
Dara The Explorer: Coverage Based Exploration for
Model Checking of Distributed Systems in Go

by

Vaastav Anand

BSc. Computer Science, The University of British Columbia, 2018

A THESIS SUBMITTED IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR THE DEGREE OF

Master of Science

in

THE FACULTY OF GRADUATE AND POSTDOCTORAL

STUDIES

(Computer Science)

The University of British Columbia

(Vancouver)

August 2020

c© Vaastav Anand, 2020

The following individuals certify that they have read, and recommend to the Faculty
of Graduate and Postdoctoral Studies for acceptance, the thesis entitled:

Dara The Explorer: Coverage Based Exploration for Model Checking
of Distributed Systems in Go

submitted by Vaastav Anand in partial fulfillment of the requirements for the
degree of Master of Science
in Computer Science.

Examining Committee:

Ivan Beschastnikh, Computer Science
Supervisor

Margo Seltzer, Computer Science
Supervisory Committee Member

ii

Abstract

Distributed systems form the backbone of modern cloud systems. Failures in

distributed systems can cause massive losses in the form of service outages and loss

of revenue impacting real users of systems. Thus, it is imperative to find bugs in

distributed systems before they are used in production systems.

However, debugging distributed systems continues to elude us. Use of abstract

modelling languages such as TLA+, PlusCal, Coq, and SPIN that check the correct-

ness of models of distributed systems have become popular in recent years but they

require a considerable amount of developer effort and do not necessarily find all the

bugs in the implementation of the system. Model checkers that explore all possible

executions of the implementation of a distributed system suffer from state space

explosion, rendering them impractical as they are inefficiently scalable. To alleviate

this, we propose Dara, a model checker designed for Go systems that uses a novel

coverage-based strategy for ordering exploration of paths in the state space of the

system according to the amount of code covered across nodes. Dara can find and

reproduce concurrency bugs in go systems.

iii

Lay Summary

Distributed systems are the backbone of modern cloud systems. However, these

systems are complex and hard to build. Failures in these systems can lead to loss

of revenue in addition to service outages impacting users. Due to their complexity,

debugging these systems has been a continuous challenge for developers. There

has been recent interest in developing techniques for finding bugs in systems before

they are placed in production. One such technique has been model checking, in

which all potential executions of a system are explored to find bugs. However, due

to the complexity of these systems, there are a large number of paths that need to

be explored. In this work, we propose a novel technique for exploring these paths

based on maximizing the amount of code that is being covered during the execution

of these paths.

iv

Preface

All work presented henceforth was conducted in the Systopia lab, formerly

known as the Networks, Systems, and Security (NSS) Lab, in the Department

of Computer Science at the University of British Columbia, Vancouver Campus.

This thesis is an original, unpublished work by Vaastav Anand, written under the

supervision of Ivan Beschastnikh. A short, preliminary version of the work placed

second in the Mircosoft Student Research Competition at the 26th ACM Joint

Meeting on European Software Engineering Conference and Symposium on the

Foundations of Software Engineering in November 2018.

v

Table of Contents

Abstract . iii

Lay Summary . iv

Preface . v

Table of Contents . vi

List of Tables . ix

List of Figures . x

Acknowledgments . xii

1 Introduction . 1

2 Related Work . 4

3 Background . 8
3.1 Model Checking . 8

3.1.1 Concrete Model Checkers 9

3.2 Go Runtime Background . 10

4 Design . 13
4.1 Overview . 13

4.2 Concrete Model Checker . 15

4.2.1 Controlling Nondeterminism 17

vi

4.2.2 Overlord . 18

4.2.3 Instrumenter . 19

4.2.4 Global Scheduler . 20

4.2.5 Local Scheduler . 21

4.2.6 Explorer . 21

4.2.7 Property Checker . 22

4.3 Exploration Strategies . 24

4.3.1 Distributed Code Coverage 24

5 Implementation . 27
5.1 Dara - Concrete MC . 27

5.1.1 Modified Go Runtime 27

5.1.2 System Event Capture 29

5.1.3 Overlord . 30

5.1.4 Local Scheduler . 31

5.1.5 Global Scheduler . 32

5.1.6 Explorer . 34

5.1.7 Property Checker . 35

5.1.8 Instrumenter . 36

5.2 Auxiliary Tools . 37

5.2.1 Replay Engine . 37

5.2.2 Schedule Info Tool . 38

5.2.3 Coverage Report Tool 38

5.2.4 PropChecker Report Tool 40

5.2.5 ShiViz Converter Tool 40

6 Evaluation . 42
6.1 Experimental Setup . 42

6.2 Can Dara find and replay Go concurrency bugs 43

6.2.1 Data Race Crash bug . 43

6.2.2 Data Race Property Violation 45

6.2.3 Channel synchronization bug 46

6.2.4 Summary . 48

vii

6.3 Can Dara find bugs in systems 49

6.3.1 Dining Philosophers . 49

6.4 Performance cost of property checking 54

6.5 Performance cost of instrumenting the system 55

6.6 Performance cost of modifying the go runtime 57

6.6.1 Cost of Intercepting System Calls 57

6.6.2 Cost of Writing Events to Shared Memory 57

6.6.3 Cost of Recording Coverage Information 62

6.7 Performance cost of scheduling actions 63

7 Discussion . 66
7.1 Limitations . 66

7.2 Future Work . 67

8 Conclusion . 69

Bibliography . 70

viii

List of Tables

Table 5.1 Lines of Code (LoC) breakdown by component for Dara. Note

that the total lines of the replay engine are included as part of

the global scheduler instead of auxiliary tools. 28

Table 5.2 Interposition complexity. This table shows the lines of code for

interposing on various system calls and time-related events in

the go runtime. 29

Table 5.3 List of all system events . 30

Table 5.4 List of all system calls captured and subsequently reported to

the global scheduler by the local scheduler with the modified go

runtime version 1.10.4 . 33

Table 6.1 Instrumentation execution time for popular real go systems . . 55

ix

List of Figures

Figure 3.1 Example of timeout code in Go 12

Figure 4.1 (a) Code with a non-deterministic bug due to select. The lines in

blue are added by the instrumenter for reporting coverage infor-

mation and the line in red is added by the user to report values

of variables needed by the property checker to check properties

provided by the user in (b), the user-provided property file. . 14

Figure 4.2 The architecture of Dara’s concrete model checker 16

Figure 5.1 Global and Local Scheduler interface 28

Figure 5.2 Depiction of how (a) properties of a system are specified, and,

(b) how the values for property checking are captured through

the source code. 36

Figure 5.3 Instrumented version of a file called file read.go with function

calls to the dgo for reporting coverage information 37

Figure 5.4 Output of the schedule info tool for a recorded schedule . . . 38

Figure 5.5 Output of the coverage report tool for a given schedule 39

Figure 5.6 Output of the propchecker report tool for a given schedule . . 39

Figure 5.7 Shiviz visualization of a recorded schedule 41

Figure 6.1 A data race on an unprotected global shared variable leads to a

crash. 44

Figure 6.2 (a) Code with a data race bug on the loop variable between the

parent goroutine and child goroutine; (b) property file used by

Dara to find this bug . 45

x

Figure 6.3 Snippet of code for a concurrent Producer Consumer system

with an unexpected behaviour bug caused due to lack of syn-

chronization between the producer, consumer, and main gorou-

tines . 47

Figure 6.4 The property file for the producer consumer code in Figure 6.3 48

Figure 6.5 On which paths during the exploration did Dara report a bug for

each of the three search strategies; the path number on which

Dara found a bug is indicated by a mark 52

Figure 6.6 Number of states explored by each exploration strategy as a

function of the number of paths 53

Figure 6.7 Performance Overhead for Dining Philosophers during explo-

ration . 53

Figure 6.8 (a) Increase in build time with increase in number of properties

in the property file; (b) increase in load time with increase in

number of properties in the property file; and (c) increase in

checking time with increase in total number of properties . . . 56

Figure 6.9 System Call performance comparison between go1.10.4 and

dgo - Part 1 . 58

Figure 6.10 System Call performance comparison between go1.10.4 and

dgo - Part 2 . 59

Figure 6.11 System Call performance comparison between go1.10.4 and

dgo - Part 3 . 60

Figure 6.12 System Call performance comparison between go1.10.4 and

dgo - Part 4 . 61

Figure 6.13 CDF of time taken to write record event information to shared

memory . 62

Figure 6.14 CDF of time taken to write record coverage information . . . 63

Figure 6.15 Application runtime grows linearly with the number of sched-

uled actions by Dara . 64

Figure 6.16 Cost of choosing the next action with different exploration

strategies for exploration in Dining Philosophers 65

xi

Acknowledgments

This work was supported by the Huawei Innovation Research Program (HIRP),

Project No: HO2018085171. We also acknowledge the support of the Natural

Sciences and Engineering Research Council of Canada (NSERC), 2014-04870.

I would like to thank Mr. Stewart Grant for helping with the initial hacking of

the go runtime. I would like to thank my advisor, Dr. Ivan Beschastnikh for his

invaluable mentorship and advice. I would also like to thank Dr. Margo Seltzer

and Dr. Jonathan Mace for being constant sources of advice and encouragement

throughout my M.Sc. degree.

Finally, I thank my family, my mom, my grandmother, and my uncle for

constantly encouraging me to chase my dreams and supporting me emotionally

through this beautiful journey. I would not be able to be where I am without their

constant love and support.

In loving memory of my late grandfather, Mr. Satish Kumar Anand.

xii

Chapter 1

Introduction

Debugging distributed systems has continued to bedevil developers. Despite

rigorous testing efforts , an increasing number of systems are in the news due to

complex bugs sneaking into production systems. For example, in 2017 a bug in

Amazon S3 caused 150 million dollars in damage for those companies that rely on

Amazon AWS [8]. Such incidents are becoming increasingly common.

State-of-the-art techniques for ensuring the correctness of distributed systems are

widespread, ranging from traditional testing to formal verification, using techniques

such as interactive provers and model checking. Interactive provers mathematically

prove systems correct by constructing machine-verifiable proofs based on deductive

reasoning. These provers include Coq, Hal, or Isabelle, and typically come with

powerful specification languages targeting verification. Projects such as Verdi,

IronFleet, and Chapar [19, 29, 40] demonstrated the utility of these techniques

by developing fully verified systems. These proofs however require significant

expertise and effort.

Model Checking (MC) is a formal methods technique that exhaustively tests

the system, rather than using deduction to prove it correct [10, 21, 26] Traditionally

model checking finds bugs in abstract models of the system, but not in implementa-

tions. That is, model checking explores many program behaviours and checks if the

program behaviours meet the user-provided specification of the system. However,

traditional model checking is capable of finding bugs only in a given specification

and has no way of finding bugs in real implementations.

1

A new line of work in “concrete model-checkers” (concrete MCs) [28, 31, 42]

extends conventional model-checking to implementations, by searching for failures,

crashes, and violations of user-defined properties. Concrete MCs directly use the

system implementation as the model while interposing on the network as well as

the operating system layers to control delivery of messages as well as scheduling

of threads. Use of a concrete MC eliminates the need for a developer to create and

maintain a separate, abstract, model of their system that decreases developer effort

and eliminates bugs that developers may introduce as part of composing the model.

Additionally, a concrete MC has no false positives: a bug found using a concrete

MC is a bug in the real implementation of the system and thus can be reproduced.

However, these concrete MCs suffer from state space explosion. They are

unable to efficiently explore the state space of the system. This is because the

number of reachable states grows exponentially as new components are added to

the system [4]. As a result, most model checkers limit their exploration of the state

space of a system or a model to some bounded depth. Thus, it is imperative for the

model checkers to explore paths in the state space that are more likely to produce

bugs.

But, designing and implementing a concrete model checker is hard as one must

control various sources of nondeterminism in the distributed system while providing

the ability to control thread scheduling and checking user-defined properties about

the system. Moreover, rise in popularity of languages such as Go for building

large distributed systems has further complicated the design process of concrete

MCs. Specifically, designing a concrete MC for Go is complicated by the fact that

Go has its own runtime for managing and scheduling threads, handling system

calls, synchronization whilst providing language-level interfaces to applications for

managing concurrency. A concrete MC for Go must control all these features to be

able to correctly explore the state space of the system and find bugs. To the best of

our knowledge, there does not exist a concrete MC for Go.

We present Dara The Explorer, a concrete MC designed for Go, that uses a

novel coverage-based exploration strategy to explore paths that are more likely to

produce bugs. The key insight behind the coverage-based exploration strategy is

that the paths that cover a higher percentage of code are much more likely to result

in bugs as a larger fraction of code is being executed through these paths than would

2

be through regular execution of the system. Additionally, Dara allows users to

specify properties of the system as standalone go functions that can be executed

and checked during the exploration phase to find property violations in addition

to crashes and failures. However, for ease of debugging, finding a presence of a

crash or a violation is not enough as one must be able to reproduce the bugs found

consistently. To achieve this, Dara exports a replay engine that can deterministically

replay a buggy schedule recorded during the exploration of the state space. Dara

also provides some auxiliary tools for inspecting and analysing the buggy schedules.

To summarize, our contributions are as follows:

• A novel coverage-based exploration strategy to explore the state space of an

implementation of a distributed system.

• A concrete MC designed and implemented for distributed systems in Go.

• Specification of system properties as executable, standalone go functions

• A suite of auxiliary tools for deterministically reproducing and understanding

the cause of the bugs.

3

Chapter 2

Related Work

Dara’s concrete MC for Go shares similarities with prior concrete MCs but

it also makes different design decisions specifically to manage the Go runtime.

