,
while if no boundary is visible we rotate the axis to the
relevant joint bisector. We then smoothly propagate the
rotation along the bones. Note that those rotations may
differ from the joint bisector, shown as a red dashed line in the inset.

Contour-Skeleton Matching To account for input contour shape, we
need to match the curve-skeleton vertices of each bone with densely sampled
points on the input contours that we previously associated with this bone
during our segmentation process. Incorporating the search for best skele-
ton/contour correspondences into the curve-skeleton computation is both
challenging and time consuming. We therefore pre-compute the matches by
leveraging the expectation that contour points on each trajectory are mir-
ror symmetric around the local trajectory axis. This expectation implies
that the line connecting such pairs of points should be orthogonal to the 2D
projection of the local axis. To compute the correspondences for each ini-
tial curve-skeleton vertex, we shoot rays left and right orthogonally to local
trajectory axis nt to locate pairs of intersections on contours belonging to
opposite sides of the body part. Note that in the presence of occlusions we
may locate only one such intersection, or no intersections at all. These inter-
sections are used as the image space locations of the corresponding contour
points and are fixed throughout the optimization process.

We consequently solve for the 3D positions of the curve-skeleton vertices
and the depth of their associated contour points using a quadratic solver
that minimizes the combined energy function subject to the equality and
inequality constraints above. We then compute the radii rt of each trajectory
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as the average distance from its origin to its two contour points and use those
in the subsequent canvas mesh computation step.

(a) (b) (c)

Figure 4.12: Canvas connectivity (a) with close-ups of quad strips between
trajectories (b) and triangulated terminal trajectories (c).

(b)(a) (c)

Figure 4.13: Connectivity across joints: (a) visually continuous parts; (b)
Discontinuous parts; (c) the top part is deemed continuous with both lower
ones, while the two bottom parts are deemed discontinuous since their shared
contour curve has a cusp between them.

4.4.2 Canvas Connectivity

We represent the canvas using a set of planar, closed vertex cycles, or trajec-
tories circling the skeleton, connected by a quad-dominant mesh. (Fig. 4.12).
We place cycles around each trajectory center computed in the previous
curve-skeleton computation stage; all cycles have the same number of ver-
tices and a consistent circular indexing facilitating explicit angular and axial
parameterization of the parts. We then form quad strips between pairs of
adjacent cycles along each skeleton bone placing edges between vertices with
same angular index on both (yellow strip in Fig. 4.12(b)) and triangulate
the last, terminal, cycles at each terminal joint (yellow, Fig. 4.12(c)). The
connectivity choices at interior joints are determined based on the interac-
tion between the drawn outlines of the participating parts. Specifically, for
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(a) (b) (c) (d) (e)

Figure 4.14: Given the input sketch (a), contour persistence indicates that
side view contours (b,c) significantly differing from front-view ones are un-
desirable. Viewers similarly do not anticipate extreme foreshortening (d).
Our result (e) is persistent with the front view contours.

each pair of parts adjacent to a joint we determine if the parts are a contin-
uation of one another or not. If two body parts are deemed continuous we
fuse their canvas surfaces, placing a quad strip between the part trajectories
immediately adjacent to one another across the shared joint (blue strip in
Fig. 4.12(b)). If a part has no continuous neighbors across an interior joint,
its last cycle at the joint is simply triangulated (blue, Fig. 4.12 (c)).

Two parts are deemed continuous if their outlines are either adjacent
to one another along a single smooth contour curve or are Gestalt contin-
uous (Fig. 4.13). We deem a contour curve smooth if it has no cusp at
the boundary between the two outlines. This smoothness requirement is
motivated by the observation that artists frequently omit drawing small T-
junctions, connecting what in 3D should be separate contours into a single,
albeit non-smooth one (Fig. 4.13(c)). Our joint processing can, by design,
lead to non-manifold, as well as self intersecting canvases. If desired, the sur-
facing step (Section 4.4.3), which leverages our current canvas connectivity,
can be followed by a more complex fusion process similar to [8, 17] resulting
in a smooth manifold mesh. However, we found this step unnecessary for
the canvas applications shown in this chapter.

4.4.3 Canvas Surfacing

The key step in computing the canvas shape is to position trajectory vertices
balancing the goals of maximally symmetric body parts, contour conformity,
and persistence. The remaining vertices, those in the triangulated regions
next to terminal trajectories, are computed in a post-process which seeks
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for smooth canvas geometry overall.
We constrain each trajectory t with vertices vt0, . . . , v

t
n = vt0 to be or-

thogonal to the previously computed normal nt,

(vi − vi−1) · nt = 0 i = 1, . . . , n.

Part Symmetry To maximize part symmetry we seek canvas trajectories
which are as circular as possible and aim for profiles connecting consecutive
trajectories along each bone to have as constant as possible angle of revolu-
tion, or slope, with respect to each trajectory’s axis. We cast circularity as
a quadratic energy term,

Ec(t) =
∑
i

(vti − (vti−1 + vti+1)/2− δti)
2 (4.6)

where the vectors δti are the Laplacian coordinates of the i’th vertex in a
planar circle whose normal and radius are the pre-computed nt and rt. To
account for different axes of revolution assigned to different trajectories, we
express profile symmetry for each trajectory t and a neighboring trajectory
t′ as

Ep(t, t
′) =

∑
i

(vti −Mt′,tv
t′
i −Rn(vti+1 −Mt′,tv

t′
i+1))

2, (4.7)

where Rn is a rotation matrix of π/n around the axis (ot, nt), and Mt′,t is
the shortest path coordinate transformation aligning the axis (ot

′
, nt′) with

(ot, nt).

Conformity We want the visible contours of the canvas to match the
artist drawn ones. To achieve this, the contour vertices on the final trajec-
tories, i.e. those whose normals are in the view plane, must coincide in 2D
with the previously computed trajectory contour points ct. While we do
not know the final trajectory shape, we assume that this shape will remain
close to the ideal circular one; we therefore select the left and right vertices
whose normals on these ideal trajectories are most orthogonal to the view
direction as the potential contour vertices. For each such vertex vt, if a
matching (left or right) trajectory contour point ct exists we force their 2D
locations to coincide,

vt.x = ct.x and vt.y = ct.y.
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Figure 4.15: We constrain the profile angle to the range between the ideal
profile slope given by the two ring radii and the axis direction.

Persistence Previous work has relied upon part symmetry and contour
conformity alone when attempting to recover 3D models from character
drawings. This produces intuitive individual part geometries, and plausible
transitions between both discontinuous parts and those deemed continuous
along both side contours; however, it also generates sharp depth discontinu-
ities, contradicting viewer perception, between parts classified as continuous
along only one side contour, such as a leg and a torso (Fig. 4.14(b)). The
reason for such discontinuities is that in these situations the trajectories
adjacent across the joints typically have vastly different radii and far apart
centers. Since the artist contours provide no hint of discontinuity, we believe
that viewers mentally eliminate them by deforming the parts to bring them
closer together. Moreover, we speculate that viewers expect the character
contours to maintain their overall drawn shape in alternate views up to in-
evitable foreshortening, avoiding the behavior visualized in Figure 4.14(c).
This observation is supported by the minimal-variation principle observed
by [138]. Following these observations we incorporate persistence into our
setup as follows. When two parts are continuous along only one side con-
tour we explicitly minimize the depth variation along quad-strips connecting
these parts,

Ed(t, t
′) =

∑
i

(vti .z − vt
′
j(i).z)

2 (4.8)

where t is the trajectory with the smaller radius and vt
′
j(i) is the closest vertex

to vti in image space, on the larger trajectory. We use vertex positions on
perfect circular trajectories with centers ot and ot′ and radii rt and rt′ to
compute these distances. Note that both values vti .z and vt

′
j(i).z are free,

but the correspondences between their vertices j(i) are fixed throughout the
optimization.
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To avoid creating discontinuities elsewhere, when two parts are con-
tinuous along both side contours, we minimize profile variation along the
quad-strip joining them using Equation 4.7. This formulation leverages the
slope along the two contours to optimize for depth variation consistent with
viewer perception.

Lastly, to avoid undesirable derivative discontinuities (Fig. 4.14(c)) any-
where across the canvas surface we explicitly constrain the profile angle with
respect to each axis of revolution to the range between the ideal profile slope
given by the two ring radii and the axis direction (Fig. 4.15),

(vt
′
i − v̂t

′
i ) · (v̂t

′
i − v̂ti) ≤ 0

(vt
′
i − pt

′
i ) · (v̂t

′
i − v̂ti) ≥ 0

Here v̂ti are the positions of the corresponding cycle vertices vti on an ideal
circular trajectory, and pt

′
i = v̂ti + ot

′ − ot. In Figure 4.15, for the trajec-
tory t′ with an adjacent trajectory t, those two inequalities constrain vertex
positions along t′ to lie within the green ring whose boundaries are derived
from the contour slopes between the pair of trajectories t and t′.

Given the terms above we proceed to optimize symmetry and persistence
at joints subject to the trajectory planarity, conformity and profile slope
constraints listed above:

E =
∑
t

w(rt)Ec(t) +
∑

(t,t′)∈B\J
Ep(t, t

′) +
∑

(t,t′)∈J
Ed(t, t

′), (4.9)

Here B is the set of pairs of canvas trajectories connected by a quad strip and
J is the subset of such pairs with only one-sided contour continuity across
joints. To promote the preservation of smaller trajectories, where even a
small absolute error introduces large deviation from the ideal circular shape
(Fig. 4.14(d)) we introduce per-trajectory weights w(rt) = 25e−(rt/2σ)2 with
σ set to one third of the average trajectory radius. All other terms in the
functional are assigned unit weights. To avoid depth ambiguity, we fix the
z coordinate of one vertex. We use a quadratic programming package [50]
to obtain the desired minimizer.