Dara also provides coverage-based exploration strategies for optimizing state space

exploration whereas a lot of the prior work has focused on reducing the state space

by finding different strategies for finding redundant or symmetrical paths in the state

space. Ultimately, Dara is a debugging tool and has strong roots in verification of

systems and debugging of distributed systems.

Model checking of distributed systems. Model checking and model-based

testing have been widely used in the past for finding bugs and property violations

in actual implementations of distributed systems [2, 9, 17, 18, 23, 27, 28, 31, 32,

41, 42]. State-of-the-art model checkers, such as MODIST [42] and Chess [32],

typically focus on testing, unmodified, distributed and concurrent systems, an

approach that leads to massive state space explosion. DEMETER [18], built on

top of MODIST, reduces the state space explosion when exploring unmodified

distributed systems. DEMETER’S exploration algorithm separates out the system’s

global state from the local states of the system’s components. It explores individual

components in isolation, and dynamically extracts interface behaviour between

components to perform global executions. Guerraoui & Yabandeh, introduce a local

approach to model checking distributed systems where they remove the network

state from the global state and focus on the remaining state, which is the required

part for checking invariants [17]. Dara does not explore individual components in

4

isolation but rather explores different paths in the system based on the coverage of

the whole system. Dara does maintain a separate local state for each node in the

form of variable-value mappings for property checking and coverage information

for each node. This local state is collated together from the various nodes to form

the global state of the program which is then used for property checking and path

exploration.

SAMC [28] offers a way to incorporate application-specific information in state-

space reduction policies alleviating redundant interleavings of messages, crashes and

reboots. FlyMC [31] exploits communication and state space symmetry to explore

a larger number of states in shorter wall clock time. FlyMC specifically leverages

various classes of node roles to explore only one representative interleaving for

different nodes in that node class. Dara’s coverage-based exploration strategies

incorporate the overall application structure by incorporating code coverage across

the nodes which is similar to the application-specific information incorporated by

SAMC. The difference is that Dara’s strategy focuses on capturing application

structure whereas SAMC focuses on capturing information regarding ordering of

crashes and messages that will help in reducing redundant states in the state space.

Currently, Dara’s coverage-based exploration does not take advantage of node roles

in reducing the state space of the system. We believe that incorporating node role

information in Dara’s coverage-based exploration will increase Dara’s efficacy.

MACEMC [23] is a model checker for distributed systems that finds possible

liveness bugs. It combines bounded exhaustive search with random walks to dis-

tinguish between live, and possibly dead states. The same strategy was later used

within MACEPC to identify possible latent performance bugs [24]. MACEMC and

MACEPC can test systems written only in MACE, so they can not be used with real

implementations of systems whereas Dara can be applied to any distributed system

written in Go. However, checking liveness properties and performance properties

remains a part of Dara’s future work.

Verification of distributed systems. Formal methods and theorem provers

have been successfully used to formally verify correctness of distributed protocols

and systems [35, 44]. Amazon uses TLA+ [25] to verify its systems [33]. A

limitation of TLA+, as well as other similar specification languages, is that they

are applied on a model of the system and not the actual system. There is still a

5

significant gap between the specification and implementation of systems leaving the

system prone to implementation level bugs.

Recently, attempts have been made to generate verified implementations of

distributed systems from specifications [19, 29, 40]. With Verdi [40], a developer

provides an implementation of the system and proves the system correct in Coq

using a simplified environment, which is then transformed into an equivalent im-

plementation in a more robust and realistic environment using Verdi’s verified

transformers. IronFleet [19] requires developers to provide a Dafny specification

and code. IronFleet verifies that the specification upholds all invariants and the

implementation meets the specification. These frameworks require significant devel-

oper effort, while Dara requires minimal effort from the developer. Dara leverages

the end-to-end tests already written by the developers to generate an input schedule

to use as a starting point for exploration.

Bakst et al describe the canonical sequentialization of a system as a small set of

representative executions of the system [3]. Their approach verifies the canonical

sequentialization of a system instead of verifying the system. Dara meanwhile

checks properties and finds crashes in implementations of systems.

Debugging distributed systems. Numerous debugging tools assist developers

in finding bugs in distribution systems. Aspirator [43] finds bugs caused due to

improper error handling in distributed systems. Jepsen [22] is a black box testing

library powered with fault injection and generative testing to find bugs in systems

that rarely manifest in the usual executions of the systems. DEMi [38] minimizes

the length of bug traces and executions. Pip [37] allows users to specify expected

behaviour and compare against actual behaviour to find structural and performance

bugs. Dara provides a way for the developers to specify properties of the system

as go functions which are then checked at runtime. Currently, Dara does not inject

random faults but that is something we are looking at as future work.

Record and Replay tools such as D3S [30] and Friday [14] record a single

execution of a distributed system and capture all nondeterministic events so that the

execution can be replayed exactly. Dara’s replay engine embodies this approach to

allow developers to replay buggy execution traces recorded during the exploration

of the state space of the system.

Fuzz Testing Fuzz testing is a technique for finding bugs by generating random

6

inputs in an application. Despite the great success of fuzz testing in finding bugs

for single-threaded programs, there have been few efforts in developing fuzzing

techniques for multi-threaded programs or distributed systems. MUZZ [6] is a

greybox fuzzing tool for finding input-dependent and interleaving-dependent paths

that result in crashes and concurrency bugs. MUZZ generates different inputs and

different thread interleavings for finding concurrency bugs. Dara’s approach is

similar to that of MUZZ as Dara’s coverage-based exploration strategies help guide

the explorer in exploring different thread executions and interleavings in the system.

However, Dara does not modify the original input whilst providing a dedicated

property checker to users for specifying arbitrary properties about the system.

7

Chapter 3

Background

Dara is a concrete MC for Go that introduces novel coverage-based strategies

for efficient exploration of a system’s state space. However, before we describe

the detailed design of Dara, we first introduce some key background information.

Section 3.1 describes model checking and introduces the notion of concrete model

checkers, the type of model checkers that work directly on implementations of

systems instead of user-defined abstractions of systems. Section 3.2 provides an

overview of the Go runtime and how certain language-specific features of Go are

implemented in the Go runtime.

3.1 Model Checking

Model Checking is a verification technique to check whether a user-provided

model of a system meets or satisfies a given correctness specification of the system.

The model of a system could be a finite state machine where each state describes

a state the system can be in, and the transition relationship between the states

describes the legal sequence of steps that must happen for the system to transition

from one given state to another. The correctness specification of the system is

provided as a set of properties usually written in propositional temporal logic such

as Linear Temporal Logic (LTL) [36]. Model checking verifies that a model of a

system meets its specification by performing an exhaustive search over the state

space of the system’s model and checking whether the properties provided by the

8

specification are satisfied on every possible execution of the model. However, model

checking is more useful than simply providing a binary answer of whether a model

satisfies the specification or not. If a model does not satisfy the specification, the

model checker provides a counterexample, that is a sequence of steps that the

model checker executed to end up in a state where the specification was violated.

However, traditional model checkers have two key disadvantages: (i) the de-

veloper must learn a Domain Specific Language (DSL) to construct a model of the

system, and if the system changes, then the model must be manually updated to

reflect the change; (ii) the model may admit false positives, since it is not the actual

system: a bug in the model may not correspond to a bug in the implementation.

Also, the model checker may have false negatives (i.e. it may miss bugs that are

present in the implementation). To eliminate false positives, false negatives, and to

reduce developer effort, researchers developed concrete model checkers that work

directly on the implementation of a system and do not require an additional abstract

model of the system.

3.1.1 Concrete Model Checkers

Concrete MCs use the system’s real implementation as the model. They have

two primary advantages: the developer does not need to develop a separate, abstract

model of their system (decreases developer effort and eliminates bugs that develop-

ers may introduce as part of composing the model), and by using the implementation

directly, a concrete MC has no false positives: a bug found using a concrete MC is a

bug in a concrete implementation and can always be reproduced. Concrete MCs

have two key disadvantages: a very large (concrete) state space of the system under

analysis and engineering complexity — few concrete checkers exist and the first

concrete MC for distributed systems, MODIST [42], is relatively young.

For a concrete MC to be successful in model checking, it must at least success-

fully fulfill the following four requirements:

• Have control over scheduling of actions for every single execution unit (thread,

goroutine, process) so that the concrete MC can have precise control over

the thread interleavings and schedule the threads in an order desired by the

concrete MC.

9

• Have control over the sending and delivery of messages over the network

and via other inter-process communication channels so that the concrete MC

can control and order the sends and deliveries with respect to each other to

explore potentially different executions of the system.

• Have some way of collecting data and evaluating global properties for a

distributed system so that the concrete MC can evaluate and find violations of

user-defined properties about systems.

• Have control over the environment including the file system and environment

variables so that the concrete MC can restore the environment before restarting

the execution of the program to explore a new path in the state space of the

system.

3.2 Go Runtime Background

We next detail features that are specific to the Go runtime and the language,

which plays a significant role in the design and implementation of a concrete MC

for Go.

GoRoutines The go runtime does application level thread management instead

of kernel-level thread management. This allows Go programs to launch arbitrarily

many “threads” in go. Each “thread” in go is called a goroutine. Unlike kernel

threads, goroutines are scheduled cooperatively so there is no goroutine pre-emption

unless the thread is going to sleep or has made a blocking call. The stack of a

goroutine starts small and grows/shrinks during execution. New goroutines are

created by using the keyword “go foo()” where “foo” is the function to be executed

by the newly created goroutine. This keyword is just syntactic sugar and it gets

compiled into a function call to the “newproc” runtime function which creates the

new goroutine and places it on the ready queue.

Runtime Initialization When a go binary is executed, the first function that gets

called is the runtime.init function which in turn calls the runtime.main function. By

default this function is run in the goroutine with ID 1. The runtime main function

is responsible for initializing the runtime as well as setting up main.main, the user

defined main function. In addition to this main goroutine, the runtime creates two

10

other goroutines. The goroutine with ID 2 enables the garbage collection whereas

the goroutine with ID 3 runs the finalizer code.

GoRoutine Scheduling The Go runtime is responsible for managing goroutines

and allocating them on kernel level threads for execution. The Go runtime follows a

M:N goroutine/threading model, with M ≥ N, such that M goroutines are scheduled

cooperatively on N threads. The value of the environment variable, GOMAXPROCS,

which is by default the number of CPU cores, determines the maximum number of

OS threads that can be running concurrently at any given time. Threads blocked on

a system call do not count towards the total number of threads running.

Sleeping GoRoutines To put itself to sleep, a goroutine makes a function call to

time.Sleep, which traps into the runtime, where the goroutine installs a timer for

itself and puts itself onto waiting mode after which a different goroutine, if any, is

chosen to be scheduled. When a timer is installed for the first time for any goroutine

in the runtime, the runtime creates a new goroutine which executes the the timer

process called timerproc. If there already exists a timerproc, then the runtime does

not create another timerproc. The runtime then installs the newly created timer on a

blocked queue managed by the timerproc. This timerproc is responsible for firing

off the timers from this queue that have been installed by other goroutines. Just like

the garbage collector and finalizer goroutines, the timerproc goroutine is a runtime

internal goroutine.

Channel-based Communication Channels are pipes that connect concurrent

goroutines allowing the goroutines to send and/or receive values to and from another

goroutine. Channels between goroutines could either be one-way or two-way and

they could be buffered or unbuffered. To send a value into a channel, a goroutine

uses the “channel <-” syntax and to receive a value from a channel, a goroutine

uses the “<- channel” syntax. Both of these compile into function calls in the go

runtime where the runtime removes the values from a channel’s send queue to the

channel’s receive queue. By default, sends and receives block until both the sender

and receiver are ready which allows for strong synchronization between goroutines.

Select statements The select statement lets a goroutine wait on multiple commu-

nication operations. It blocks until one of its cases can run, then it executes that

case. If multiple cases are ready then it chooses a case at random to execute. The

select statement is also implemented in the go runtime where it is implemented by

11

1 . . .
2 resu l tChanne l := opera t ion ()
3 select {
4 case r e s u l t := <−resu l tChannel :
5 log . Pr in t ln (” Operat ion f i n i s h e d wi th r e s u l t ” , res)
6 case <− t ime . A f t e r (5 ∗ t ime . Second) :
7 log . Pr in t ln (” Operat ion t imed out ”)
8 }
9 . . .

Figure 3.1: Example of timeout code in Go

the function “selectgo” which returns the index of the case that needs to be executed

based on which case unblocks first.

Timeouts Timeouts are an integral part of distributed systems. Since Go was

primarily designed to be a language for building distributed systems, Go has its own

idiomatic way of specifying timeouts using channels and “select”. To ensure that an

operation has a bounded execution time, the developer wraps the operation around

with a select statement such that one of the cases of the “select” statement is the

operation returning a result via a channel and the other case is a timer installed to fire

after a specific amount of time which acts as the time bound. To fire off the timer,

the go runtime installs a timer to go off at the scheduled time and returns a channel

to the application to which a notification will be sent via a message. Figure 3.1

shows a snippet of code that demonstrates the Go way of specifying timeouts in

Go. In this example, the “time.After” function call returns a channel that receives a

message from the go runtime after 5 seconds indicating a timeout.

12

Chapter 4

Design

4.1 Overview

We present an overview of how a user interacts with Dara in the context of

discovering a Go non-determinstic bug caused by the non-deterministic behaviour

of select [39].

Figure 4.1a shows the snippet of code that contains the non-deterministic bug

which we discuss in the context of Dara. In the code snippet, the loop at line 4

executes a heavy function f() at line 7 and then waits to receive a stop message on

the stop channel, stopCh, at line 10. However, if the message does not arrive before

the ticker installed at line 3 fires at line 12, then the function f() is executed again.

Thus, the loop at line 4 executes until it receives a stop message on stopCh at line 9

and executes a return from the function foo at line 11. However, if the stop channel,

stopCh, receives the message at the same time as the ticker ticks, then there is no

guarantee which case will be chosen by the select to be executed. In such scenarios,

select will nondeterministically choose the case to be executed. If select chooses

case 2, i.e. the timer case, then f() will be executed unnecessarily one extra time

than intended by the user.

The user wants to ensure that the function f does not get executed when a

message has been delivered on the stopCh channel. Thus, the user writes a property

file as shown in Figure 4.1b which checks the number of deliveries on the stop

channel, stopCh, is equal to zero. The user then manually instruments the source

13

1 func foo () {
2 + runtime.ReportBlockCoverage(”block1”)
3 t i c k e r := t ime . NewTicker ()
4 for {
5 + runtime.ReportBlockCoverage(”block2”)
6 + runtime.DaraLog(”LogID1”, ”Recvs”, runtime.NumDeliveries(stopCh))
7 f ()
8 select {
9 case <−stopCh :

10 + runtime.ReportBlockCoverage(”block3”)
11 return
12 case <−t i c k e r :
13 + runtime.ReportBlockCoverage(”block4”)
14 }
15 }
16 }

(a)
1 / / NoRecvs
2 / / Recvs
3 func NoRecvs (Recvs i n t) bool {
4 return Recvs == 0
5 }

(b)

Figure 4.1: (a) Code with a non-deterministic bug due to select. The lines in
blue are added by the instrumenter for reporting coverage information
and the line in red is added by the user to report values of variables
needed by the property checker to check properties provided by the user
in (b), the user-provided property file.

code to capture the value of the number of successful deliveries of messages to the

stop channel, stopCh, just before the function f is executed. However, the user wants

the property to hold just before the function f is executed and not after the execution

has returned from function foo. Thus, the user adds manual instrumentation at line 6,

shown in red, in Figure 4.1a to capture the value of number of successful deliveries

on the stop channel using Dara’s special runtime function, runtime.NumDeliveries

to update the value of the Recvs variable that is used by the property checker for

checking the specified property. This function returns the total number of successful

deliveries on a given channel regardless of whether the application might have read

the message from the channel or not. So, if the channel has successfully received a

message but the application has not read the message then the function will return

14

the value 1 instead of 0 as a message would have been successfully received on the

channel. Note that the user does not add any manual instrumentation just before

the return at line 11 to update the value of the Recvs variable in the property as that

would update the value of Recvs to be 1 and cause the property checker to find a

false positive. Not updating the Recvs variable ensures that the value of Recvs used

by the Property Checker is the value logged just before the function f is executed.

The property checker checks the properties for every logging statement that updates

values of the variables.

The user then uses Dara’s command line application, the Overlord, to instrument

the source code with coverage information. The instrumenter adds function calls to

Dara’s runtime function, runtime.ReportBlockCoverage, at the start of every basic

block in the code. The added function calls by the instrumenter are shown in blue in

Figure 4.1a at lines 2, 5, 10, and 13. After instrumenting the source code, the user

uses the Overlord to record an execution of the system using a test driver program

to exercise the system. As part of the recorded execution, the basic blocks covered

by each goroutine is also recorded and stored in the saved schedule of the execution.

This information is used by the explorer for guiding the exploration process.

The user then uses the overlord once again to start the exploration process.

The user provides a configuration file that contains the location of the recorded

schedule, the test driver program, and configuration options for the explorer such

as the exploration strategy, the maximum number of paths to be explored in the

state space, and other configuration options. The explorer then explores various

interleavings of goroutines and timer events to find paths which contain a violation

of the property provided by the user. In this case, the explorer finds one path where

the property is violated.

4.2 Concrete Model Checker

Figure 4.2 shows Dara’s Concrete MC design. The blue nodes are user-visible

and the orange nodes are internal to Dara and not exposed to the user. The overlord

serves as the starting point for the users for working with Dara. The user instruments

the source code of the distributed application using the Instrumenter via the overlord

followed by launching the Dara’s model checker via the overlord. Each node in

15

Figure 4.2: The architecture of Dara’s concrete model checker

the distributed system under test runs an instrumented version of the source code.

The application code is managed by our modified go runtime, called dgo which

captures system calls, coverage information, and user-defined log statements for

property checking. At each node, Dara installs a local scheduler, which controls

the actions executed by the node via controlling the scheduling of goroutines and

firing off timers. Each local scheduler communicates the data collected by dgo

and the state and status of every goroutine at the node to the global scheduler. The

global scheduler relays the collected information to the property checker for finding

violations and to the explorer for deciding the next step of the execution. The

Global Scheduler relays the action decided to be executed by the explorer to the

local scheduler of the node where the execution must be executed. If the explorer

16

decides to finish exploration or to start exploring a new path, the global scheduler

communicates with the overlord to kill the current execution of the system or to

restart the execution of the system.

4.2.1 Controlling Nondeterminism

Model Checking real systems requires complete exploration of the state space

of the system to make claims about the system’s correctness. Any source of non-

determinism can prevent bugs from manifesting or from being deterministically

replayable, making our model checker unsound. Furthermore, failing to explore all

non-deterministic events leads to incomplete checking. Here we tabulate sources of

non-determinism and how our concrete model checker deals with them.

Ideally we achieve a deterministic execution by controlling every instruction so

that any deviation of instruction or value could be monitored and considered as a new

state. However, instruction level deterministic execution is slow and is generally not

required. Thus, we follow a pragmatic approach focused on eliminating sufficient

non-determinism from the system to guarantee that we can consistently find the

same bug during the replay of a counterexample trace. There are various sources

and types of non-determinism in a distributed system, each of which are specified

below in detail.

Concurrency and Thread Interleaving: Concurrency can give rise to race

conditions, which can lead to non-deterministic behaviour in the system. Similarly,

thread interleavings can cause the system to execute in an incorrect manner giving

rise to heisenbugs. To eliminate the non-deterministic effects of concurrency and

thread interleaving, global events are executed in a serialized fashion with only a

single goroutine executing at a given point of time across the system.

Random Library: Randomness in the system can be a huge stumbling block

for deterministic execution as effected variables may effect the control flow of the

system. Non-determinism due to the usage of the random library is eliminated by

modifying Go’s rand library such that the seed value is recorded during the system’s

initial execution and then reused during exploration. This ensures that the random

values used during execution are the same as those used during all the runs.

Time Library Similar to the use of the random library, the use of the time library

17

can cause the system to take different execution paths than the one intended by

the schedule. During exploration, the global scheduler maintains a virtual clock

which controls whether timer events or goroutines that were put to sleep can be

enabled so that the explorer can choose these actions to be executed. Since our

virtual clock behaves like a logical clock without relying on real time, it also serves

as an optimization during exploration for executing paths where timeouts or sleeps

need to be executed. The use of a virtual clock ensures that all the time-dependent

actions such as timer events and scheduling of a sleeping thread follow the strict

ordering dictated by the real time of these actions. Moreover, Dara interposes on

the time functions in the standard library to provide the application with a real time

that is consistent with the other time related actions at that node.

Environment Changes in the environment during exploration can cause the

system to execute different paths than the ones intended by the explore. To prevent

the environment from having any uncontrolled impact on the exploration, each path

in the system must be explored under the same environment. However, capturing

the full system environment is out of scope for Dara. Instead, Dara requires the user

to provide a clean up script that is executed before every restart of the system to

restore the environment to what it should be during the execution of the system.

Network Randomness To deal with non-determinism due to the network such as

reordered messages, message drop, or random delays, Dara runs every single node

on the same machine as the global scheduler to minimize the amount of randomness

that the network could possibly inject during the execution of the program. Dara

indirectly controls different send and receive orderings of messages by controlling

the scheduling of goroutines executing the respective send and receive code for

messages. Dara also explores message timeouts by firing the timers at the receiving

node before a message can be received by the particular node. However, Dara does

not detect re-ordering of messages on the wire nor does it explore schedules where

messages can be arbitrarily dropped.

4.2.2 Overlord

The overlord serves as the command centre for the user. The overlord interacts

with Dara’s instrumenter as well as the global scheduler. The overlord expects a

18

configuration file as well as a command (instrument, explore, replay, record) from

the user as input that provides the location of the source code and the location of any

custom build and run scripts, in the local file system, that is required for building

and running the system. At the behest of the user, the overlord can instrument

the system using the instrumenter or set up the model checker to either record an

execution, replay a previously recorded schedule, or explore the state space of the

system to find bugs. The overlord also maintains a communication link with the

global scheduler to carry out system restarts or shutdown.

4.2.3 Instrumenter

Dara’s instrumenter is a static analysis tool that rewrites the Abstract Syntax

Tree (AST) of the source code of the system for reporting coverage to dgo. Dara’s

Instrumenter instruments the source code to report coverage information to dgo as to

which basic blocks were executed by the goroutine. A basic-block is a straight-line

code sequence with no branches in except to the entry and no branches out except

at the exit [1, 20]. The instrumenter walks the AST of every file in the source

code and adds the relevant function call at the start of each basic block to report

coverage information to dgo. The instrumenter instruments multiple files at a time

and annotates the source code such that coverage information can be collected and

correctly reported to dgo. As a side effect of walking through the AST of every

file in the source code, the instrumenter knows about every single basic block in

the source code. The instrumenter generates a “blocks” file which contains the list

of every block in the source code. This file can be used by our auxiliary tools for

generating comprehensive coverage reports.

Reporting Coverage to dgo To report coverage to dgo, at the start of every block

in the source code, a function call to the function “runtime.ReportBlockCoverage” is

added with the argument to the function call being the unique ID of the block. This

function call traps into dgo where the runtime maintains a data structure mapping

the block ID to a count of the number of times the block was executed. The function

call serves as a proxy for block execution. This data structure is then forwarded

by the local scheduler to the global scheduler. When the runtime schedules a new

goroutine, the runtime wipes out the data structure so that the data structure only

19

contains coverage information from the newly selected goroutine’s execution.

4.2.4 Global Scheduler

The global scheduler is the central piece of Dara as it connects to the various

local schedulers, the overlord, property checker, and the explorer. It collates and

collects the information from all the local schedulers and forwards the information

to the property checker for property checking and the explorer for generating the

next action. Once the explorer has selected the next action, the global scheduler

contacts and commands the local scheduler for the node at which the action must be

scheduled. Once the exploration is over or requires a restart, the global scheduler

contacts the overlord for restarting or shutting down the system.

Virtual Clock The Global Scheduler implements a virtual clock for each node

to ensure that time-related actions are consistent in a node. For e.g., a goroutine

that was put to “sleep” should not be scheduled before a timer fires if the timer

would go off before the goroutine wakes up in real time. The virtual clock ensures

that the actions at a node do not violate the real time order of actions. To ensure

this, the global scheduler maintains a virtual clock for every node such that the

clock is only fast-forwarded if the explorer decides to execute a previously sleeping

goroutine or fire off a timer. In such cases, the global scheduler fast forwards

the virtual clock precisely to the time the action would be available. However, to

provide the application a consistent view of the clocks, Dara must also control the

Go standard library time functions so that they report a time that does not violate

the ordering constraints placed by other actions that the explorer might have already

scheduler in the past. This means that once a time-related action by the explorer

has been executed, any subsequent calls into the time library in the future must

return a time greater than the real time at which the action would have executed.

However, since we do not want to set off any timers without the explicit permission

of the scheduler, any future timers place a hard upper bound on the time that can

be returned to the application. Thus, the time system calls return a time between a

specific time window that is initially set by the global scheduler and modified by the

local scheduler to prevent the monotonicity of time whilst preserving the ordering

of actions in Dara.

20

4.2.5 Local Scheduler

Dara installs a local scheduler at every node in the distributed system under

test. The local scheduler is responsible for executing the actions specified by the

global scheduler. The actions include scheduling a particular goroutine or firing

off a timer. Once the action is completed, the local scheduler contacts the global

scheduler with the information collected by dgo and waits for the next action to be

performed. A timer action is considered to be completed once a notification has

been sent to the channel corresponding to the installed timer. A goroutine schedule

action is considered to be completed once the goroutine executes its instructions

and traps back into the runtime through a network call, a sleep call, or another way

to give up its quantum of execution.

4.2.6 Explorer

Dara’s explorer uses the coverage information collected by global schedulers

from the various local schedulers to determine the next action to be taken by the

system. At any given point of time, the explorer requires the system to execute at

most one action. This means that at any given instance, at most one goroutine is

scheduled to be executed across all the local schedulers and that all but one local

schedulers are blocked waiting to receive instructions from the global scheduler.

The explorer decides which action the system executes. The explorer can ask the

system to execute one of two actions - firing off a specific timer or scheduling a

specific goroutine. To start the exploration, the explorer requires a seed input that

acts as a starting point for the exploration. This seed input is a recorded schedule of

actions from the execution of the system using an end-to-end test or a user-defined

workload. The coverage information collected as part of this seed input is used by

the explorer to select the first path that needs to be explored. Once the explorer

finishes exploring a path, it informs the global scheduler to restart the distributed

system so that it can start executing a new path in the state space. This process

continues until a user-defined fixed number of paths have been explored. The

explorer explores only different states generated by one particular workload. Dara

does not modify the contents of the workload.

CounterExample Schedule The presence of a counterexample serves as ev-

21

idence that there is a bug in the system. Although useful, this is not enough

information for the developer to reproduce or debug the system. Thus, to provide

a developer with a starting point for debugging, whenever the explorer encounters

a bug in the form of a crash or a property failure, the explorer saves a schedule of

actions that led to the discovery of the bugs. The schedule contains a list of schedul-

ing and timer actions in the order in which they were executed by the explorer.