The resulting canvas is smoothed using standard Laplacian smoothing,
while weakly holding the positions of contour vertices to eliminate local
artifacts that can emerge due to imperfections in the input contours and
small surface discontinuities due to the use of range constraints. To position
the vertices in the triangulated regions next to terminal bone tips we use a
simple Laplacian formulation that enforces tangent continuity with the rest
of the surface.
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4.5 Perceptual and Design Validation

We perform three-fold validation of the key aspects of our algorithm: we
evaluate artist ability to provide the desired inputs, compare our results to
ground truth and artist drawings, and validate our segmentation algorithm
via an informal evaluation.

4.5.1 Creating Overlaid 3D Skeletons

Current animation practice uses 2D character drawings, such as those used
as inputs to our system (e.g. Fig. 4.1), as a visual reference to manually
author a 3D character model in a symmetric canonical pose [83]. A 3D
skeletal structure is then interactively created and positioned within this 3D
model. Our workflow expects animators to effectively create a 3D skeleton
without an explicit 3D model, and pose it directly over a 2D character
drawing.

To ensure the viability of our workflow, we asked three Maya animators
to create 3D skeletons over two ground truth drawings (Fig. 4.16). Two ani-
mators (purple and maroon in Fig. 4.16) first created a 2D skeleton overlaid
on the drawing and then re-positioned joints in an alternate view to get a
desired 3D pose. One (purple) further used a measurement tool to com-
pare symmetric parts and then further moved joints in 3D in an attempt to
equalize the lengths of symmetric parts. These skeletons show a discrepancy
in the average 3D length of symmetric parts (8% avg., 14% max. for purple
and 19% avg., 33% max. for maroon) in Fig. 4.16, c.

The third animator (blue) first used the drawing simply as a visual ref-
erence, to create a symmetric, canonical skeleton and roughly pose it in
3D. This 3D skeleton was then moved onto the drawing and the pose re-
fined by rotations and symmetric scaling of parts, to satisfactorily overlay
the skeleton in 2D on the drawing. We described this workflow to anima-
tor #2 (maroon), who concurred that despite the natural tendency to first
oversketch a 2D skeleton on the drawing, a canonical 3D skeleton allowed
animators better control over symmetry and part proportion. The brown
skeleton in Figure 4.16(c) was easily created by animator #2 using this
workflow.

All animators took between 5-10 minutes to create and pose these qual-
itatively similar skeletons in 3D. The above exploration gives us confidence
that animators imagine the 3D pose of 2D character drawings consistently
and with practice can capture this pose with a 3D skeleton, overlaid directly
on a 2D drawing.
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14%
33%

(c)
animator1 animator2 animator3 ground truth

31°
46°

44°

40°

(b)(a)

30°

24°

32°

24°

Figure 4.16: Ground truth (green) and 3D skeletons created by 3 animators
overlaid on two ground truth 2D character drawings (a), (b), also shown from
an alternate view overlaid on the ground truth 3D canvas. The skeletons
in (b) shown individually (c). The purple and maroon skeletons, created
by manipulating an overlaid 2D skeleton have differences in 3D limb length
between symmetric limbs. The maximum difference for each skeleton, 14%
and 33%, is marked on the longer limb. The brown skeleton was created by
animator #2 mimicking the workflow of animator #3. The angular deviation
between the corresponding bones on the ground truth and artist skeletons
is dominated by control bones (hips and shoulders) which have no impact
on the result geometry. The maximal deviations without (and with) control
bones are: 24◦ (31◦) for the purple skeleton, 24◦ (46◦) maroon, 32◦ (44◦)
brown , and 30◦ (40◦) blue. Average angle differences are 13◦, 15◦, 15◦, and
18◦ respectively.
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Figure 4.17: Comparing our results to ground truth data: Left to right:
contours and skeletons of ground truth (GT) models; GT (blue) and our
(yellow) models rendered from alternate views.

front side

front

side

front

side

Figure 4.18: Left: Given the same input sketch, small variations in skeleton
posing (green and purple Figure in 4.16) lead to minor changes in character
shape. Right: significant change in bone slope and location for a symmetric
contour leads to larger shape difference.
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Robustness to Input Variation We also examined the impact of using
different artist skeletons on the canvases created by our system (Fig. 4.18).
As demonstrated, while the character pose predictably changes with changes
in bone posing, the body part shape remains largely fixed, thanks to our
robust curved-skeleton computation stage. The invariance to minor posing
changes is important, since artists are unlikely to pose a skeleton perfectly.
The shape change is most pronounced (Fig. 4.18 (right)) when a bone for
a perfectly symmetric surface of revolution is significantly misaligned com-
pared to the expected axis. Such misplacement is easy to spot and fix.
Overall, as long as the depth ordering of the bones is correct, the intrinsic
geometry of our results changes only marginally with changes in 3D skele-
ton posing. In particular angle and depth changes (in this example we have
bones orientations vary by up to 30◦) cause only small difference in the
results. The output is more dependent on the image space skeleton posi-
tioning, and in particular on how off-center the skeleton is with respect to
the drawing. Artists can easily center skeletons in 2D.

4.5.2 Comparison to Ground Truth and Artist Drawings

To validate our method, we compare the canvases created by our algorithm
to ground-truth canvases for given contours and to alternate view drawings
created by an artist given the same input as our method. To perform the
ground truth comparison, we had an artist create and rig four 3D models
(Fig. 4.17). We then used contour only renders of these models and the artist
skeletons as input to our method. The resulting canvases are extremely
similar to the original models, validating our design choices.

We further validated the perceptual correctness of our framework by
comparing these results to artist generated drawings of the input sketched
characters in alternate views (Fig. 4.19). We provided another artist with
our input drawings with the skeleton overlaid, a 2D view of the skeleton
in the desired output pose, and a 3D posed skeleton which allowed the
artist to better relate the two poses. We then asked him to redraw the
input character matching the skeleton pose. The results were qualitatively
very similar, though the artist’s characters tended to be leaner than our
interpretation.

4.5.3 Perceived Contour Segmentation

To evaluate consistency across viewers and compare our algorithm with
viewer perception, we asked 12 viewers (from various backgrounds, 10 with
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(a) Artist drawings in novel views (b) Our results

Figure 4.19: Comparison of our results (b) to sketches produced by artists
(a) for the same view and pose.

User overlay Our result

User overlay Our result

Figure 4.20: Overlaid user segmentations (left) for both the elephant and
the scientist are qualitatively similar to the algorithmic results (right).
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Figure 4.21: Canvases and alternate view renders generated using our system
from the inputs on the right.

Figure 4.22: A variety of re-posed renders generated automatically from the
inputs on the right.

no experience of 3D modeling, 8 females and 4 males) to hand segment the
contours on four simple and five complex drawings and associate each seg-
ment with bones of an overlaid 2D skeleton. The full text and the results
of the evaluation can be found at http://cs.ubc.ca/~bmpix. We chose
to distinguish joints by color as numbered labels for skeletons with dozens
of bones were visually confusing. None of the users remarked that color
based segment association was problematic as a task. Fig. 4.20 summarizes
the resulting segmentations on two complex inputs, with various user seg-
mentations overlaid to visualize correlations across viewers. While viewers
had less information than our algorithm (a 2D rather than 3D skeleton),
their segmentations are largely consistent and match well our algorithmic
segmentation. We thus believe that our 3D character canvas is built on a
robust and perceptually meaningful contour segmentation algorithm.

71



4.6. Results

Figure 4.23: The explicit cylindrical parameterization of our canvases allows
for a range of advanced texturing effects, hard to achieve without a an
underlying 3D structure.

4.6 Results

We demonstrate the results of our character canvas modeling framework
throughout this chapter. We show both the actual canvases created by the
method (Fig. 4.3, 4.21), as well as a range of NPR renders created using
these canvases from different view directions in both the input and alter-
nate poses (see Fig. 4.1, 4.22). The rendering examples include significant
changes in contour topology compared to the input view, which cannot be
achieved purely by 2D control (e.g. see back view of the catwoman Fig. 4.1).
Using our canvases, with their built-in cylindrical parameterization, one can
easily apply advanced rendering techniques such as fur or feathers simula-
tion (Fig. 4.23), enabling artists to generate 3D effects without resorting to
complex 3D modeling tools.

One of the main technical challenges, addressed by our method, and
showcased by these examples is correct resolution of inter-part occlusions.
Not only does it enable artists to draw characters in natural rather than
artificial canonical poses, but it enables them to draw characters whose
anatomy does not allow for such occlusion-free pose, e.g. one simply cannot
draw a quadropus (Fig. 4.22) with both the head and all four legs fully
visible. Other such examples include the fox and anteater (Fig. 4.21, 4.23).

Workflow The inputs we evaluated our framework on were created using
two workflows motivated by different target applications. In the first one, an
artist created a set of sketches, e.g. catwoman or elephant and then fitted a
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skeleton to those using Maya or other animation software (see Section 4.5.1).
This framework is best suited for creating new cartoon art and bringing to
life legacy characters, where a drawing of the character already exists.

In the second workflow, artists created and pose a 3D skeleton first,
and use it as an armature over which to draw character contours from an
interesting viewpoint (fox, anteater, quadropus). This approach is partic-
ularly useful in animation setups where artists already have a skeletal ani-
mation sequence they want to adapt to a new character. The accompany-
ing video shows several animation sequences, each generated from a single
frame, created using this workflow. The amount of work required to gen-
erate these animations was drastically lower than using the traditional 2D
animation workflow, where key-frames describing out-of-plane motion are
typically drawn by hand.

Global Symmetry Besides local symmetry which is used throughout the
algorithm, characters frequently exhibit left-right global symmetries, which
viewers use to complete occluded body part geometry. We employ this
principle in two examples to recover fully occluded geometry (elephant) or
correct for inaccurate artist drawing (fox) by enforcing similar trajectory
shape for matching trajectories on symmetric joints.

Impact of Design Choices Figure 4.14 demonstrates the importance of
our design choices when surfacing the canvas. Not accounting for persis-
tence at joints (Fig. 4.14(b)) results in unexpected surface discontinuities.
Locally minimizing depth variation (Fig. 4.14(c)) is similarly insufficient.
Our framework (Fig. 4.14(e)) which constrains profile slope and minimizes
foreshortening produces more natural results.

Parameters and Runtimes Our method has no tunable parameters.
For canvas modeling we use thirty vertices per trajectory and have uniform
trajectory density across all bones; the density is determined so as to have at
least ten trajectories along the shortest bone, and to have the distance be-
tween consecutive trajectories be no more than one percent of the character’s
bounding box diagonal. Our software takes between ten to sixty seconds to
generate a canvas on an Intel Core i7 machine with 32GB of RAM. Roughly
25% of this time is spent in the segmentation stage and the rest is spent by
the QP solver computing the canvas surface. This fast turnaround allows
artists to quickly repose the skeleton or update the drawing were they to
find the results inadequate.
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(a) (b) (c) (d)

Figure 4.24: Given a single drawing and a posed skeleton we generate
qualitatively similar results (b,d) to those created by multi-drawing sys-
tems which employ manually specified curve correspondences between drawn
curves: [106] (a) and [74] (c).

Comparison to Prior Art Figure 4.24 highlights our ability to generate
models of equal complexity to those generated by multi-view approaches
such as [74, 106], without the need for multiple corresponding drawings.
We performed this comparison by using one of the input views utilized by
these prior systems, tracing 2D curves over it as our sketch input and posing
corresponding skeletons. Our method employs significantly less user input
than Levy et al, who require at least three corresponding drawings each
with an appropriately posed skeleton. While Rivers et al. do not require a
skeleton, they still expect at least three drawings with correspondences and
cannot articulate the results.

We successfully handle a much wider range of sketches than previous
methods, most of which, e.g. [20] can handle only occlusion free inputs.
While Cordier et al. [28] support partial occlusions, they assume perfect
rigid mirror symmetry, and expect every part silhouette to be drawn as a
separate curve. Karpenko and Hughes [68] make a similar curve planarity
assumption. Our framework successfully handles complex occlusions, in-
cluding scenarios deemed ambiguous by previous methods (e.g. elephant in
Fig. 4.21, see [68]); does not require posing symmetry (e.g. see the mad sci-
entist) nor separate part outlines (e.g. see hind side of the fox), and plausibly
recovers non-planar contours (see Fig. 2.2). As demonstrated by Figure 4.4,
our shape computation which aims to maximize simplicity, generates results
more consistent with user expectation than inflation based frameworks such
as [68, 95]. By accounting for persistence (Fig. 4.14) our method avoids
depth discontinuities at complex joints bound to show up when parts are
assumed to have perfect rotational symmetry [20, 28].

Qualitative Evaluation. We asked six computer artists to provide visual
critique of our outputs (catwoman, elephant, quadropus) by showing them
the input drawings and the output renders (see Figure 4.25), and asking
them if our results represent the same character as the input drawing. All
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Figure 4.25: An example of the qualitative evaluation questionnaire.

six agreed that our results faithfully capture the original input in new poses
and views and expressed strong interest in using our system in their work.

Limitations and Improvements. Like human observers, our method’s
ability to predict the shape of a character is inherently limited by the de-
scriptive power of the input drawings, and our algorithm can be misled by
badly posed or obfuscated drawings. For example, faced with an oblique
view of a bird’s wings, neither viewers nor our method can guess their depth
without resorting to prior knowledge of bird anatomy (Fig. 4.26(a)). Since
selecting a single view where all character body parts are well described can
sometimes be challenging, we provide users with an incremental, overdraw
interface. In this interface, users can first generate a character model from
a single view, and then update the canvas from another view using contour
overdrawing framework that follows [96] (Fig. 4.26(a)).

While our method is robust against minor inaccuracies in the input skele-
ton, major errors in skeleton depth placement may clearly cause undesirable
artifacts such as intersections between body parts. We did not encounter
such situations on the tested inputs. We believe that the simpler solution
would be for the artist to adjust the skeleton, if and when they find the
result unsatisfactory, and rerun the algorithm. However if desired, one can
incorporate additional non-intersection constraints into the optimization in
Equation 4.9, or fix the self-intersections as a post-process step once the
canvas is generated. Regardless, we are still dependent on the ability of the
artist to pose a skeleton with respect to a cartoon drawing in a manner that
avoids intersection between body parts.

A fundamental premise of our work is that the 3D canvas is a collec-
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*

*

*(a) (b)

(c)

Figure 4.26: Our ability to plausibly recover character shape is limited by
the descriptive power of the inputs. Without cues to the contrary we gen-
erate round bird wings, instead of anatomically correct ones (a). Since we
use a standard mesh representation, the canvas can be easily edited to cor-
rect the wings or add extra features (beak) using standard tools (a, right).
Geometries not-well represented by generalized surfaces of revolution, such
as loose clothing (b, pink cape) must be modeled by other means. While
some fine details can be captured by using skeleton refinement (c), alternate
editing tools are likely to achieve this goal faster.

tion of generalized surfaces of revolution parts, each part being defined by a
bone of the input 3D skeleton. Surface detail for a 3D canvas that strongly
deviates from this premise, like cloth folds with internal occluding contours
(Fig. 4.26(b)) are thus not captured by our approach. While the hair spikes
of (Fig. 4.26(c)) can be constructed using surface of revolution parts, it is
unlikely that artists would provide the necessary definition for each hair
spike with a bone on the input 3D skeleton. Thus while our system is well
suited for canvas creation, artists should combine it with other mesh-editing
tools to generate detailed, dressed, characters. Some cartoon characters
may have elements which are designed to consistently face towards the cam-
era regardless of the viewer position (cartoon eyes, or the ears of a cartoon
mouse); we do not attempt to recover these features from the input sketch.
In a production environment such features are best implemented using bill-
board vector elements. In general, realistic cartoon drawings combine a mix
of strokes that define a 3D canvas, view-dependent 3D geometry, and 3D
detail drawn on and around the surface of the 3D canvas [113]. We have
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focused on simplified cartoon drawings where the strokes strictly comprise a
character canvas. The classification of strokes of arbitrary cartoon drawings
as described, and their 3D reconstruction, is subject to future work.

4.7 Conclusions

We presented the first, to our knowledge, system for 3D character canvas
modeling from a single naturally-posed character drawing and overlaid 3D
skeleton. We can process input with complex inter-part occlusions and large
variations in contour depth. As demonstrated, our output 3D geometry is
appropriate for use as an animation canvas: facilitating non-trivial reposing
and large viewpoint changes of complex characters, that remain consistent
with the input drawing, and enabling non-photorealistic animation using
painterly strokes on and around the canvas.

Our work is aligned with a recent trend to simultaneously model 3D
character geometry and its corresponding skeleton [8, 17]. While we have
focused on 3D proxy geometry creation from minimal input in the form
of drawn contours, our coupling of 3D skeleton and input drawings using
a perceptual framework is extensible. In the future we expect that our
algorithmic approach, adapted to richer input drawings, embellished with
internal contours, construction lines and shading, will result in fully detailed
and complex 3D character models.
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Chapter 5

Gesture3D: Posing 3D
Character via a Gesture
Drawing

5.1 Introduction

In this chapter we introduce a novel system to pose rigged 3D characters
via a gesture drawing. A variant of this chapter has been submitted to
SIGGRAPH ASIA 2016.

Gesture drawings - rough, yet expressive, contour drawings of posed
characters (Figure 5.1b,e) - are routinely used by artists to quickly convey
the action, form, and pose of a character figure [12, 53, 97]. Artists are
trained to create descriptive gesture drawings which unambiguously convey
a character’s pose in just a few minutes [73], and use them ubiquitously when
conceiving character poses and motion key-frames for storyboarding. In dig-
ital media production, artists subsequently apply these envisioned poses to
3D character models. In current practice, posing is performed separately,
using the drawings as a reference only, and requires additional, often sig-
nificant, user interaction (Section 5.2). We seamlessly connect the ideation
and modeling steps by introducing the first method for 3D character pos-
ing which poses the characters algorithmically using gesture drawings as

(a) (b) (e)(d)(c) (f ) (g)

Figure 5.1: Gesture3D: gesture drawings (b,e) of an input character model
(a); estimated 2D skeleton projections (c,f) and new poses automatically
computed from the drawings (d,g).
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input, allowing artists to directly communicate their ideas using drawings
and sidestepping the mental overhead of interacting with a complex software
interface. As demonstrated, our method plausibly poses 3D characters using
quickly generated, rough, vectorized gesture drawings and rigged character
models, provided in a neutral bind pose, as the only inputs. It successfully
handles complex poses with varying and significant part foreshortening, oc-
clusions, and drawing inaccuracies (Figure 5.1).

The advantage of gesture drawings over other types of 2D inputs ex-
plored by previous posing approaches (Section 5.2) is the lack of perceptual
ambiguity. Unlike stick-figures, lines of action, and outer silhouettes (Fig-
ure 5.2), gesture drawings allow artists to unambiguously convey poses to
human observers. By identifying and leveraging the perceptual pose cues
used by artists when creating these drawings, we are able to automatically
recover character poses that are consistent with artist intent.

Our framework centers around analysis of the stroke curves forming the
gesture drawings (Section 5.4). Like many other line drawings, gesture draw-
ings are dominated by contour curves, conveying the occlusion contours of
the depicted characters. However, since gesture drawings focus on conveying
pose rather than shape, they typically only depict approximate, abstracted,
character anatomy. In particular, artists typically use simple low-curvature
stroke segments to outline body parts and use higher-curvature sections to
depict their connecting joints [53]. These high-curvature anatomical land-
marks assist observers in parsing the drawings. The abstracted contour
strokes of a gesture drawing are designed to convey largely smooth 3D char-
acter geometry. As observed in the previous chapter, in such scenarios the
contours of both individual body parts and part chains are usually continu-
ous; thus adjacent contour stroke segments always outline adjacent body
parts, and adjacent body part outlines are typically depicted using one
shared stroke, or multiple Gestalt continuous [69] strokes. We also observe
that body part contours are consistently oriented with respect to the parts’
skeletal bone and rarely cross the bone’s 2D projection. Combined together,
these three contour consistency cues allows observers to identify poses with
globally consistent joint and bone locations.