Additionally, detailed system call event information is also included to provide the

developer with some context about what the system was doing when the bug was

detected. The counterexample schedule can then be reproduced or analysed by our

auxiliary tools for further debugging.

4.2.7 Property Checker

Property Specification The user provides a property checker file that contains

the list of properties that need to be checked by Dara during the exploration. The

properties are provided as standalone go functions that act upon the variables in

the source code. The functions are compiled into plugins which are then executed

during exploration with values of variables captured by dgo.

Evaluation Context During the exploration phase, the property checker main-

tains a context under which to evaluate the properties. The context is a mapping

between variable names and their values. When evaluating the properties, the prop-

erty checker looks for values of the variables in this mapping. If any variable for a

property is not present in the mapping then the property is not checked as it probably

suggests that the variable has gone out of scope. The users must ensure that the

context is up-to-date by reporting the values of variables right after they have been

updated or removing the variables from the context when variables go out of scope.

The context can only be modified using two API calls exposed by dgo which we

discuss below.

Execution Semantics Ideally, the property checker should check properties after

the execution of every single instruction. However, that would be too slow and is

not ideal. Instead, Dara makes the pragmatic choice of checking properties every

time a local scheduler contacts the global scheduler for the next action. We know,

that at any given point at most one goroutine can be executing, so, at most one local

22

scheduler is executing. However, when the executing local scheduler contacts the

global scheduler for the next action, there is no goroutine executing at any local

scheduler. So after processing the information received from the local scheduler

and before scheduling another action at one of the local schedulers, the context

is up-to-date with no stale values. Thus, property checking can take place with

the correct values and any violation of the property found is a real violation of the

property specification. During the execution, if a goroutine updates the value of the

variable multiple times then the global scheduler checks the properties with each

value of the variable.

Variable Capture Through dgo, the property checker provides two API calls that

the user can use to update the context that the property checker is using for evaluating

the properties. Note that for correct property checking the user must instrument

the application with these API calls so that the properties are evaluated with the

correct context. These API calls have no relationship with the instrumentation done

by the instrumenter for reporting coverage information. We make a design choice

of not instrumenting the source code automatically to report variable information

for three reasons: (i) users will find it more confusing to specify properties of the

variables especially as there might be variables with the same name across the

source code; (ii) using manual instrumentation, users can filter out which variables

are necessary and only log the values of the necessary variables; (iii) using manual

instrumentation, users can decide how often to report values for variables, allowing

the users more flexibility in specifying functions that should only be executed at

specific points in the execution of the program. Thus, the user is directly responsible

for maintaining the context of the property checker and ensuring it does not contain

stale information. The two API calls are as follows:

• runtime.DaraLog(logID string, varNames string, varValues...) : A vari-

adic function that reports the values of a list of variables to dgo. The “var-

Names” argument expects a string of comma-separated variable names. The

variadic argument “varValues” reports the values for the variables in the order

specified by “varNames”.

• runtime.DaraDeleteLogVar(logID string, varNames string) : Function

that tells the property checker to remove specified variables from its execution

23

context. The “varNames” argument specifies the list of variables that need to

be deleted from the context as a comma-separated string.

Exposing data to applications The property checker also exports API calls to

the application so that the application can use values for reporting that will not

usually be available to the application. Currently, three such API calls are provided.

They are as follows:

• runtime.NumSendings(ch chan) int : The function takes a channel as an

argument and returns the number of successful sends that have been completed

on that channel.

• runtime.NumDeliveries(ch chan) int : The function takes a channel as

an argument and return the number of successful receives that have been

completed on that channel.

• runtime.GetDaraProcID() int : The function returns the internal Dara pro-

cess ID for the node to the application. This is especially useful for making

the variable names for the property checker unique as multiple nodes might

be using the same variables.

4.3 Exploration Strategies

Dara provides various exploration strategies that can be used by the explorer for

exploring the state space. Dara provides a random path exploration strategy in which

every path is chosen at random for exploration and is completely independent of the

previously explored paths. We refer to this strategy as the Random strategy in future

sections. Dara provides three novel code coverage-based exploration strategies that

optimize the order in which paths are explored.

4.3.1 Distributed Code Coverage

In Dara, we provide novel coverage-based strategies for exploration. The key

idea behind the strategies is to use the coverage information for exploring the paths

in the state space of the system such that the paths that are more likely to contain a

24

bug are explored first. We believe that paths that execute different sections of code

have a higher likelihood of finding bugs as such paths will execute code that is not

well-tested or executed as part of the normal execution of the system. Thus, our

exploration strategies explore the paths first that execute a large fraction of code.

This allows the explorer to give priority to paths that are more likely to execute code

that has not been executed in any of the prior paths. Prior work in combating state

space explosion has primarily focused on reducing the state space to be explored by

eliminating symmetrical paths [13], by incorporating application-specific protocol

information to remove redundant paths [28], and by exploiting communication and

node-role symmetry to explore only one path from an equivalent set of path [31].

To the best of our knowledge, there exists no prior work which uses coverage

information for ordering paths during exploration. We provide a formal description

of three coverage-based strategies below.

A distributed system is defined as a system that consists of a set of nodes, N,

connected by the network. The source code of the system is comprised of a set of

source code files, F , which define the execution behaviour of the system.

We choose to define coverage at the granularity of a basic block, where a basic

block represents a code block in the source code (e.g. body of an if statement). A

basic-block is a straight-line code sequence with no branches in except to the entry

and no branches out except at the exit [1, 20] The set of all files in the source code,

F , is made up of B unique basic blocks where each block is uniquely identified by

the fully qualified file path and the starting and ending line numbers of the block

in the file. We use block coverage instead of statement coverage as the cost of

measuring coverage at a statement level is too high and can be deduced from block

coverage.

We provide three different functions for measuring code coverage. Any of these

can be used as the optimization objective for state space exploration by the explorer.

Let the set of blocks covered by the system across all nodes across all runs be

denoted by, B′, then the optimization functions are defined as follows:

• Unique: Sucount(B′) = ‖B′‖; maximizes the total number of unique blocks

covered.

• Frequency: S f count(B′) = ∑b∈B′
1

Count(b) , where the Count function returns the

25

number of times a block was executed. This function maximizes the covered

blocks but discounts blocks by how often they are executed. The more a block

is executed the less important it is for that block to be covered in the future.

• NodeFrequency: Sncount(B′) = ∑b∈B′
Nodes(b)
Count(b) , where the Count function re-

turns the number of times a block was executed and the Nodes function

returns the number of nodes on which the block was executed. This function

maximizes the covered blocks but discounts blocks by how often they are

executed but allowing for the block to be executed by more nodes in the

system. Thus the more diversely a block is covered the less important it is to

be covered in the future.

The explorer uses these optimization functions to guide the exploration of the

state space. The explorer maintains a history of action-coverage pairs from previous

path explorations that maps an action to the coverage information generated from

the execution of the action. The explorer builds the action history by analyzing the

coverage information recorded in the seed schedule. As the exploration progresses

and executes different paths, the explorer updates the coverage history of each

action. The explorer uses an action’s coverage history to decide the potential impact

the action will have on the coverage of the system. When choosing the next action to

be taken by the system, the explorer analyses the set of available actions and decides

to execute the action that will maximize the total coverage across all the explored

paths according to the objective function chosen by the user. The explorer uses the

action’s prior coverage history to calculate the potential impact the execution of the

action will have on the coverage of the system. If there is no action that would lead

to an increase in the total coverage, then a previously unseen action is selected. If

no such action exists, then an action is selected that will lead to an increase in the

coverage of the current path but will not result in a previously seen path. If no such

action exists, the coverage finally defaults to choosing a random action.

26

Chapter 5

Implementation

5.1 Dara - Concrete MC

We now present details of Dara’s implementation. Table 5.1 shows the number

of lines of code for each component. The Dara codebase is written entirely in Go.

The codebase is available at https://github.com/DARA-Project/GoDist-Scheduler.

Dara’s current implementation sets up all the local schedulers, i.e. all the

different nodes of a distributed system, as well as the Global Scheduler on a single

machine. This is done for the sake of simplicity and to avoid any uncontrolled

bugs caused due to network failures or partitions that may occur if all the nodes

were distributed across different machines. The Global Scheduler and the local

schedulers communicate via shared memory as shown in Figure 5.1.

5.1.1 Modified Go Runtime

As described in Chapter 4, a concrete model checker must be able to control

execution of events in a system. For Dara to control events, we modified the Go

runtime to interpose on all system calls. We also modified the runtime to control

timers installed by the application. We refer to our modified Go runtime as dgo.

Moreover, dgo also collects code coverage information of an application through the

runtime.ReportBlockCoverage function call described in Section 4.2.3. We chose to

interpose on the system calls in the Go runtime as the Go runtime is the last layer

before the system call traps into the operating system. Thus, interposing on system

27

https://github.com/DARA-Project/GoDist-Scheduler

Instrumented
Program

Modified Go
Runtime

Communication Layer

OS (Linux)

Global Scheduler
Failure Simulation

Virtual Clock
Global Assertions
GoRoutine State

Abstract Schedule

Instrumented
Program

Modified Go
Runtime

Figure 5.1: Global and Local Scheduler interface

Component LoC
Overlord 804

Global Scheduler 1202
Modified Go Runtime 1597

Local Scheduler 1167
Explorer 671

Property Checker 195
Instrumenter 508
Virtual Clock 150

Auxiliary Tools 332
Total 6626

Table 5.1: Lines of Code (LoC) breakdown by component for Dara. Note
that the total lines of the replay engine are included as part of the global
scheduler instead of auxiliary tools.

calls in the Go runtime provides Dara the opportunity to control the execution and

completion of system calls without any modifications to the underlying operating

system. This allows Dara to be portable and runnable on any machine that installs

dgo. The complexity in terms of lines of code for interposing on various go runtime

libraries is shown in Table 5.2. The modified Go runtime is built on top of go

version 1.10.4 and is available at https://github.com/DARA-Project/GoDist.

28

https://github.com/DARA-Project/GoDist

Category # of Functions # of LoC
Network 10 178

Sync 6 104
Time 3 30

Syscall + OS 50 749
Panic 2 10
Other NA 526
Total 71 1597

Table 5.2: Interposition complexity. This table shows the lines of code for
interposing on various system calls and time-related events in the go
runtime.

5.1.2 System Event Capture

Dara captures ten different kinds of events detailed in Table 5.3. Every recorded

schedule for a local scheduler must start with an “INIT” event and must end with

an “END” event or a “CRASH” event. The “END” event represents a successful

execution of the system whereas the “CRASH” event represents a crash event in

the system that maybe caused due to a panic or due to receiving an external kill

signal. The “INIT” event serves as the starting point for a local scheduler and an

“END” or a “CRASH” event serves as the ending point for a local scheduler in an

execution of a given path. Scheduling decisions made by the runtime are recorded

as “SCHEDULE” events and new goroutine creations are recorded as “THREAD”

events. “SLEEP” and “TIMER” are two events that capture time-related operations

such as a goroutine being put to sleep and a new timer being installed. The global

scheduler uses these four events to maintain the correct state for every goroutine in

the node. Dara captures “SYSCALL” events that capture the system call and the

arguments and return values with which the system call was executed. This is not

particularly useful for exploration but it is useful for post-exploration analysis of

counterexample schedules by the user. Finally, Dara also captures two user-defined

events called “LOG” and and “DELETELOGVAR” which update the variables in

the property checker context under which the properties are evaluated. The global

scheduler uses these events to update the context for the property checker. We chose

these ten different events as these events encapsulate enough information about the

29

Event Description
Init Initialization of go runtime/local scheduler

System Call
The execution of a system call,

including calls to time and random libraries
Thread Create Corresponds to the creation of a new goroutine.

Thread Schedule Corresponds to the scheduling of a certain goroutine
Sleep Corresponds to a goroutine asking to go to sleep
Timer Corresponds to a new timer being installed by the goroutine

Log
User-defined log event which provides

variable-value mappings for property checking

DeleteLogVar
User-defined event for removing a list of variables

from the property checker’s context after
they have gone out of scope

Crash System crash event
End End of execution of a local scheduler.

Table 5.3: List of all system events

state of a node that is needed by the explorer to decide the next action, the property

checker to correctly evaluate properties, and for the global scheduler to construct a

schedule for replay.

5.1.3 Overlord

Overlord is the command hub for the user. The user uses the overlord to

instrument the system, explore the system, record an execution of the system

with a given driver program, or replay a counterexample schedule recorded by

Dara during exploration. The Overlord is currently implemented as a command

line application that expects two inputs as command line arguments. The first

argument is the command that the user wants to execute - this is one of (instrument,

explore, record, replay). The second argument is a configuration file that contains

arguments for various inputs needed by Dara such as max depth of a path during

exploration, maximum number of paths to be explored, paths to the build and run

scripts for the system. The Overlord also sets up the environment and manages

the environment for Dara’s Global Scheduler to communicate with the different

Local Schedulers. The Overlord sets up the shared memory for the global scheduler

30

and the local schedulers communicate with each other. Overlord also runs an RPC

server to serve meta commands issued by the Global Scheduler such as restarting

the execution of the system so that the explorer can start exploring a different path

in the system. We chose to implement the communication between the Overlord

and the Global Scheduler through RPC as it allows us to distribute the Overlord and

Global Scheduler across different nodes in the future.