Generic projected contours allow multiple depth interpretations, thus
artists are trained to use drawing cues to reduce ambiguity. When estimating
depth from 2D drawings, viewers prefer less foreshortened interpretations of
the observed shapes, thus to best convey the intended poses artists seek
to select viewpoints with smaller foreshortening [57]. We also observe that
in gesture drawings artists prominently use local, suggestive, occlusions to
convey changes in depth and to specify depth order between adjacent joints.
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Gestalt psychology [5, 69] points to a persistent viewer preference for simple
drawing interpretations. In the context of gesture drawings, we believe
that viewers use two types of simplicity cues: in cases where drawings are
ambiguous, viewers prefer more natural poses, or ones with angles closer to
those in the input bind pose; as studied in the previous chapter, viewers
also visually complete hidden body parts and correct drawing inaccuracies
by using regularity cues, such as pose symmetry. Finally, we note that while
human observers can clearly parse professional gesture drawings, reliance on
the drawing to accurately depict character proportions and projected joint
locations must be qualified: drawings are typically inexact, as even experts
depict foreshortened objects inaccurately [114] and fail to correctly account
for perspective [138].

Overview. We use these observations to pose the input 3D rigged char-
acter model into the artist intended pose conveyed by the input gesture
drawing. We first match skeletal elements against corresponding contour
stroke segments, placing joints next to their matching contours. We for-
mulate joint placement as a discrete 2D embedding that matches joints to
corresponding contour samples and is dominated by contour consistency
and anatomical landmark matching considerations. We then compute the
desired embedding by casting it as a variation of the tree-structured Markov
Random Field (MRF) problem (Figure 5.9b, Section 5.5). We extend our
solution to 3D by leveraging the depth order implied by occlusion contours,
and the observations about viewer preference for simple and less foreshort-
ened poses. To overcome drawing inaccuracy, we formulate 3D embedding
as an energy minimization problem which balances landmark-implied 2D
joint placement against the simplicity and foreshortening cues (Figure 5.9d,
Section 5.7).

Contribution. Our contribution in this chapter is two-fold: we formu-
late the properties of effective gesture drawings, bringing together insights
from multiple sources in the areas of psychology, art, and computer graph-
ics, highlighting key perceptual cues which enable viewers to perceive the
artist intended character poses; we then use these observations to intro-
duce the first gesture drawing based algorithm for posing 3D characters.
Our method enables artists to directly convert their ideated posed charac-
ter drawings into 3D character poses, and supports complex drawings with
occlusions, variable body part foreshortening, and drawing inaccuracies.

Validation. We exhibit a gallery of character poses obtained automat-
ically from gesture drawings of a range of 3D characters (Section 5.9) and
validate our algorithm in a number of ways (Section 5.8). We evaluate our
results against ground truth data, by first rendering projected contours of
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(a) (b) (c) (d) (e)

Figure 5.2: Stick figure drawings (a), lines of action (b), and outer silhou-
ettes (c) allow for multiple perceptually valid pose interpretations. (d) Poor
view selection results in highly foreshortened contours leading to loss of
pose information (e.g bends on the left arm or the curved spine). Gesture
drawings, consciously drawn from descriptive views (e) effectively convey
the intended pose.

posed character models, then using these contours as input to our method
and comparing our results against original poses; we compare our algo-
rithm’s results with characters posed by artists given the same drawings
as input; we compare the character-contour correspondences computed by
our method against manual annotation by human observers; and we collect
qualitative result evaluations by experts and non-experts alike. Finally, we
compare our method against prior work and algorithmic alternatives. These
validations confirm that the poses we compute are consistent with viewer
perception and artist intent.

5.2 Related Work

5.3 Parsing Gesture Drawings

Gesture drawings are ubiquitously used by artists to clearly convey complex
3D poses.To understand and formulate the properties that make them ef-
fective, we combine observations from drawing tutorials, modeling research,
and perception studies.

Anatomical Landmarks In a typical character drawing, most strokes
depict projected contours, i.e. curves along which the normal to the posed
character’s body lies in the image plane. Unlike detailed drawings of geo-
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metric shapes, gesture drawings focus on depicting pose and motion; hence
their contour strokes are often highly abstracted and only approximate the
shape of the actual 3D contours. We note that gesture drawings employ
idealized character anatomy, well described by a union of approximately
cylindrical body parts connected by spherical joints [12, 53, 57] (see inset).

Figure 5.3: Portion of a
gesture drawing with an-
notated joint (blue) and
part (red) contours.

Consequently, contours of body-parts surround-
ing skeletal bones are typically dominated by low-
curvature lines. In contrast, joint contours in
all views are well approximated by circular arcs
whose radii are roughly equal to the body radius
around the joints. These higher curvature joint
contour arcs are most prominent next to bent or
terminal (single bone) joints. As a consequence
of this curvature difference, we speculate that hu-
mans can easily discern the likely locations of
such prominent joints, or anatomical landmarks,
in a gesture drawing, and use those to anchor the

overall character pose. Since artists seek to communicate their target pose,
they typically select views where multiple anatomical landmarks are visible
and clearly depicted [52]. Clearly not all high-curvature contour segments
correspond to joints (see the skirt “corners” in Figure 5.1); many drawn
joints are not bent and therefore not easy to pinpoint; and multiple joints
may have the same radii, making them hard to distinguish. Our algorithmic
challenge is to discern the relevant markers on the drawing and to associate
them with their corresponding joints.

Figure 5.4: Contour-skeleton
correspondences, with Gestalt
continuous contours con-
nected by dashed lines.

Contour Consistency. As noted by Bess-
meltsev et al. [10], absent occlusions a typical
character’s contour is a single closed curve;
each body part around a terminal bone (bone
with a terminal joint) is outlined by a single
contour segment, while parts around interior,
or non-terminal, bones define two outline seg-
ments, one on each side of the bone; and ad-
jacent segments along the contour correspond
to adjacent skeletal bones (see inset). In the

presence of occlusions, the Gestalt continuation principle [69] indicates that
viewers complete the drawing by mentally connecting pairs of end-points
of partially occluded curves (T-junction stems) by invisible contour sec-
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(a) (b) (c) (d)

Figure 5.5: Implausible bone locations that violate (a) adjacency, (b) orien-
tation, or (c) crossing cues; consistent placements (d).

tions if they can be smoothly connected (Figure 5.4). In this scenario, the
properties above continue to hold once these invisible contour sections are
taken into account. In this general case, terminal bones correspond to a
single sequence of (one or more) Gestalt continuous curves, and interior
bones correspond to two such sequences - one on the left and one on the
right. Adjacent segments along the same contour stroke still correspond
to adjacent bones, while bones joined by a valence two joint correspond to
either immediately adjacent, or Gestalt-continuous, left and right contour
segments. In addition to reflecting skeletal adjacencies, body part contours
are consistently oriented with respect to their corresponding skeletal bones
- a body’s surface and consequently its contours clearly separate inside from
outside (Figure 5.5b). Since body mass typically surrounds the bones, con-
tours rarely cross 2D bone projections (Figure 5.5c). Viewers are known to
rely on domain priors when deciphering drawings, and therefore we expect
them to indirectly leverage this set of contour-bone consistency expectations
when parsing gesture drawing and matching joints to landmarks.

Simplicity Previous graphics research (e.g. [138]) had heavily relied on
insights from Gestalt psychology [69] which points to a viewer preference
for simple or regular drawing interpretations. While some of these works
(e.g. [138]) focus on generic regularities such as symmetry or parallelism,
others (e.g. [10]) highlight domain-specific simplicity priors. We speculate
that viewers leverage both regularity and naturality when interpreting ges-
ture drawings: they choose more likely or natural character poses among
those consistent with the drawn contours (Figure 5.8), and use regularity
cues, particularly symmetry, when presented with different ambiguous in-
puts (for instance when mentally completing partially occluded poses, such
as the hands of the character in Figure 5.8, or the fetal pose in Figure 5.14,
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top row).

(a) (b) (c)
front view side views

Figure 5.6: Depth ambigu-
ity

Depth In general, an infinite number of 3D
geometries have the same 2D projection. How-
ever, for each individual bone of a known
length, if the 2D positions of its end-joints are
known, the z-difference between the bone end-
points is fully determined; what needs to be
determined is their depth order (see inset).

While the simplicity priors discussed above
often help viewers to resolve order ambiguities, contours of posed charac-
ters taken from a poor view-point (Figure 5.2d) remain ambiguous. Con-
sequently, artists are consistently advised to strategically select descriptive
views [36], and specifically to avoid views with large uneven foreshortening.
Our observation of artist-generated gesture drawings suggests that in se-
lecting views they also strategically use occlusions to clarify depth ordering,
and add suggestive local, intra-part, occlusion contours (see inset) to further
clarify local depth order.

inter-part

intra-part

Figure 5.7: Oc-
clusion types.

Inaccuracy Experiments [114] show that even trained
artists fail to correctly draw foreshortened shapes and fre-
quently exaggerate perspective scaling effects. As indicated
by prior work on interpreting design sketches [138], viewers
are adept at mentally correcting such errors by biasing the
envisioned solutions toward more simple and less foreshort-
ened interpretations. In the context of gesture drawings, we
observe that while viewers use landmarks to anchor the en-
visioned pose, they mentally tweak the locations of these
landmarks in favor of such simpler pose interpretations.

5.4 Framework Overview

The input to our method is a rigged and skinned character model, in a
bind pose, and a roughly same scale vectorized gesture drawing. As artists
typically create the gesture drawings using the character as a reference, scale
similarity is easy for them to satisfy; alternately, manually scaling drawings
generated independently from the character model takes seconds for both
experts and amateurs. As is typical of skeletal posing systems, the pose
of a rigged character is fully determined by the positions of its joints. We
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(a) (b) (c)((b) (c)

Figure 5.8: Less natural (b) and more natural (c) interpretations of a drawn
pose (a) (leg bent sideways vs forward).

compute the joint positions that best reflect the depicted pose using the
following steps (Figure 5.9).

Joint-Contour Matching We first match drawn contours against the
body parts they describe, and place a projected character skeleton in the
image plane so that its surrounding body contours roughly align with their
matched drawn ones. We formulate the matching as a computation of opti-
mal joint locations along the contours. As the continuous solution space of
all possible joint locations is too large to operate on efficiently, we discretize
the problem by considering only a finite set of potential joint locations on
the 2D drawing. We associate each possible joint location with an unary
assignment probability derived from our anatomical landmark prior (Sec-
tion 5.5.1), and associate binary and ternary probabilities for assignments
of adjacent pairs and triplets of joints based on consistency, simplicity, and
low foreshortening priors (Section 5.5.3). The resulting discrete optimization
problem can be cast as a High-Order Tree-Structured Markov Random Field
(MRF) problem [70]. We then minimize this combined cost function sub-
ject to additional global constraints imposed by the drawing (Section 5.5.4).
Adding these constraints makes the general assignment problem NP-hard;
however, as we demonstrate, our greedy solution framework works well in
practice (Section 5.5.5).

2D Pose Optimization Our discrete solution considers only a finite set
of possible joint locations; accordingly while it provides a good estimate of
the joint locations and joint contour correspondences, the final joint place-
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(a) (b) (c) (d)

Figure 5.9: Overview: (a) algorithm input; (b) discrete 2D joint embedding;
(c) optimized 2D embedding; (d) 3D skeleton (color visualizes depth) and
posed model.

ment may be locally sub-optimal. We consequently use continuous location
optimization to further improve this solution and compute joint locations
that best capture the artist intent (Figure 5.9b-c).

Full Pose Estimation. We proceed to fully pose the character by as-
signing 3D positions to its joints, further adjusting the joint 2D positions
when necessary. We note that exact 2D joint locations are more sensitive
to artist errors than bone directions and lengths, and consequently rely on
the latter when recovering the full pose. We seek poses that satisfy the
ordering cues provided by occluding contours in the gesture drawing, and
which balance preservation of the bone directions and 2D lengths, estimated
from the drawing, against our expectations of simplicity and foreshortening
minimization.

We formulate joint positioning as a constrained energy minimization
problem, then obtain the minimum by recasting the energy in term of twist
variables [18] and using a Newton-type solution method that follows the
approach of [43].

5.5 Character-Contour Correspondence

Initialization To evaluate anatomical landmark correspondences, we need
to associate a likely contour arc radius for each character joint. To compute
the radius we use a variation on the method of Thierry et al. [126] to fit
a sphere to the region on the character mesh surrounding the joint. While
many joints are well approximated by spheres, some parts of a character,
such as the palm of the hand, are more elliptical and consequently have a
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(a) (b) (c)

head elbow torso

Figure 5.10: Joint cost visualization. Here the color shows the matching
cost on a scale from red (poor match) to blue (good).

range of plausible contour arc radii. Given the extracted mesh region around
each joint we therefore use PCA to obtain the maximum and minimum radii,
and use a discrete set of joint radii with a step of ε within this range in
subsequent computations. We set ε to 2% of the drawing bounding box and
use it as the default discretization density throughout the discrete solution.

To facilitate the computation and evaluation of contour consistency in
the presence of occlusions, we preprocess the contours to detect Gestalt
continuous strokes. We use the continuity test described in [10]: given each
pair of strokes, we connect their end-points with a straight line and measure
the angles between this line and the stroke tangents. A pair of strokes is
classified as Gestalt Continuous if both angles are below the 18◦ threshold
identified in perception literature [55]. For each pair of drawing strokes we
test all four end-point configurations. When strokes are deemed continuous
we retain the connecting line as a Gestalt bridge between them. We consider
each pair of strokes connected by a bridge as a single bridged contour.

5.5.1 Solution Space

As previously noted, artists approximate the contours surrounding joints as
circular arcs centered at the joints whose radius reflects the distance from
the character joint to the surrounding surface. We therefore expect joints
with visible contours to be located approximately a radius distance away
from these contours along the contour normal (Figure 5.10). We use this
observation to generate potential locations for joints with visible contours.
We uniformly sample the input drawing contours at ε-intervals, and treat
the samples as potential tangential contact points for joint circle placement.
For each sample point we consider the options of placing the circle on either
side of its contour, conceptually duplicating all samples into left and right
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instances. We compute potential joint locations by placing each joint along
the normal to the contour at the sample at an offset equivalent to it’s circle
radius (Figure 5.10).

Character joints may be entirely occluded (e.g the man’s palms in Fig-
ure 5.8). To be able to plausibly place such joints, we sample the bounding
box of the drawing using a regular grid with density equal to ε and add
these samples to the discrete solution space.

5.5.2 Unary Assignment Cost

We compute, for each joint, the likelihood that it is placed at each potential
location. The grid-based locations are assigned the maximal assignment cost
of 1 since, absent information to the contrary, we expect contours associated
with joints to be visible. For tangential locations, we aim to match appro-
priate joints to corresponding anatomical landmarks, and hence prioritize
placements where sections of the contours are well aligned ( in terms of both
location and normal) with the joint’s circle. Since non-terminal joints are
often adjacent to multiple contour segments on different sides of the circle
(Figure 5.10), our evaluation looks at all contour samples close to the cir-
cle and not just those immediately next to the originating tangent sample.
Since humans rarely draw perfect circular arcs, we do not expect perfect
alignment; to evaluate fit between a joint i and a potential location P i

a we
therefore measure the portion of a circle with radius ri centered around P i

a

that approximately aligns with the contours using simple distance and nor-
mal thresholds. Specifically, we uniformly sample the circle and count the
percentage of circle sample points sc that have nearby contour samples s
with contour normals ns close to the circle sample point normals:

T (P i
a) = {sc : |‖sc − s‖ < min(ε,

ri
2
) and ∠(sc − P i

a, ns) < α}
C(i, P i

a) = 1− ‖T (P i
a)‖/N (5.1)

Here N is the number of samples on the circle. The angle threshold α is
set empirically to 15◦. When a contour matching a terminal joint is visible
in the drawing, we expect a non-negligible portion of the contour to closely
align with the joint’s circle. We found this threshold based solution to work
better than using a falloff function that depends on how close the contours
are to the circle. We consider terminal joint locations to be reliable if at
least 15% of their osculating cycle is matched by the contours, and assign
the maximal cost of 1 to locations that do not pass this threshold. For each
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joint i and a potential assigned location P i
a , in addition to the cost we store

the originating contour sample sia and the set of all contour samples Si
a that

satisfy the alignment threshold.

Position Consolidation. Near high-curvature regions on the contours,
we typically encounter several potential low cost joint locations for a given
joint which have nearly identical sets of well-aligned contour points. To
reduce the solution space during computation we consolidate these potential
joint locations into one, selecting the location whose originating sample lies
closest to the stroke’s curvature extremum.

5.5.3 Assignment Compatibility

Our compatibility term is designed to promote contour consistency, and to
weakly encourage less foreshortened and more natural solutions.

Bone Contours. Each pair of position assignments for the end-joints
of a bone indirectly defines the contour segments corresponding to this bone
(Figure 5.4). Given a pair of such assignments, we compute the potential
bone contour segments defined by these assignments as follows (see inset).

We consider all pairs of well aligned samples, where each sam-
ple is associated with a different end-joint. If the two samples
lie on the same contour, or on contours connected via bridges,
we associate the contour segment or segment chain between
them with the bone. We trim the segments by selecting the
two samples, one in each joint’s set, that are closest to one
another along this shared contour as segment end points. We
use the computed bone segments to assess the compatibility
of the bone’s end-joint assignments. Note that occlusions or
poor assignments may lead to bones with no corresponding

contours.

Consistency. We explicitly prohibit inconsistent assignments where a bone’s
end-joints lie on opposite sides of the bone’s contour, violating our orienta-
tion prior. Since a bone is expected to be inside the body part it anchors,
it typically should not cross its associated contours. We use a consistency
penalty cost Cc, which is set to 1 if a bone’s 2D projection intersects any of
its associated contour segments, and is 0 otherwise. We use a penalty in-
stead of a hard constraint to account for drawing inaccuracies and sampling
artifacts.
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We prefer assignments where bones are associated with at least one, ei-
ther simple or bridged, contour segment. Moreover, we aim for adjacent
bones to be associated with the same continuous contour. We encode both
preferences by focusing on the contour associated with the originating sam-
ples of the end-joint assigned locations: we leave the consistency cost Cc

unchanged if a pair of end-joints of a bone are assigned locations with the
same originating single or bridged contour, and set it to 1 otherwise.

(a)

(b)

Bone Contour Conformity We expect the contour seg-
ments associated with bones to have relatively low-curvature
(see inset). To evaluate contour conformity, we measure the
ratio between the length of each bone segment and the Eu-
clidean distance between its endpoints:

Ccf (i, j) = 1− e−(1−Lc/L)/2σ2
,

where Lc is the length of the contour segment and L is the
Euclidean distance between its end-points. We empirically set
σ = 4% of the bounding box diagonal. If a bone has multiple
associated contour segments, we repeat the cost computation
and, to be conservative, use the lower of the two costs as the
conformity cost. If the joints have no shared bone contours,
we set the cost to 1.