5.1.4 Local Scheduler

Each local scheduler is responsible for scheduling of actions for one node in the

distributed system. Scheduling includes running/blocking goroutines and firing off

timer events. The local scheduler performs these actions based on the commands

provided by the global scheduler. Thus, to correctly control goroutine scheduling

for a given node, the local scheduler lives inside the “runtime/proc.go” file where

it interposes on the default go scheduler to execute actions as commanded by the

global scheduler. Since the Go runtime creates and manages its own threads in the

form of goroutines, interposition in the goroutine management code is required.

This is because, without interposing on the goroutine management code it would be

impossible for Dara to schedule threads and control the interleaving of the goroutines.

Each local scheduler also forwards the information collected by dgo which includes

the coverage information, the system call event information, and information about

the state of every goroutine. To prevent multiple goroutines running at the same

time, for each local scheduler the environment variable “GOMAXPROCS” is set

to 1 which ensures that only one OS thread is executing for Dara at any given

point of time. Moreover, the local scheduler that is not currently executing any

action specified by the explorer blocks itself waiting for instructions from the global

scheduler.

System Call Events

The local scheduler captures 62 different system calls that are made using dgo
and reports the execution of these system calls to the global scheduler. We manually

analyzed the Go runtime version 1.10.4 to find the system calls and found these 62

system calls. We believe that this list is exhaustive. We chose to interpose on the

31

lowest level of implementation of each system call before the system call calls a

generic syscall execution function implemented in assembly. We did this so that

we could capture the system calls being executed by all the high-level user-facing

functions provided by the standard library. The list of all system calls captured by

are listed in Table 5.4.

5.1.5 Global Scheduler

The Global Scheduler acts as the global coordinator for coordinating the exe-

cution of actions by the local schedulers. It digests the information forwarded by

the local scheduler and prepares the information for the explorer and the property

checker. At the behest of the explorer, the global scheduler commands the local

scheduler to execute a specific action as desired by the explorer. However, if the

explorer wants to finish executing the current path and backtrack to a different path,

the global scheduler contacts the overlord to restart the system. The global scheduler

also maintains the state of all the goroutines across all the nodes and keeps track of

all the timers that have been installed by the node at every local scheduler. This is to

ensure that the explorer always chooses an enabled action for execution. The global

scheduler runs an RPC client for the RPC server provided by the overlord. RPC is

chosen as the medium of communication betwene overlord and the global scheduler

to support distribution of the global scheduler and the overlord across multiple

nodes. The client makes RPC calls at the server to either restart the system for a

new exploration or to kill the execution to bring halt to the exploration. The global

scheduler communicates with every local scheduler over shared memory. When not

executing an action, the local schedulers poll over a lock in shared memory which

prevents the local scheduler from executing any action without the permission of

the global scheduler or the explorer. Each local scheduler has its own lock which is

shared with the global scheduler. We chose a lock based system because we could

not figure how to set up blocking and notifications inside the Go runtime code. After

the global scheduler has installed an action to be executed at a local scheduler, the

global scheduler waits for the local scheduler to update the shared memory with the

result of the scheduled action.

Virtual Clock The Global Scheduler implements a virtual clock for each node to

32

READ
WRITE
OPEN

CLOSE
STAT

FSTAT
LSTAT
LSEEK

PREAD64
PWRITE64

GETPAGESIZE
EXECUTABLE

GETPID
GETPPID
GETWD

READDIR

READDIRNAMES
WAIT4
KILL

GETUID
GETEUID
GETGID

GETEGID
GETGROUPS

EXIT
RENAME

TRUNCATE
UNLINK
RMDIR
LINK

SYMLINK
PIPE2

MKDIR
CHDIR

UNSETENV
GETENV
SETENV

CLEARENV
ENVIRON
TIMENOW
READLINK

CHMOD
FCHMOD
CHOWN

LCHOWN
FCHOWN

FTRUNCATE
FSYNC

UTIMES
FCHDIR

SETDEADLINE
SETREADDEADLINE
SETWRITEDEADLINE

NET-READ
NET-WRITE
NET-CLOSE

NET-SETDEADLINE
NET-SETREADDEADLINE
NET-SETWRITEDEADLINE

NET-SETREADBUFFER
NET-SETWRITEBUFFER

SOCKET
LISTEN-TCP

SLEEP

Table 5.4: List of all system calls captured and subsequently reported to the
global scheduler by the local scheduler with the modified go runtime
version 1.10.4

33

ensure that time-related actions are consistent in a node. The virtual clock ensures

that the actions at a node do not violate the real time order of actions. The global

scheduler only increments the virtual clock if the explorer wishes to schedule a

previously sleeping goroutine or to fire off a timer. The dgo runtime provides

virtual clock support as it ticks the virtual clock by one tick for every function call

made by the application to the time library to check the current time. This ensures

that the time of a virtual clock is monotonically increasing from the application’s

perspective.

5.1.6 Explorer

The explorer is exploring the state space of the distributed system according to

a pre-selected exploration strategy. Dara’s explorer currently provides four different

exploration strategies - Bounded-Depth Random Path, and three coverage strategies

each of which maximizes a coverage score function described in Section 4.3.1. For

the coverage-based strategies, the explorer interfaces with the Global Scheduler

to obtain up-to-date coverage information about the nodes and selects the next

action that has the highest potential for increasing the coverage score in this run.

This ensures that the system is executing previously unexecuted blocks to explore

new pathways in the system’s source code. The explorer selects the path to be

executed according to one of the coverage-based strategies defined in Section 4.3.1.

Even though we provide three coverage-based strategies that focus on executing

diverse code in the system, we believe that these are not the only coverage-based

strategies that will be useful in finding bugs. There are possibly other strategies that

might be better than our strategies at finding a certain class of bugs. We leave the

implementation of other coverage-based strategies as future work.

Based on the exploration strategy selected by the user, the explorer decides the

next action to be executed which is then executed by the Global Scheduler. The

explorer finishes a path that it is exploring if it reaches the maximum depth of the

path as specified by the user or if it finds a property violation or a crash. It then asks

the global scheduler to restart the system so that the explorer can explore a new path.

When the explorer has explored the maximum number of paths specified by the user

the explorer asks the global scheduler to halt the system and to save schedules with

34

bugs which can be replayed by the users for further analysis and debugging.

5.1.7 Property Checker

Property Specification & Data Collection Users specify properties of the sys-

tem as go functions over the variables in the programs. Figure 5.2a provides an

annotated example of a property file for the code snippet in Figure 5.2b. Each prop-

erty consists of three parts: 1© The name of the property; 2© The name of variables,

each on a new line, which are names given by the developer for real variables in

the source code; and 3© the body of a function. The variable names specified in

the property specification are used by Dara to form the context for tracking and

using the right values from the runtime. For a property to be a valid property, it

must return a Boolean value indicating whether the condition specified by the body

of the property is true or not. For correctness, each variable name across all the

properties should be used to track only one single real variable in the source code.

The same variable name can be used for the same variable in multiple properties.

Currently, Dara is not capable of tracking arbitrary variables so the user has to report

the values of variables to the Dara using the “runtime.DaraLog()” statement as

shown in Figure 5.2b. For completeness, the new values of the variables should be

reported after every update to the variable. Thus, the user is directly responsible for

maintaining the state of the property checker and ensuring that the property checker

does not contain stale information. For example, 4© would result in a property

failure since the values of varA and varB do not match but 5© will not result in a

property failure as both varA and varB have the same value. In this example, a is

given the name varA and b is given the name varB by the user. Once the variables

go out of scope, Dara can be notified that variables have gone out of scope using the

function “runtime.DaraDeleteLogVar”.

Property Execution The property file is provided as input at the start of the

exploration where each property in the property file is parsed and compiled into a

plugin that can be loaded and executed at runtime with arbitrary values. The bodies

of the functions are compiled into plugins using the go-eek evaluation library [34] To

execute these plugins with the appropriate context, the Global Scheduler maintains

a mapping of the variable names to their values which is then passed to the property

35

1 package proper ty
2

3 / / EqualVarAVarB 1©
4 / / varA 2©
5 / / varB
6 func equalVarAVarB (A, B i n t) bool {
7 return A == B 3©
8 }

(a)

1 func foo () {
2 var a , b i n t
3 a , b = bar (5) / / a = 4 , b = 6
4 runt ime . DaraLog (” LogID1 ” , ” varA , varB ” , a

↪→ , b) 4©
5 a , b = bar (10) / / a = 5 , b = 5
6 runt ime . DaraLog (” LogID2 ” , ” varA , varB ” , a

↪→ , b) 5©
7 }

(b)

Figure 5.2: Depiction of how (a) properties of a system are specified, and, (b)
how the values for property checking are captured through the source
code.

checker so that it can execute the properties with the correct values of variables.

If all the variables required by the property are not present in the context then the

checking of the property is skipped. Otherwise, a property failure is recorded if the

return value of executing the property under the correct context is false.

5.1.8 Instrumenter

Dara’s instrumenter is implemented as a repurposed version of the go coverage

tool [16] for rewriting go source code. An example of a file generated by the

instrumenter is shown in Figure 5.3. In the example, each basic block contains a

function call into dgo containing the unique block ID that specifies which block is

about to be executed.

Unique Block IDs For accurate coverage scores, it is imperative that correct

information about the blocks is recorded in dgo. This requires that each basic code

block must have a unique ID amongst all the basic code blocks in the source code

of the system under exploration. To achieve this, each basic block is assigned a

three-part ID of the form “path-to-file:startLine:endLine” where the first part is

the full path to the file where the block resides, the second part is the starting line

number of the block, and the third part is the ending line number of the block. This

guarantees the uniqueness of block IDs. To avoid computing block IDs during

runtime, the instrumenter embeds the unique block ID statically as an argument in

the function call to the ReportBlockCoverage function.

36

1 package main
2

3 import ”runtime”
4

5 import (
6 / / ” fmt ”
7 ” log ”
8 ” os ”
9)

10

11 func normal () {
12 runtime.ReportBlockCoverage(”../examples/SimpleInstrument/file read.go:10:12”)
13 f , e r r := os . Open(” f i l e . t x t ”)
14 i f e r r != n i l {
15 runtime.ReportBlockCoverage(”../examples/SimpleInstrument/file read.go:12:14”)
16 l og . Fa ta l (e r r)
17 }
18 runtime.ReportBlockCoverage(”../examples/SimpleInstrument/file read.go:16:18”)
19

20 b1 := make ([] byte , 20)
21 , e r r = f . Read (b1)
22 i f e r r != n i l {
23 runtime.ReportBlockCoverage(”../examples/SimpleInstrument/file read.go:18:20”)
24 l og . Fa ta l (e r r)
25 }
26 runtime.ReportBlockCoverage(”../examples/SimpleInstrument/file read.go:21:21”)
27 f . Close ()
28 }
29

30 func main () {
31 runtime.ReportBlockCoverage(”../examples/SimpleInstrument/file read.go:24:26”)
32 normal ()
33 }

Figure 5.3: Instrumented version of a file called file read.go with function
calls to the dgo for reporting coverage information

5.2 Auxiliary Tools

Understanding the bug traces can be hard. Thus, to aid in the understanding of

the bug traces, we make use of existing tools such as ShiViz [5] and provide some

of our own tools.

5.2.1 Replay Engine

We provide a Replay Engine to deterministically replay buggy executions that

were recorded during the exploration phase. This gives the developers an opportunity

37

2020/08/07 19:09:45 SCHEDULE LENGTH : 32
2020/08/07 19:09:45 LOG Events : 1
2020/08/07 19:09:45 END Events : 1
2020/08/07 19:09:45 INIT Events : 1
2020/08/07 19:09:45 SCHEDULE Events : 9
2020/08/07 19:09:45 THREAD Events : 2
2020/08/07 19:09:45 SYSCALL Events : 18

Figure 5.4: Output of the schedule info tool for a recorded schedule

to reproduce bugs that the explorer found and perform root cause analysis. The

Replay Engine leverages the modified go runtime and controls the local schedulers

for scheduling specific goroutines. However, during the replay, if the action to be

replayed is not available, then the Replay Engine reports a failure. However, we are

yet to encounter this failure in practice. The Replay Engine is implemented as 200

lines of go code on top of the modified go runtime and local scheduler framework

with the overlord setting up the communication layers between the replay engine

and the local schedulers just like it does for the explorer.

5.2.2 Schedule Info Tool

Our suite of auxiliary tools includes a schedule info tool that provides the user

with some basic information about a recorded schedule. Currently, the tool prints

out the number of events in the schedule as well as breakdown of events by the

type of the event. Sample output from running the schedule info tool on a recorded

schedule is shown in Figure 5.4.