Pose Preferences. We assign a per-bone cost term for each assignment
of its end-joints to a pair of potential positions, based on the difference
between the bone length and the image-space distance between the two po-
sitions. We expect the artist to select views where the drawn body parts,
and consequently bone projections, undergo relatively small foreshortening;
we therefore weakly penalize foreshortening when it occurs. While real char-
acter bones do not stretch, artist drawings can contain errors in character
proportion description. We therefore tolerate assignments where the image-
space distance is larger than the respective bone length, but penalize such
assignments with a large penalty cost. The combined cost is:

Cl(i, j) =

{
1− e−(l′ij−lij)

2/2σ2

, if l′ij > lij

1− e−(l′ij−lij)
2/2(σ/3)2 , otherwise .

(5.2)

where l′ji = ‖P i
a − P j

a‖ and lij is the bone length. We use the same σ as
for bone conformity. We evaluate the difference between the two lengths
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rather than their ratio, since ratio-based costs are extremely sensitive to
artist errors on short bones.

We encode our expectation for simpler, more natural character poses,
depicted from a descriptive view, as a preference for 2D joint angles in the
output pose that are close to their bind pose counterparts:

Cn(i, j, k) = 1− e−(γ−γ′)2/2σ2
a

Here γ and γ′ are the current and bind pose angles respectively between pairs
of emanating bones (i, j) and (j, k) at a joint j. We set σa to π/3 if the 3
involved joints share an originating contour, and π/6 otherwise, enforcing a
stronger preference for the bind pose angle when there is no clear contour
suggesting 2D bone directions, and a weaker preference for bind pose angles
when the adjacent bones follow one continuous contour and the 2D bone
direction is well-suggested. These costs are measured for each triplet of
adjacent joints. This term can be replaced by more advanced anatomical
machinery used in prior work for predicting plausible angles: for instance,
if multiple reference poses are provided, one can look at the smallest angle
difference across these poses.

Combined Local Cost Function. Combining the different terms above,
the cost for assigning a pair of bone end-points i and j to a pair of locations
is measured as

E(i, j) = 1− (1− Cl(i, j))(1− Ccf (i, j))(1−WcCc(i, j)). (5.3)

We empirically set the consistency penalty weight to Wc = 0.9. The com-
bined energy function encoding all local preferences for a given assignment
of joints to point locations is

Ematch =
∑
i

C(i, P i
a) +

∑
i,j

E(i, j) +
∑
ijk

Cn(i, j, k) (5.4)

where the first term sums the per-joint assignment costs, the second sums
the per-bone costs and the third considers the joint triplet costs. All terms
have equal weight.

5.5.4 Global Consistency

In addition to the local criteria above, when evaluating the plausibility of a
skeleton embedding we need to evaluate the likelihood of the overall contour-
to-skeleton assignments it imposes (Figure 5.11). In addition to the bone-
segment correspondence computed earlier, this task requires a joint-contour
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(a) (b) (c)

Figure 5.11: Full solutions: (a) contains overlaps; (b) poor coverage; (c)
preferred.

correspondence. We compute segments associated with joints as follows.
For terminal joints we consider the longest segment delineated by its aligned
samples which does not overlap the segments associated with its bone. For
interior joints we consider each pair of bones emanating from the joint. If
the bones are associated with segments on the same contour, we associate
the contour segment in-between them with the joint (Figure 5.4).

In real life, projected visible contours of different character body parts
can overlap only if the two parts are in contact (i.e. on opposite sides of
the contour), or if one is both perfectly parallel to and occluding the other
(Figure 5.14, top row). We therefore test whether any pair of same-side
contour segments associated with disjoint bones or joints overlap and, if
they do, this configuration is assigned a high penalty score, empirically set
to 10 (Figure 5.11a).

In a drawing that contains only contours of body parts surrounding
skeletal bones, a valid solution must associate all contours with some bone
or joint. In practice our drawings can and do occasionally contain extra
curves, e.g the cat and horse ears in Figure 5.14. Thus instead of full cov-
erage, we seek for a sufficient one, requiring coverage of over 85% percent
of the contours (Figure 5.11b-c). We note that when the soft non-overlap
constraint is satisfied, our local energy terms implicitly encourage coverage
maximization, since we penalize joints not being matched to contours and
discourage undesirable foreshortening. We incorporate coverage constraints
into our framework as discussed in Section 5.5.5.

Our local energy does not clearly distinguish between fully or partially
symmetric solutions. While hard to penalize locally, partial symmetries
(e.g. left arm and right leg mapped to the same side of the spine) are
easily detected on a complete solution by evaluating the degree of twist the
spine must undergo to accommodate them. While twist can be intentional,
we expect it to be clearly indicated by the contours, with the undesired
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“untwisted” solution in these cases violating consistency constraints. We
differentiate between fully symmetric solutions by observing that, all things
being equal, artists strongly prefer views where the face of the character is
clearly visible. We similarly use this frontal preference in our global pose
evaluation.

5.5.5 Solver Mechanism

Optimizing Ematch alone without addressing global preferences can be cast
as a classical tree-structured high-order Markov Random Field (MRF) prob-
lem by translating our cost terms into probabilities, and optimized efficiently
using standard techniques [70]. Unfortunately, we are not aware of any stan-
dard mechanism that allows us to incorporate the coverage constraints into
such frameworks; the general problem of maximal a posteriori estimation
over a Markov Random field is a classical NP-hard problem [117]. Instead
we develop a simple domain-specific method that works well on all our in-
puts. We note that, on typical gesture drawings, for terminal joints our
unary cost computation produces only about a dozen possible assignments
with less than maximal cost; furthermore, our desired assignment is ex-
pected to match most terminals, with the exception of occluded ones, to
one of these below maximum cost placements. Because of our stringent
contour consistency constraints, given the correct assignment of terminals,
using the basic Ematch optimization for assigning other joints results in the
desired global solution. Clearly we do not a priori know what this correct
terminal assignment is; however, given the small number of terminals (typ-
ically six or less) and the small number of placement choices for them, an
exhaustive search of all possible alternatives is a practical option.

This search can be further sped up by traversing the different alternatives
in a strategic order. Specifically, we order all possible terminal assignments
based on the sum of their unary costs, and then process them in increasing
cost order, penalizing assignment combinations where terminal assignments
violate the non-overlap constraints and placing them at the end of the queue.
For each terminal assignment we then optimize Ematch on a reduced set of
joints and with a reduced solution space. Specifically, when a terminal joint
has a below maximum cost assignment, we remove this node from the solved-
for joint set and update the unary and binary costs of its neighboring vertex
to reflect the selected assignment. We let the optimization determine the
best assignment for terminal joints associated with the maximal cost, but
remove all assignments with below maximum cost from their solution space.
If the located solution satisfies all our constraints, and in particular if it
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produces over 85% coverage, we stop the iterations.
The same coverage can sometimes be produced by a permutation of the

desired terminal placements; however different permutations lead to different
minima of matching energy Ematch which may better satisfy our preference
for more front facing and less twisted solutions. We thus process all partially
and fully symmetric permutations of the obtained solution, and select the
least twisted and most front facing one from among those solutions that
satisfy all our constraints.

5.6 2D Pose Optimization

While our discrete solver correctly captures the overall contour-joint corre-
spondences, it operates on a finite set of potential positions and thus may
end up generating imperfect joint placements (Figure 5.9b). Moreover, to
enable an efficient solutions, our discrete formulation assumes all joints are
fully flexible. In real models, many joints have a reduced set of degrees of
freedom (DOFs), with pelvic and shoulder joints typically supporting only
rigid transformations. To address both issues we iterate over the joints to
further optimize their positions and enforce the allowable degrees of free-
dom. For each joint we use a local random walk to find a new location that
improves the overall matching energy (Equation 5.4) while constraining the
joint to remain on the same side with respect to all nearby contours, and
disallowing moves that violate consistency or introduce overlaps.

For joints with a reduced DOF set, we then recompute the positions of
the joint and its immediate neighbors which satisfy the DOF constraints and
are maximally close to the current ones, using an ICP variant. Specifically,
given the current 2D locations of a joint and its neighbors, we search for a
3D transformation of these joints in the bind pose that satisfies the DOF
constraints while maximally aligning the 2D coordinates of each joint and
its current location. We repeat the two steps until convergence.

5.7 Full Pose Optimization

Once we have generated a 2D skeletal embedding, we associate a depth value
with each joint by leveraging viewer expectations of simplicity and weak
foreshortening. In this process we also refine image plane joint positions to
correct drawing and 2D estimation inaccuracies. In our computations we
assume an orthographic projection since, as noted by [138], estimates of
artist intended perspective are highly unreliable. Our solution is based on
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three key observations. First, we note that even small inaccuracies in depict-
ing body proportions, due to inexact foreshortening, inaccurate perspective,
and other artifacts, accumulate to form large errors in 2D joint placement.
Therefore, rather than minimizing absolute 2D solution displacement com-
pared to the 2D embedding, we encode conformity with this embedding in
terms of slopes and lengths of projected bones. Second we note that hu-
man observers are know to underestimate foreshortening in drawings [114],
a fact that often causes artists to exaggerate it [57]. Consequently, fore-
shortening predictions based directly on drawn body-part lengths may be
inaccurate. In our observations, viewers rely on relative rather than abso-
lute foreshortening when predicting a character’s pose from a drawing - even
when presented with a reference model. Consequently, when predicting the
degree of foreshortening per bone, we similarly take into account relative
foreshortening as compared to other bones. Our last observation is that
while we seek for natural poses, i.e. those closer to the input bind pose,
minimizing this difference directly is problematic as many drawn poses are
quite far from the input one by design. For this reason, we do not explicitly
consider the distance to the bind pose in our optimization. Instead we use
the bind pose as an initial guess for the solution and limit the step size in
each iteration so that our final pose gradually evolves from the bind pose.
In doing so, we indirectly guide our final solution towards a more natural
pose by searching for a smooth motion path from the bind pose to the final
one.

Conformity We encode conformity to the estimated 2D skeletal pose as
preservation of 2D bone slopes and lengths:

Ec =
∑

(i,j)∈S
wc(i, j)((P

y
i − P y

j )− dyij)
2 + ((P x

i − P x
j )− dxij)

2 (5.5)

where Pk are joint positions, S is the set of all skeletal bones, and dxij , d
y
ij

are the x and y differences between joint positions in the 2D embedding. To
focus on relative rather than absolute bone projection preservation we set
wc(i, j) = 1/l2ij where lij is the length of the bone (i, j).

Foreshortening When the 2D projected bone lengths l′ij are fixed, the
depth along each bone is fully determined by the difference between the 3D

and 2D projected bone lengths: (dzij =
√

l2ij − l′2ij). However image space

lengths are sensitive to artist errors, as well as scale mismatches between
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the character model and the drawing. Leveraging our previous observa-
tions about human preference for foreshortened interpretations, we conse-
quently combine conformity with a foreshortening minimization term which,
together with the regularity constraints below, aims to mitigate drawing in-
accuracies:

Ev =
∑

(i,j)∈S
wv(i, j) · (P z

i − P z
j )

2. (5.6)

The weights wv(i, j) are determined by the anticipated foreshortening of the
bone (i, j):

wv(i, j) =

⎧⎨
⎩e

− (fij−favg)
2

2σ2
f , if fi,j < favg

1.0, otherwise

(5.7)

Here fij = l′ij/lij is bone foreshortening and favg is the average bone fore-
shortening for the entire character in the 2D solution. This weight is a
monotonically decreasing function of the 2D-3D length ratio and is max-
imized when this ratio is equal to or larger than the average across the
drawing. We view a ratio below 0.6 of the average as intentional foreshort-
ening and consequently force the weight of the foreshortening minimization
term drop to zero for such ratios by setting σf = 0.2 using the three-sigma
rule.

Regularity Previous work on the interpretation of drawings (e.g. [10,
138]) has discussed numerous domain-specific regularity criteria. In our
work we found four key regularity cues which viewers expect to hold when
envisioning drawn poses: parallelism, symmetry, contact, and smoothness.
We use the 2D embedding to detect near-regular relationships and then
strictly enforce them in 3D. For each pair of bones (i, j) and (m,n) with
roughly parallel 2D projections (within 10◦), we enforce their 3D bone di-
rections to be the same: Pi − Pj = lij/lmn(Pm − Pn). Similarly, if two
symmetrical limb bones are nearly symmetric around the spine plane, we
force exact symmetry - since symmetry is detected in 3D, we enforce this
constraint in a post-process step. We also note that human observers expect
close 2D adjacencies, specifically contacts observed in 2D, to be preserved
in 3D. We therefore detect pairs of adjacent 2D joint contour segments and
constrain the distance between their corresponding 3D joints. Lastly, we
note that gesture drawings typically aim to convey aesthetic poses [48]. Mo-
tivated by Guay et al., we fit a quadratic polynomial spline to each skeletal
limb in the 2D embedding; if all joints along the limb are deemed to be close
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enough to this spline, i.e. within half each joint’s radius from it, we add soft
constraints attracting them toward corresponding spline locations.

Joint Ordering. The drawing contours define two types of occlusions,
inter- and intra- part (Figure 5.7). Inter-part occlusions, such as an arm in
front of a body, indicate that at a particular point along one bone, the body
part surrounding this bone is in front of a particular location on the body
part around another bone. We encode these using relative locations on the
participating bones:

P z
i tij + P z

j (1− tij) +Rij(tij) < P z
k tkl + P z

l (1− tkl)−Rkl(tkl) (5.8)

Here the two participating bones are (i, j) and (k, l), tij and tkl are the
linear parameters of the occluded and occluder points and Rij and Rkl are
the corresponding body part radii at these points.

Intra-part occlusions, depicted via local contour T-junctions, encode
pairwise joint ordering between end-joints i and j of individual bones. The
joint associated with the stem of the “T” is expected to be farther away
than the one associated with its top. To enforce these relationships we add
the inequality constraint:

P z
i < P z

j .

Solver We minimize Ec + Ef subject to the simplicity and order con-
straints detailed above. While our posing criteria are for convenience ex-
pressed via positions, using positions as optimization variables is problem-
atic, since preserving fixed bone lengths using a position based formulation
requires quadratic constraints, which are known to be hard to operate on [43]
. Instead we follow the standard approach used in kinematics and robotics
and represent our 3D pose in terms of twist coordinates θij [18]. We then
use a solution method advocated by Gall et al. [43], who represent vertex
positions via twists, and use a Taylor expansion to linearize the resulting
expressions. Using such linearizion we formulate the optimization of E as a
sequence of constrained quadratic optimizations. We augment the quadratic
function being minimized at each iteration with a stabilization term aimed
at keeping the new solution close to the previous one:

α
∑
ij

(θnij − θn−1
ij )2 (5.9)

Here the sum is evaluated over all twist variables θij in the current n and
previous n − 1 iterations. We use a large α = 200 to avoid introducing
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unnecessary and unnatural deviations from the bind pose. Note that since
the stabilizer is computed with respect to the previous solution, this process
allows for slow, but arbitrarily far, deviation from this pose. The resulting
quadratic optimization with ordering constraints is solved at each iteration
using the Gurobi optimizer (www.gurobi.com). Since we have just a few
dozen variables the entire process takes on average 30 seconds.

5.8 Validation

We validate the key aspects of our method in a number of ways.

Ground Truth and Perception Comparison. We validate our method
on Ground Truth (GT) data, by posing two models into complex poses
(Figure 5.12) and using retraced projected occlusion contours as inputs to
our method together with the same models in neutral bind pose. Our results
closely resemble the original.

Our method aims to recover the viewer-perceived pose from the drawings;
therefore a more interesting test is to compare our poses to viewer perceived
ones. We performed this test using the same data, by providing our inputs
to two 3D modeling experts and asking them to pose the models into poses
depicted by the drawings. The result (Figure 5.12) are visually even more
similar to ours than ground truth. We showed each artists the ground truth
models, our results and the result produced by the other artist, without
identifying which output was produced by which method, and asked “How
well do these poses capture the artist intended pose?”. Both assessed all the
shown 3D poses as reflective of the drawn one, and one commented that our
result was “the most natural”. The full text and the results of the evaluation
can be found at http://cs.ubc.ca/~bmpix. The artists required roughly
15 minutes to pose each model, 5 to 10 time more than our automatic posing
times of 1.5 and 3 minutes.

Perceived 2D Skeletal Embedding. To evaluate consistency across
viewers and to compare our algorithm with viewer perception, we asked
10 viewers (2 artists and 8 with no art background, 6 females and 4 males)
to manually embed skeletons to match 4 gesture drawings. We provide view-
ers with 2D images of the models and skeletons in the bind pose, with joints
clearly marked, and with bone chains numbered and colored with different
colors to facilitate distinction between symmetric limbs. The full text and
the results of the evaluation can be found at http://cs.ubc.ca/~bmpix.
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Input curvesGround Truth Our resultGroun Artist 1 Artist 2

Input curvesGround Truth Our resultArtist 1 Artist 2

Figure 5.12: Comparing our results to GT data and artist modeled poses.
We use as input the projected contours of the posed GT models combined
with their bind posed originals (Figure 5.14) to automatically create poses
qualitatively similar to both GT and artist results.

Figure 5.13: Overlays of viewer created skeleton embeddings (lines removed
for clarity) and our results on same inputs.
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While viewers found the task conceptually easy, marking locations for all
joints and connecting them took participants 5 to 10 minutes per drawing.
Figure 5.13 summarizes the resulting embeddings on two complex inputs,
with various user embeddings overlaid to visualize correlations across view-
ers. Viewer embeddings are largely consistent and agree very well with our
algorithmic results, confirming that our method is built on solid perceptual
foundations.

Qualitative Evaluation. We asked 3 artists and 6 non-experts to com-
ment on our results. We showed them each pair of input and result sepa-
rately and asked “How well does this 3D character pose capture the artist
intended drawn pose?”. The full text of the evaluation can be found at
http://cs.ubc.ca/~bmpix. All respondents agreed that our results suc-
cessfully capture the drawn poses. Minor differences noted by two par-
ticipants included: variation in geometric details beyond the control of a
skeletal rig, such as extended vs contracted character belly in the yoga pose,
Figure 5.14, top; and insufficient tightness of the cross-armed pose in Fig-
ure 5.14,bottom. The latter example is particularly challenging since the
artist did not draw the actual character palms.

5.9 Results

Throughout the chapter we have shown numerous examples of gesture posing
using our method. These examples range from relatively simple occlusion-
free and relatively flat ones, e.g. Figure 5.15, to the karate, cat, and
dance poses which exhibit large foreshortening and complex occlusions (Fig-
ures 5.1, 5.14, 5.17). Our results extend beyond typical humanoid models
attempted by previous 2D posing methods (e.g. [33]), to whimsical charac-
ters and animals (Figure 5.14). Across all examples our method believably
reproduces the drawn poses. It seamlessly overcomes drawing inaccuracies,
clearly visible in inputs such as the gymnastics poses in Figures 5.9, 5.15, 5.16
where the drawn limbs are consistently longer and skinnier in proportion to
its torso than those of the character model.

Workflow. Most of our inputs were created using a traditional keyfram-
ing workflow, where the artists had a model in front of them and drew the
poses with this character in mind (Figures 5.1, 5.14). We also evaluated an
inverse workflow inspired by legacy drawings - tracing the strokes on exist-
ing gesture drawings and adjusting the character dimensions to roughly fit
those (e.g. the karate sequence in Figure 5.17). This workflow can enable
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Figure 5.14: Typical two-stage processing results. Left to right: input
model, drawing, 2D skeleton fitting, output model.

non-artists to create compelling poses and animations by re-using existing
material and assets, but is likely to be more challenging as the character
proportions are more likely to differ.
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Figure 5.15: (center) 3D posing using only drawing conformity, (right) full
3D solution.