5.2.3 Coverage Report Tool

We provide a coverage report generator tool which takes the list of all basic

blocks in the source code (produced by the instrumenter) and a list of recorded

schedules whose coverage needs to be analysed. Based on these schedules, the

tool generates report showing the total number of blocks in the code, the number

of blocks covered in the execution of the schedules, the frequency with which

each block was covered in the schedule, and the number of blocks that were left

uncovered in the execution of the schedules. Figure 5.5 shows the coverage report of

38

To ta l # o f b locks i n source code : 19
To ta l # o f b locks covered : 9
To ta l # o f b locks uncovered : 10
Covered Block Frequency
. . / examples / ProducerConsumer / ProducerConsumer . go :77 :92 1
. . / examples / ProducerConsumer / ProducerConsumer . go :22 :24 1
. . / examples / ProducerConsumer / ProducerConsumer . go :44 :47 5
. . / examples / ProducerConsumer / ProducerConsumer . go :37 :39 1
. . / examples / ProducerConsumer / ProducerConsumer . go :52 :66 1
. . / examples / ProducerConsumer / ProducerConsumer . go :24 :27 5
. . / examples / ProducerConsumer / ProducerConsumer . go :42 :44 1
. . / examples / ProducerConsumer / ProducerConsumer . go :48 :49 1
. . / examples / ProducerConsumer / ProducerConsumer . go :17 :19 1
Uncovered Blocks :
. . / examples / ProducerConsumer / ProducerConsumer . go :74 :74
. . / examples / ProducerConsumer / ProducerConsumer . go :68 :70
. . / examples / ProducerConsumer / ProducerConsumer . go :71 :71
. . / examples / ProducerConsumer / ProducerConsumer . go :71 :73
. . / examples / ProducerConsumer / ProducerConsumer . go :97 :98
. . / examples / ProducerConsumer / ProducerConsumer . go :98:100
. . / examples / ProducerConsumer / ProducerConsumer . go :101:101
. . / examples / ProducerConsumer / ProducerConsumer . go :94 :96
. . / examples / ProducerConsumer / ProducerConsumer . go :66 :68
. . / examples / ProducerConsumer / ProducerConsumer . go :92 :94

Figure 5.5: Output of the coverage report tool for a given schedule

To ta l number o f p roper ty checks : 9
Index : 3 Proper ty Fa i l u res :0
Index : 11 Proper ty Fa i l u res :0
Index : 12 Proper ty Fa i l u res :0
Index : 16 Proper ty Fa i l u res :0
Index : 19 Proper ty Fa i l u res :0
Index : 22 Proper ty Fa i l u res :0
Index : 25 Proper ty Fa i l u res :0
Index : 28 Proper ty Fa i l u res :0
Index : 31 Proper ty Fa i l u res : 1 : EqualSendingsDel iver ies map [NumDeliveries :4

↪→ NumSendings : 5]

Figure 5.6: Output of the propchecker report tool for a given schedule

one schedule for a simple producer consumer program. From the output, it is clear

which blocks were more frequently covered than the others while which blocks

were left uncovered.

39

5.2.4 PropChecker Report Tool

We also provide a propchecker report tool which reports the total number of

property checks that happened in a given schedule and how many of those property

checks resulted in failure. Moreover, for each time the property check took place,

the event index at which it took place is specified as well as detailed information

regarding the property failures that took place at that event. Figure 5.6 shows the

output from the propchecker report tool for a given schedule. Notice that out of

the nine property checks, there was only one instance where a property failure was

found. The name of the property that failed along with the variable values that

caused the property to fail are also listed for better understanding of the failure by

users.

5.2.5 ShiViz Converter Tool

ShiViz [5] is an online visualization tool that is used to generate interactive

communication graphs from distributed system execution logs. The ShiViz converter

tool converts an execution schedule recorded by Dara into a ShiViz-compatible

trace. The converter tool generates a ShiViz-compatible log such that the coverage

information for every goroutine’s execution is embedded in the log. The log also

embeds information about property failures by including the exact position in the

scheduler where the property failure was captured and the variable values which

led to the property failure. An annotated snapshot of the ShiViz visualization

of the generated log from the recorded schedule is shown in Figure 5.7. In the

visualization, each unique goroutine 1© is given its own vertical lane representing

the execution of the goroutine. The circles on the lane represent events that were

recorded during the execution of the goroutine. The links 2© between goroutines

represent the switching of execution from one goroutine to another which helps the

user track when the execution switched from one goroutine to another. In addition to

event specific information, certain events are also tagged with detailed information

about the amount and frequency of code blocks 3© the goroutine covered. Certain

events are also tagged with property failure information 4© indicating the event is

the place where the property check failed. This allows the user to backtrack through

the execution and potentially find the cause of the property violation.

40

Fi
gu

re
5.

7:
Sh

iv
iz

vi
su

al
iz

at
io

n
of

a
re

co
rd

ed
sc

he
du

le

41

Chapter 6

Evaluation

We focus our evaluation on measuring the efficacy of our coverage-based

exploration strategy, measuring how effective Dara is at finding and catching bugs

in Go-based systems, and measuring the performance of the various components of

Dara. We address the following six questions regarding our system:

1. Can Dara find and replay Go-specific bugs?

2. Can Dara find bugs in systems?

3. What is the performance cost of property checking?

4. What is the performance cost of instrumenting the system to capture coverage

information?

5. What is the performance cost of modifying the go runtime?

6. What is the performance cost of scheduling actions at nodes?

6.1 Experimental Setup

Experiment Machine We run all our experiments with Dara on an Intel i7-core

3.1GHz processor machine with 32GB of RAM.

Strategy Comparison To evaluate the efficacy of Dara’s coverage-based strate-

gies, we compare them to the random path, called Random, exploration strategy. As

42

part of this strategy, Dara explores actions at random with no constraint preventing

Dara from executing previously seen paths or subpaths. This ensures that the Ran-

dom strategy is truly random without incorporating information collected during

prior runs.

6.2 Can Dara find and replay Go concurrency bugs

Methodology To assess whether Dara is able to find and catch Go concurrency

bugs, we select three programs all of which contain a non-deterministic bug, i.e.,

a bug that manifests only intermittently. Two of the selected programs follow the

data race bug pattern described in a 2019 study of real-world concurrency bugs [39],

while the other is a synchronization bug caused by improper use of channels.

6.2.1 Data Race Crash bug

Figure 6.1 shows a snippet of code with a global unprotected map variable

being shared across initializer, reader, and writer goroutines. The initializer routine

initializes the map; the reader goroutine reads values from the map; and the writer

writes values to the map. Upon completion, each goroutine writes to a shared

channel with the main goroutine indicating completion. The main goroutine blocks

until it receives a notification of completion from each goroutine. The expected

behaviour is for the initializer goroutine to initialize the map first and then the reader

and writer goroutines to read from and write to the map concurrently. However,

there is a nondeterministic bug in this code that leads the program to crash due to a

data race on the shared global map variable. In this bug, the writer goroutine could

potentially attempt to write to the map before it has been initialized which will lead

to a crash due to an attempt to write to a nil map. Note that if reading from a nil

map is a safe operation in go and does not lead to crash.

Dara can capture these crashes as it explores all potential interleavings of the

goroutines and generates a schedule in which the writer goroutine attempts to write

to a nil map causing a crash. We ran Dara’s explorer with three different exploration

strategies - Random, Unique, and Frequency and explored 10 different paths with

each strategy. Each strategy found the bug in the first three paths it explored.

43

1 var m map [str ing] str ing
2 var comm chan i n t
3

4 func i n i tmap () {
5 m = make (map [str ing] str ing)
6 comm <− 1
7 }
8

9 func reader () {
10 for i := 0 ; i <= 5; i ++ {
11 for k , v := range m {
12 fmt . Pr in t ln (k , v)
13 }
14 }
15 comm <− 2
16 }
17

18 func w r i t e r () {
19 for i := 0 ; i <= 5; i ++ {
20 m[str ing (i)] = str ing (i)
21 }
22 comm <− 3
23 }
24

25 func main () {
26 / / I n i t i a l i z e s the communication channel between the main
27 / / go rou t ine and the c h i l d r e n gorou t ines
28 comm = make (chan int , 3)
29 / / Launches a gorou t ine t h a t i n i t i a l i z e s the shared map
30 go i n i tmap ()
31 / / Launches a gorou t ine t h a t reads from the shared map
32 go reader ()
33 / / Launches a gorou t ine t h a t w r i t e s to the shared map
34 go w r i t e r ()
35 <− comm
36 <− comm
37 <− comm
38 }

Figure 6.1: A data race on an unprotected global shared variable leads to a
crash.

44

1 func main () {
2 var wg sync . WaitGroup
3 wg. Add (5)
4 for i := 0 ; i < 5; i ++ {
5 go func () {
6 fmt . Pr in t ln (i)
7 wg. Done ()
8 + runtime.DaraLog(”VarCheck”,”i”,i)
9 } ()

10 }
11 wg. Wait ()
12 }

(a)
1 / / VarCheckProperty
2 / / i
3 func VarCheckProperty (Val i n t) bool {
4 return Val < 5
5 }

(b)

Figure 6.2: (a) Code with a data race bug on the loop variable between the
parent goroutine and child goroutine; (b) property file used by Dara to
find this bug

6.2.2 Data Race Property Violation

Figure 6.2a shows a snippet of code which has a bug caused by a data race. The

local loop variable i is shared between the parent goroutine and the child goroutines

it creates at line 5. The developer intends each child goroutine to use a distinct i

value. However, the values of i are non-deterministic in the program. For example, if

children goroutines begin after the whole loop of the parent goroutine is completed,

then the value of i will be equal to 5 for all goroutines. Thus the output of the

program will be “55555” instead of some anagram of “01234”. The buggy program

will produce the correct result only if each child goroutine uses the value of i before

the parent goroutine updates the value.

Dara can catch such bugs by having the user specify a property that checks

whether the shared variable takes desired values only during the various execution

paths during the exploration. For this specific bug, the user can instrument their

code with just one additional line of code, as shown in line 8 (coloured blue) of

45

Figure 6.2a, which reports the value of i used by the goroutine during the execution.

Then, the user simply writes a property on the value of variable i, specifying that the

value of i must always be less than 5 as shown in Figure 6.2b. We ran Dara’s explorer

with three different exploration strategies - Random, Unique, and Frequency and

explored 20 different paths with each strategy. All three strategies were able to find

the bug within the first paths they explored. Random strategy performed the best for

this program as it found the bug in the first path it explored and was able to find the

bug in 16 out of the 20 paths it explored. With the Unique strategy, Dara found the

bug in 13 of the 20 different explored paths. With the Frequency strategy, Dara was

able to find the bug in 12 of the 20 different explored paths.

6.2.3 Channel synchronization bug

Figure 6.3 shows a snippet of code of a concurrent Producer-Consumer system.

In this system, the main goroutine creates a producer goroutine and a consumer

goroutine with the producer goroutine programmed to generate five elements which

it will send to the consumer goroutine via a shared channel. After the producer

goroutine finishes producing five elements, it notifies the main goroutine about

the end of production via a message on a shared channel. The expected behaviour

for this system is for the producer to produce five elements and the consumer to

consume five elements. However, this code has a nondeterministic bug. The bug

manifests in the form of the producer correctly producing five elements but the

consumer consuming only four elements, because once the production is finished,

the main goroutine becomes unblocked as it was only blocked waiting to read from

the shared channel between itself and the producer goroutine. Once unblocked,

the main goroutine can exit and cause the program to terminate without letting the

consumer complete consumption of the last element.

Dara can catch such bugs by simply checking whether the number of successful

sends and deliveries on the shared channel are equal. In Figure 6.3, line 49 reports

the number of successful sends and deliveries on the shared channel between the

producer and consumer goroutine to Dara. Figure 6.4 shows the corresponding

property that Dara checks during exploration to find a schedule where the property is

violated. We ran Dara’s explorer with three different exploration strategies - Random,

46

1 type Consumer struct {
2 msgs ∗chan i n t
3 }
4

5 / / consume reads the msgs channel
6 func (c ∗Consumer) consume () {
7 fmt . Pr in t ln (” [consume] : S ta r ted ”)
8 for {
9 msg := <−∗c . msgs

10 fmt . Pr in t ln (” [consume] : Received : ” , msg)
11 }
12 }
13

14 / / Producer d e f i n i t i o n
15 type Producer struct {
16 msgs ∗chan i n t
17 done ∗chan bool
18 }
19

20 / / produce creates and sends the message through msgs channel
21 func (p ∗Producer) produce (max i n t) {
22 fmt . Pr in t ln (” [produce] : S ta r ted ”)
23 for i := 0 ; i < max ; i ++ {
24 fmt . Pr in t ln (” [produce] : Sending ” , i)
25 ∗p . msgs <− i
26 }
27 ∗p . done <− true / / s i g n a l when done
28 fmt . Pr in t ln (” [produce] : Done ”)
29 }
30

31 func main () {
32

33 / / get the maximum number o f messages from f l a g s
34 max := f l a g . I n t (” n ” , 5 , ” de f ines the number o f messages ”)
35

36 f l a g . Parse ()
37

38 var msgs = make (chan i n t) / / channel to send messages
39 var done = make (chan bool) / / channel to n o t i f y end of produc t ion
40

41 / / S t a r t a gorou t ine f o r Produce . produce
42 go NewProducer(&msgs , &done) . produce (∗max)
43

44 / / S t a r t a gorou t ine f o r Consumer . consume
45 go NewConsumer(&msgs) . consume ()
46

47 <−done
48

49 + runtime.DaraLog(”FinalCheck”, ”NumSendings,NumDeliveries”, runtime.NumSendings(msgs),
runtime.NumDeliveries(msgs))

50 }

Figure 6.3: Snippet of code for a concurrent Producer Consumer system with
an unexpected behaviour bug caused due to lack of synchronization
between the producer, consumer, and main goroutines

47

1 / / EqualSendingsDel iver ies
2 / / NumSendings
3 / / NumDeliveries
4 func EqualSendingsDel iver ies (Sends , Dels i n t) bool {
5 return Sends == Dels
6 }

Figure 6.4: The property file for the producer consumer code in Figure 6.3

Unique, and Frequency and explored 50 different paths with each strategy. We chose

to explore only 50 paths since we believed that would be enough paths to cover

every single block in the program at least once and explore enough orderings of

exploration of these blocks to find the injected bug. With the Unique strategy, Dara

was able to find the bug in the second path it explored. Out of the 50 paths, Dara

found the bug in 29 different paths with the Unique strategy. With the Frequency

strategy, Dara was able to find the bug in the first path it explored but out of the 50

paths, it found the bug in only 20 different paths. Random strategy performed the

worst for this program as it found a bug only in the fifth path it explored and was

able to find the bug in only 15 out of the 50 paths it explored.

6.2.4 Summary

Dara correctly finds the concurrency bug in all of the three programs and

generates a counterexample schedule that can be replayed using our replay engine.

This allows the developers to analyze the counterexample and reproduce the bug

deterministically for root cause analysis. One of the main challenges faced by the

authors who conducted a study of real-world concurrency bugs in Go [39] was

that it was hard and time consuming to reproduce concurrency bugs. We believe

that with a tool like Dara, such studies will be much easier to conduct as it would

allow for easier reproduction of concurrency bugs. We also believe that there is no

one exploration strategy that will work best for all programs but a combination of

various strategies will be effective in unearthing different kinds of bugs.

48

6.3 Can Dara find bugs in systems

To evaluate if Dara can find bugs in systems, we use implementation of a

popular concurrent algorithm, Dining Philosophers [11] and inject bugs in its

implementation. We then use Dara’s explorer to explore the state space to find the

injected bug(s). We compare our coverage-based exploration strategies with one

baselines for exploration - random path.

6.3.1 Dining Philosophers

1 package main

2

3 import (

4 ” fmt ”

5 ” math / rand ”

6 ” t ime ”

7)

8

9 type Phi losopher struct {
10 name str ing
11 chops t i ck chan bool
12 neighbor ∗Phi losopher

13 }
14

15 func makePhilosopher (name string , neighbor ∗Phi losopher) ∗Phi losopher {
16 p h i l := &Phi losopher{name, make (chan bool , 1) , neighbor}
17 p h i l . chops t i ck <− true
18 return p h i l

19 }
20

21 func (p h i l ∗Phi losopher) t h i n k () {
22 fmt . P r i n t f (”%v i s t h i n k i n g .\n ” , p h i l . name)

23 t ime . Sleep (t ime . Durat ion (rand . In t63n (1e9)))

24 }
25

26 func (p h i l ∗Phi losopher) eat () {
27 fmt . P r i n t f (”%v i s ea t ing .\n ” , p h i l . name)

28 t ime . Sleep (t ime . Durat ion (rand . In t63n (1e9)))

29 }
30

31 func (p h i l ∗Phi losopher) getChopst icks () {
32 t imeout := make (chan bool)

33 go func () {

49

34 t ime . Sleep (1e9)

35 t imeout <− true
36 } ()

37 <−p h i l . chops t i ck

38 fmt . P r i n t f (”%v got h i s chops t i ck .\n ” , p h i l . name)

39 select {
40 case <−p h i l . neighbor . chops t i ck :

41 fmt . P r i n t f (”%v got %v ’ s chops t i ck .\n ” , p h i l . name, p h i l . neighbor .

↪→ name)

42 fmt . P r i n t f (”%v has two chops t icks .\n ” , p h i l . name)

43 return
44 case <−t imeout :

45 p h i l . chops t i ck <− true
46 p h i l . t h i n k ()

47 p h i l . getChopst icks ()

48 }
49 }
50

51 func (p h i l ∗Phi losopher) re tu rnChops t i cks () {
52 p h i l . chops t i ck <− true
53 p h i l . neighbor . chops t i ck <− true
54 }
55

56 func (p h i l ∗Phi losopher) dine (announce chan ∗Phi losopher) {
57 p h i l . t h i n k ()

58 p h i l . getChopst icks ()

59 p h i l . eat ()

60 p h i l . re tu rnChops t i cks ()

61 announce <− p h i l

62 }
63

64 func main () {
65 names := [] str ing{ ”A” , ”B” , ”C” , ”D” , ”E” , ”F ”}
66 ph i losophers := make ([] ∗ Phi losopher , len (names))

67 var p h i l ∗Phi losopher

68 for i , name := range names {
69 p h i l = makePhilosopher (name, p h i l)

70 ph i losophers [i] = p h i l

71 }
72 ph i losophers [0] . neighbor = p h i l

73 fmt . P r i n t f (” There are %v phi losophers s i t t i n g a t a tab l e .\n ” , len (

↪→ ph i losophers))

74 fmt . Pr in t ln (” They each have one chopst ick , and must borrow from t h e i r

↪→ neighbor to eat . ”)

75 announce := make (chan ∗Phi losopher)

76 for , p h i l := range ph i losophers {
77 go p h i l . d ine (announce)

50

78 }
79 for i := 0 ; i < len (names) ; i ++ {
80 p h i l := <−announce

81 fmt . P r i n t f (”%v i s done d in ing .\n ” , p h i l . name)

82 go func () {
83 // Bug: No guarantee that the close will happen

84 // before a philosopher is able to return the chopstick

85 time.Sleep(time.Second)

86 close(phil.chopstick)

87 } ()

88 }
89 }

Listing 6.1: Buggy implementation of dining philosophers; the buggy lines

are shown in red

System Description We use an in-house concurrent implementation of a solution

to the dining philosophers problem. Each philosopher alternates between eating

and thinking. To start eating, a philosopher must grab two chopsticks - their own

chopstick and their neighbour’s chopstick. The philosopher must grab their own

chopstick first before grabbing their neighbour’s chopstick. If the philosopher

is unable to grab both chopsticks in a fixed amount of time, they return both

chopsticks and return to thinking before trying again. Once a philosopher finishes

eating, the philosopher finishes dining and exits the table. In our implementation,

shown in Listing 6.1, each philosopher is represented by their own goroutine. Each

philosopher maintains their own channel to which they send and receive their

chopstick. A philosopher also has access to the chopstick channel of one of its

neighbours. To acquire a chopstick, the philosopher must successfully read from

the channel and to release a chopstick, the philosopher must send the chopstick to

the channel.

Bug Injected In Listing 6.1, we add a bug at lines 82-87, where after a philoso-

pher has finished dining, a new goroutine is launched which sleeps for one second

and then closes the chopstick channel for that philosopher so that no one can return a

chopstick to that philosopher after all the philosophers have finished dining but still

allowing for another philosopher to take a chopstick. The bug is nondeterministic

as the channel might get closed before a philosopher who was using the chopstick

has had a chance to complete their meal. Since the injected bug is a crash bug, we

51

Figure 6.5: On which paths during the exploration did Dara report a bug for
each of the three search strategies; the path number on which Dara found
a bug is indicated by a mark

do not need to provide a property file for enforcing properties during exploration.

We could not enforce the liveness property that all philosophers must eventually eat

at least once since Dara’s property checker currently does not allow users to specify

temporal properties.

Results We ran Dara’s explorer with three different exploration strategies - Ran-

dom, Unique, and Frequency and explored 50 different paths with each strategy.

Note that the specific paths explored are a function of the exploration strategy, so a

strategy’s quality is expressed in how quickly it finds the bugs; e.g., strategies that

find bugs in paths 1-3 are better than those that find bugs in paths 4-6 Figure 6.5

shows the path numbers where the explorer found bugs with each strategy. With

the Unique strategy, Dara found the bug in the first path and out of the 50 paths it

explored, it was able to find the bug in 42 paths. Additionally, Dara found the bug

in the first 7 paths it explored. Similar to the Unique strategy, with the Frequency

strategy, Dara found the bug in the first path and out of the 50 paths it explored,

it was able to find the bug in 40 paths. With the Random strategy, Dara finds the

bug in the third path and in 34 out of 50 different paths explored. But, Dara found

the bug in only six of the first ten paths it explored with the Random strategy. This

suggests that the coverage-based strategies explore more buggy paths than Random

52

Figure 6.6: Number of states explored by each exploration strategy as a func-
tion of the number of paths

Figure 6.7: Performance Overhead for Dining Philosophers during exploration

53

strategy and can find the bugs faster than the Random strategy.

Figure 6.6 shows the number of unique states covered by the explorer for each

strategy. We define a unique state in terms of the uniqueness of basic blocks and

the frequency with which they are covered. For any two given states A and B, we

consider the system in state A and the system in state B to be in the same state if

the system has executed an identical of basic blocks and it has executed each block

the same number of times. For dining philosophers, the coverage based strategies

reach a higher number of unique states as compared to the number of unique states

reached by the Random strategy in the same number of runs.

Figure 6.7 shows the performance overhead of running the Dining Philosophers

program with Dara’s explorer as compared to running the program with an un-

modified Go runtime. For this program, Dara’s explorer only experiences a 3.2x

slowdown for each path explored in the program. The major bottleneck is the cost

of scheduling the chosen actions by the explorer due to the high communication

cost between the global and local scheduler. As this example has multiple calls

to “time.Sleep”, Dara is able to take advantage of the virtual clock to optimize the

execution by fast forwarding the clock of the application during exploration. Thus,

the amount of slowdown or speedup during exploration is dependent on virtual

clock optimizations.

6.4 Performance cost of property checking

Methodology To measure the cost of property checking, we run the property

checker in an isolated environment (without Dara’s explorer/global scheduler/local

scheduler) and emulate the values for the different variables required by the context.

We run the property checker with four different property files containing 1,2,5,

and 10 properties respectively. We measure three different things - (i) build time -

time taken for the property checker to parse the input file and build the properties

as executable plugins; (ii) load time - time taken for the property checker to load

the built property plugins into memory; (iii) check time - the time taken for the

property checker to check a property with a given context. We execute the build

procedure and the load procedure only once while executing the checking procedure

100000 times. Between each execution, the context for the property checker is

54

System Commit Hash Total Blocks Execution
Time (in s)

Kubernetes 35c8fece86 426308 49.674
etcd a621d807f0 52111 5.367

CockroachDB 8ee22d0f8d 25393 3.349
BoltDB fd01fc79c5 2588 0.816

Table 6.1: Instrumentation execution time for popular real go systems

modified such that all of the variables have their values updated. This ensures that

the property checker is not reaping any caching benefits.

Results Figure 6.8 shows the results of running our experiment described above.

From the figures, it is clear the increasing the number of properties increases

the buildtime, loadtime, and the checking time linearly. However, even for ten

properties, it takes less than 1 second to build the plugins for the properties, takes

under 6 milliseconds to load the plugins for all the properties, and takes about

80 microseconds for checking all the properties for a given context on average.

Dara only has to build and load the plugins once for the whole exploration process.

Thus, the property checker is efficient as it only takes nanoseconds to evaluate
whether a property is violated or not under a given context.

6.5 Performance cost of instrumenting the system

Methodology To measure the cost of instrumenting a system, we select four

representative, real-world software systems in Go, including one container systems

(Kubernetes), one distributed key-value store system (etcd), and two databases

(CockroachDB and BoltDB). We select these applications for 2 reasons: (i) these

applications are open-source projects that are popular on Github and have gained

traction and wide usage in real datacenter environments [39]. and (ii) all of these

applications have been targets of a prior study for understanding concurrency bugs

in real-world go systems [39].

Results Table 6.1 shows the results for running Dara’s instrumenter on the popular

go systems selected above. Kubernetes is the system with the largest codebase with

over 400K unique code blocks. However, despite the large size, it takes Dara’s

55

(a)

(b)

(c)

Figure 6.8: (a) Increase in build time with increase in number of properties
in the property file; (b) increase in load time with increase in number
of properties in the property file; and (c) increase in checking time with
increase in total number of properties

56

instrumenter less than a minute to instrument the full codebase. Both etcd and

CockroachDB are medium-sized systems and it takes the instrumenter less than 6

seconds to instrument each of them whilst for the tiny BoltDB system it takes the

instrumenter less than a second to instrument the full system. Dara’s instrumenter is

efficient and can instrument large codebases under a minute.

6.6 Performance cost of modifying the go runtime

6.6.1 Cost of Intercepting System Calls

To measure the cost of system call interception, we make use of go’s benchmark-

ing facility provided by the “testing” package. We write a benchmarking function

wrapper for each system call where the system call is executed thousands of time

and the execution time is measured. We measure only the cost of interception

without including the cost of writing the system call information to the shared

memory between the local schedulers and the global scheduler. We disable the

writing to shared memory for this experiment. The cost of writing to shared memory

is measured separately in the next section. First we run the benchmarking functions

with an uninstrumented go (version 1.10.4) and then with our modified go runtime,

dgo. The results of running the benchmarking are shown in Figure 6.9 ,Figure 6.10,

Figure 6.11, Figure 6.12. For the benchmarks that show a decrease in execution

time for a system call for dgo as compared to go, this is because of network related

timing nondeterminism during the benchmarking process. The biggest slowdown is

for GetPageSize and Executable system calls as they have slowed down from 2.8ns

and 0.28ns to 54ns each. This is due to the fact that the interception code takes

around 40-50ns to run. The median interception cost across all system calls is
16%.

6.6.2 Cost of Writing Events to Shared Memory

Dara’s local schedulers and the global scheduler communicate with each other

by writing information and commands to shared memory. The local scheduler must

perform a write to shared memory every time an event, described in Table 5.3,

occurs in the system. To measure the cost of writing event information to shared

57

Figure 6.9: System Call performance comparison between go1.10.4 and dgo -
Part 1

58

Figure 6.10: System Call performance comparison between go1.10.4 and dgo
- Part 2

59

Figure 6.11: System Call performance comparison between go1.10.4 and dgo
- Part 3

60

Figure 6.12: System Call performance comparison between go1.10.4 and dgo
- Part 4

61

Figure 6.13: CDF of time taken to write record event information to shared
memory

memory, we select an application that makes eight different system calls in its

execution. We use system calls as a way to measure this cost as every write to

shared memory for any given event must go through the same interace. We execute

the program with Dara (recording only executions, no exploration) 1000 times to

capture the amount of time taken to write the event information to shared memory.