Figure 5.16: Impact of different bind poses.

Impact of Design Choices. Figures 5.5, 5.8, 5.11, and 5.15 demon-
strate the importance of our algorithmic choices, highlighting what can hap-
pen if we omit one or more of the perceptual cues we employ. Figure 5.15
demonstrates the effect of our foreshortening and regularity terms on 3D
pose reconstruction. Absent these terms, the posed character better con-
forms to the input contours, but the 3D pose becomes less predictable or
natural. Figure 5.8 further highlights the distinction between more and less
natural interpretations.

Figure 5.16 shows the impact on our results of using different bind poses.
As demonstrated the bind pose impacts part orientation for cases where the
drawing does not provide clear pose information, e.g. the feet of the char-
acter, or when the skeletal resolution is not sufficient to capture orientation
details, e.g. the character’s palm orientation.

Comparison to Prior Art. Figure 5.17 compares our results against [33],
the closest prior work in terms of 2D posing ability. While both methods
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Figure 5.17: (right) Davis et al.[33] trace stick figures over gesture drawings
and then pose characters semi-automatically. (left), We use the original
drawings to automatically pose characters.

(a) (c)(b) (d)

Figure 5.18: Extreme mismatch in proportions between model and drawing
(a) can lead to poor depth reconstruction (b); correcting the proportions in
the drawing (c) corrects the reconstruction. (d) Ambiguous drawings using
highly oblique views can cause our 2D pose estimation to fail.

recover qualitatively similar poses, we compute the pose fully automatically,
and use only the drawings and the model in a bind pose as inputs. In con-
trast Davis et al. use a much more elaborate and time consuming process
- users first draw a stick figure on top of the drawing, marking all 2D joint
locations, then add extra annotations and select between multiple solutions
to resolve input ambiguities. As our evaluation shows, while drawing a stick
figure is not difficult it is nevertheless time consuming.

Parameters and Runtimes. All our results were computed with
the default parameters listed in the text. For the multi-component model
‘wynky’ (Figure 5.14, bottom row) we disabled the crossing cost as on this
model bones must intersect contours. Our method takes between 1 to 3
minutes to compute the output pose; roughly 60% of this time is spent on
the 2D discrete embedding computation.

Limitations. Our method is inherently limited by the descriptiveness
of the drawing (Figure 5.18). We rely on a combination of drawing and
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model’s proportions to predict foreshortening. When the proportions of
the drawn and posed characters are drastically different (in Figure 5.18a-
b the drawn arms are much shorter and the drawn legs much longer than
their model counterparts), our framework will by necessity misestimate the
degree of output foreshortening. Once the drawing proportions are adjusted
we correctly recover the intended pose (Figure 5.18c). Our pose estimation
can fail when a gesture is not evident from the drawing itself, due to e.g.
oblique views (Figures 5.2c, 5.18d), but can typically correctly recover the
pose given a more descriptive view (Figure 5.1).

5.10 Conclusions

We have presented and validated the first method for character posing using
gesture drawings. Our method leverages a set of observations about the
key properties of gesture drawings that make them effective at conveying
character pose. Using these observations we are able to first recover a 2D
projection of the character’s pose that matches the drawing, and then imbue
it with depth. We are able to reconstruct convincing 3D poses, confirmed to
agree with viewer expectations, from a single gesture drawing while robustly
correcting for drawing inaccuracy.

Our work raises many directions for future research. It is empirically
known that in artist drawings “errors of intent are inherent and unavoid-
able, and furthermore can be of significant magnitude” [114]. An interesting
perceptual question would therefore be to explore when and where artist in-
tent and viewer perception diverge, and at which point human observers are
no longer able to correct for artist inaccuracies. The algorithmic impact of
this exploration would provide more strict definitions of when and how pose
recovery should deviate from conformity constrains. Our framework focuses
on drawing cues, and it would also be interesting to explore how we can
combine those cues with stronger anatomical priors on plausible character
poses and other domain cues.
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Chapter 6

Discussion and Conclusion

In this thesis, we have discussed several systems to recover 3D shape from
concept and pose drawings, along with their underlying ideas and insights
into interpretation of line drawings. We have presented the first system
to quadrangulate closed 3D curve networks, capable of creating a surface
consistent with artist intent. We have analyzed and formalized the defin-
ing principle to construct the artist-intended surfaces by interpreting input
curves as flow-lines. We have then introduced and discussed a novel sys-
tem to construct 3D character canvas from a single complete drawing and
a 3D skeleton. We have shown that 3D skeleton is sufficient to resolve am-
biguities in drawings without imposing unrealistic simplifying requirements
on 3D shape. Finally, we have presented the first system to pose rigged 3D
characters via a single descriptive gesture drawing. Thus we show that when
the 3D shape is known, it is possible to interpret a gesture drawing with no
extra user input.

6.1 Discussion

Here we briefly re-iterate over the contributions of all the proposed methods.
We also include a short discussion of each method within the scope of sketch
interpretation. In-depth discussion and additional details of each particular
method can be found in the corresponding chapters of this thesis.

3D curve networks for CAD objects can be created via modern interfaces
[7, 138], can effectively communicate shape [35, 88, 89], and, as we show in
Chapter 3, can be automatically surfaced. These results imply that 3D curve
networks can become an efficient tool to accelerate CAD modeling, combin-
ing the expressivity of pen-and-paper sketches with full power of 3D models.
Our contribution is the first method that infers the artist-intended surface
automatically by interpreting the input lines as representative flow-lines, it-
eratively segmenting and pairing them via stable matching, and then using
that matching to represent the final surface as a set of gradually changing
flow-lines.
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Cartoon drawings are known to unambiguously convey shape to human
observers, yet are notoriously hard to parse and interpret automatically.
Such difficulty stems in part from various ambiguities in the drawing, which,
as we show in Chapter 4, can be successfully resolved by specifying the cor-
responding pose via an overlaid 3D skeleton. Conversely, as we show in
Chapter 5, when the 3D model of the rigged character is known, the ges-
ture drawing alone can determine the character’s pose. Interestingly, human
observers seem to be able to infer both shape and pose from character draw-
ings alone, perhaps relying on stronger anatomical priors. More perception
research is needed to characterize such anatomical knowledge and outline
the limits of human interpretation of drawings.

It has to be also noted that concept drawings of a character (Chapter
4) and gesture drawings (Chapter 5) are drawn for different purposes, and
thus may exhibit different features. Gesture drawings allow for more simpli-
fied shape, distorted proportions, incorrect foreshortening, and are aimed at
conveying the pose only; cartoon drawings, however, typically demonstrate
more attention to details in order to faithfully capture the character’s shape.
Nevertheless, as our analysis of the art literature and perceptual studies
shows in Chapters 4 and 5, the general concepts we can use to interpret
them automatically are similar. Thus, we observe that a valid 3D inter-
pretation of a drawing should conform to the drawn contours (conformity),
should be simple, regular, and natural (simplicity), and should consider the
interplay between skeletal and contour adjacencies (line consistency).

6.2 Future Work

Since its publication, the method in Chapter 3 has inspired some follow-up
work [103] and work on related issues [142]. Those papers solve some of the
originally proposed future work, such as automatic loop extraction from the
curve network and automatic classification of the input curves into trimming
curves and flow-lines. However, both the proposed in the current thesis and
the current state of the art [103] methods assume the whole curve network to
be complete, and are not directly suitable for handling incremental updates
to the curve network. Instead, it would be more interesting to see a sketch-
based interactive system that allows to start with a very few curves and
iteratively refine the suggested surface.

The method proposed in Chapter 4 relies on all the lines in the input
drawing being occlusion contours. More complicated drawings, however,
contain multiple feature curves, such as eyes, nose, or auxiliary curves (see
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inset below) [26], which, unless annotated, may cause artifacts in the final
3D shape of our method. While determining feature curves based on purely
geometrical information seems a hard task, we envision this can be solved
using machine learning techniques by casting it as a classification problem.

Furthermore, output canvases in Chapter 4 are unions
of manifold meshes, not a single manifold mesh. A naive
approach to improve that might be to apply a mesh boolean
operation [72], though that may introduce triangles of poor
quality near mesh intersections. Instead, a more direct way
would be to use the trajectories (Section 4.1) as an input for
a surface reconstruction method from cross-sections [143].
A combined system of our method, a machine-learning clas-
sifier of the input curves, and a surface reconstruction sys-

tem may become a powerful modeling framework.
In all our projects we don’t require any user annotation or extra infor-

mation about the input curves. This is very typical for vectorized drawings,
but in some sketching systems [7, 99] more information is available. Some of
that information, particularly timestamps of each curve, might prove to be a
useful cue. The most direct application would be a more robust resolution of
Gestalt-continuous contours: while we currently use a simple angular thresh-
old method, one would expect Gestalt-continuous contours to be drawn one
exactly after another. In a more subtle way, there might be some correlation
which part of the character users draw first, which could aid the full-pose
optimization process (Section 5.5.5). These questions call for more in-depth
study.

Additionally, as we noted in Section 4.1, when interpreting character
drawings, viewers often rely on semantic information of some extra elements,
such as facial features. The full-pose optimization process (Section 5.5.5)
could benefit from a machine learning element that classifies such features,
thus reducing our search space.

6.3 Conclusions

Progress in touch screen manufacturing process has turned much of the com-
modities, such as cellphones, tablets, or laptops, into convenient sketching
and drawing devices. Nevertheless, software, capable of correctly interpret-
ing drawings, still has a long way to go. We hope that the approaches
presented in this thesis will contribute to forming a solid foundation of the
future drawing interpretation methods.
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