Figure 6.13 shows the readings we observed from the 1000 different executions

of the application. On average, writing the event information to shared memory

takes 14.161 microseconds with a standard deviation of 3.98 microseconds. This is

slow but is required the events must be reported for the global scheduler.

6.6.3 Cost of Recording Coverage Information

To measure the cost of recording coverage information in the runtime, we select

an application that executes four different basic blocks in its execution and execute

it with Dara (only recording executions, no exploration) 1000 times to capture the

amount of time taken to write coverage information to shared memory.

Figure 6.14 shows the readings we observed from the 1000 different executions

of the application. On average, recording the coverage information takes 369

nanoseconds with a standard deviation of 354 nanoseconds. The high standard

62

Figure 6.14: CDF of time taken to write record coverage information

deviation is due to some updates for coverage taking around 3-4 microseconds. We

are unsure as to why some updates take up to 3-4 microseconds for completion

but we suspect it might be due to the operating system scheduling a different

process for execution and subsequently switching back to the Go process during

the period in which coverage information is being updated. Thus, the cost of
reporting coverage of individual blocks to the go runtime does not induce a
high overhead in the system’s overall runtime.

6.7 Performance cost of scheduling actions

To measure the cost of scheduling actions by Dara, we choose an application in

which the number of scheduled actions can be configured. We run this application

three different ways - (i) with unmodified go runtime, (ii) with Dara’s recorder

where the goroutine scheduling is simply observed and recorded but not controlled,

and (iii) with Dara’s explorer where the goroutine scheduling is controlled. For

reproducibility and fair comparison, we choose to execute the same actions that

were taken in the record mode, however the local scheduler must contact the global

scheduler to find the next action. We measure the runtime for the application’s

execution for all three ways. Figure 6.15 shows that the application runtime grows

63

Figure 6.15: Application runtime grows linearly with the number of scheduled
actions by Dara

linearly with increase in number of scheduled actions when Dara is in charge of

making scheduling actions and that the local scheduler has to contact the global

scheduler for actions. Scheduling actions at local schedulers is the bottleneck
for exploration as the communication between local schedulers and the global
scheduler is expensive because it requires polling on shared memory by the
local schedulers.

To measure the cost of choosing actions by Dara, we ran exploration of up to 50

paths on Dining Philosophers for each exploration strategy and measured the time

take by the explorer to choose the action that is to be executed next for every chosen

action during the 50 paths. Figure 6.16 shows the CDF of the cost of choosing the

action for different exploration strategies. Random exploration strategy takes the

shortest time to decide the next action as the explorer does not need to consult prior

information for choosing actions. Coverage-based strategies take nearly double the

amount of time taken by Random strategy to choose the action because for every

action, the coverage based strategies must consult prior information to decide the

best possible action. Despite this, the explorer takes less than 10 microseconds for

choosing the next action with coverage based exploration strategies.

64

Figure 6.16: Cost of choosing the next action with different exploration strate-
gies for exploration in Dining Philosophers

65

Chapter 7

Discussion

7.1 Limitations

Scalability One of the major drawbacks of the current implementation of Dara is

that it can run only a limited number of nodes at a time as it runs every single node

of the distributed system on the same machine. As there is a limit to the number of

total nodes that can be run on a single machine, Dara can not scale to systems with

thousands of nodes which are pervasive in large-scale cloud systems. However, this

can be rectified by distributing the nodes across multiple machines and having the

local schedulers communicate with the global scheduler through an intermediary

agent at each node where the agent communicates with the local scheduler over

shared memory and with the global scheduler over the network.

Property Checking Allowing users to write properties as go functions is a trade-

off between the amount of effort required to specify the property and the expressive

power of the properties that can be specified. Dara’s current property checker has no

notion of temporal properties as the current property specification interface provides

no way of incorporating control flow information of the program. Moreover, the

current property checker requires the user to instrument their program to report

values of variables to Dara which adds to the developer effort required to use Dara.

Usability Analysis We would have liked to have performed a user study to

understand the Usability of Dara as well as the auxiliary tools to be used for

understanding buggy execution traces but due to time constraints we were unable to

66

perform a thorough usability analysis of Dara. This remains an important part of

our future work.

Comparison with state-of-the-art The current evaluation of Dara does not

include a comparison of Dara’s exploration strategies with the current state-of-the-

art exploration strategies. This is because the current exploration strategies are

not open-source and need to be implemented in Go to carry out a comparative

experiment. Due to time constraints, I was unable to complete this experiment.

7.2 Future Work

Environment Exploration Currently, Dara controls coverage of code through

exploration of different schedules of actions. However, certain code blocks can

be exercised and executed only if something has gone wrong in the environment

or due to a misconfiguration issue or due to random faults. Dara does not control

exploration of code coverage that may be caused due to environmental failures but

we believe that once Dara incorporates this, it will find more bugs.

Stop-the-world distributed debugger The world is in a dire need of a stop-the-

world debugger for Go based distributed systems. Dara in its current form falls short

of being a stop-the-world debugger as it still is not able to expose stack and variable

information the way tools like GDB expose such information to the user. With that

being said, Dara has all the necessary prerequisites to serve as the basis for a stop-

the-world debugger. Currently, it can control the execution and scheduling of any

given goroutine on any node and the sending/delivery of messages across channels

or the network. It also has access to the stack information for every goroutine but it

is not exposed to the users of Dara. The one major piece missing from Dara is the

access to debugging symbols for reading values of variables at runtime. However,

this information is available in the binaries generated by go as DWARF debugging

information [7] and is already in use by debuggers such as gdb and delve [15].

Expressive Property Interface The current property specification interface does

not provide a way for the users to specify temporal properties. Moreover, to be as

powerful as abstract MCs, the property specification must support Linear Temporal

Logic (LTL) [12, 36] property checking where the users can specify properties

about the system using LTL formulae. Moreover, the Global Scheduler has access

67

to performance information for every single node that is not currently exposed

to the application via dgo but can be used in specifying performance properties.

The property interface can be further developed to allow users to specify security

properties about the system.

Composing Exploration Strategies There has been a plethora of work done in

mitigating state space explosion in model checkers [13, 28, 31]. Currently, Dara’s

exploration strategy does not incorporate these into its coverage-based exploration

strategies. We believe that combining Dara’s coverage based strategies with existing

strategies for combating state-space explosion is a fruitful future endeavour.

Combining Abstract and Concrete MCs Dara’s exploration strategy doesn’t

completely eliminate the state space explosion problem. It just provides a better

way of exploring the state space so that more bugs can be unearthed in fewer runs

of the system. However, model checkers that work on abstract models are much

faster and efficient at exploring the state space. We believe that there is definitely

some merit in combining the speed of abstract model checkers with concrete model

checkers like Dara for efficient bug hunting.

68

Chapter 8

Conclusion

In this thesis, we have presented Dara, a concrete MC specifically designed for

Go. We discussed the design choices that we made to implement a concrete MC

for Go such as interposing on the Go runtime to control goroutine creation and

scheduling, interposing on Go’s time library to control the firing of timers and to

provide a consistent view of time to the application during exploration, controlling

the various sources of nondeterminism in Go systems, and the design of APIs

exposed to users for capturing variable values for property checking. Dara is also

powered with three novel coverage-based exploration strategies for searching for

crashes and violations of user-defined properties throughout the state space of a

distributed system. The key idea behind Dara’s exploration strategy is to explore

those paths first which maximize the code coverage of the system. These are

not the only possible coverage-based exploration strategies that are possible. We

believe that there exist many such coverage-based strategies, each of which would

potentially be useful in finding a different class of bugs. Ultimately, we believe that

there is no one strategy that will work best for all possible programs and systems

but a mixture of various strategies would be able to discover different kinds of bugs.

Since finding a bug is not enough for a user to reproduce or find the root cause, we

also provide a suite of auxiliary tools with Dara including a deterministic replay

engine for replaying and understanding buggy execution traces.

69

Bibliography

[1] Basic block. https://en.wikipedia.org/wiki/Basic block. Accessed:
2020-08-17. → pages 19, 25

[2] C. Artho, Q. Gros, G. Rousset, K. Banzai, L. Ma, T. Kitamura, M. Hagiya,
Y. Tanabe, and M. Yamamoto. Model-based api testing of apache zookeeper.
In Software Testing, Verification and Validation (ICST), 2017 IEEE
International Conference on, pages 288–298. IEEE, 2017. → page 4

[3] A. Bakst, K. v. Gleissenthall, R. G. Kıcı, and R. Jhala. Verifying distributed
programs via canonical sequentialization. Proceedings of the ACM on
Programming Languages, 1(OOPSLA):110, 2017. → page 6

[4] B. Bérard, M. Bidoit, A. Finkel, F. Laroussinie, A. Petit, L. Petrucci, and
P. Schnoebelen. Systems and software verification: model-checking
techniques and tools. Springer Science & Business Media, 2013. → page 2

[5] I. Beschastnikh, P. Liu, A. Xing, P. Wang, Y. Brun, and M. D. Ernst.
Visualizing distributed system executions. ACM Transactions on Software
Engineering and Methodology (TOSEM), 29(2):1–38, 2020. → pages 37, 40

[6] H. Chen, S. Guo, Y. Xue, Y. Sui, C. Zhang, Y. Li, H. Wang, and Y. Liu. Muzz:
Thread-aware grey-box fuzzing for effective bug hunting in multithreaded
programs. arXiv preprint arXiv:2007.15943, 2020. → page 7

[7] D. D. I. F. Committee et al. Dwarf debugging information format, version 4,
2010. → page 67

[8] J. Condliffe. Amazon’s $150 million typo is a lightning rod for a big cloud
problem. MIT Technology Review, Mar. 2017.
https://www.technologyreview.com/s/603784/, accessed Aug. 21 2018. →
page 1

70

https://www.technologyreview.com/s/603784/

[9] P. Deligiannis, M. McCutchen, P. Thomson, S. Chen, A. F. Donaldson,
J. Erickson, C. Huang, A. Lal, R. Mudduluru, S. Qadeer, et al. Uncovering
bugs in distributed storage systems during testing (not in production!). In
FAST, pages 249–262, 2016. → page 4

[10] A. Desai, V. Gupta, E. Jackson, S. Qadeer, S. Rajamani, and D. Zufferey. P:
Safe asynchronous event-driven programming. In PLDI 2013. → page 1

[11] E. W. Dijkstra. Two starvation free solutions to a general exclusion problem.
Unpublished Tech. Note EWD, 625, 1978. → page 49

[12] E. A. Emerson. Handbook of Theoretical Computer Science, Volume B:
Formal Models and Semantics, chapter Temporal and Modal Logic, pages
995–1072. J. van Leeuwen, ed., North-Holland Pub. Co./MIT Press, 1990. →
page 67

[13] C. Flanagan and P. Godefroid. Dynamic partial-order reduction for model
checking software. ACM Sigplan Notices, 40(1):110–121, 2005. → pages
25, 68

[14] D. Geels, G. Altekar, P. Maniatis, T. Roscoe, and I. Stoica. Friday: Global
Comprehension for Distributed Replay. In Networked Systems Design and
Implementation (NSDI), Cambridge, MA, USA, 2007. → page 6

[15] go delve. Delve: A debugger for the go programming language, 2020. →
page 67

[16] Golang. Gocoverage tool. https://golang.org/cmd/cover/. → page 36

[17] R. Guerraoui and M. Yabandeh. Model checking a networked system without
the network. In Proceedings of the 8th USENIX Conference on Networked
Systems Design and Implementation, NSDI’11, pages 225–238, Berkeley, CA,
USA, 2011. USENIX Association. → page 4

[18] H. Guo, M. Wu, L. Zhou, G. Hu, J. Yang, and L. Zhang. Practical software
model checking via dynamic interface reduction. In Proceedings of the
Twenty-Third ACM Symposium on Operating Systems Principles, SOSP ’11,
pages 265–278, New York, NY, USA, 2011. ACM. → page 4

[19] C. Hawblitzel, J. Howell, M. Kapritsos, J. R. Lorch, B. Parno, M. L. Roberts,
S. Setty, and B. Zill. IronFleet: Proving Practical Distributed Systems Correct.
In SOSP 2015. → pages 1, 6

71

[20] J. L. Hennessy and D. A. Patterson. Computer architecture: a quantitative
approach. Elsevier, 2011. → pages 19, 25

[21] G. J. Holzmann. The model checker spin. IEEE Trans. Softw. Eng.,
23(5):279–295, May 1997. → page 1

[22] jepsen io. Jepsen. https://github.com/jepsen-io/jepsen. → page 6

[23] C. Killian, J. W. Anderson, R. Jhala, and A. Vahdat. Life, death, and the
critical transition: finding liveness bugs in systems code. In Networked
Systems Design and Implementation (NSDI), Cambridge, MA, USA, 2007. →
pages 4, 5

[24] C. Killian, K. Nagaraj, S. Pervez, R. Braud, J. W. Anderson, and R. Jhala.
Finding latent performance bugs in systems implementations. In Proceedings
of the Eighteenth ACM SIGSOFT International Symposium on Foundations of
Software Engineering, FSE ’10, pages 17–26, New York, NY, USA, 2010.
ACM. → page 5

[25] L. Lamport. The temporal logic of actions. ACM Transactions on
Programming Languages and Systems (TOPLAS), 16(3):872–923, 1994. →
page 5

[26] L. Lamport, J. Matthews, M. Tuttle, and Y. Yu. Specifying and verifying
systems with TLA+. In EW 2002. → page 1

[27] F. Laroussinie and K. G. Larsen. Cmc: A tool for compositional
model-checking of real-time systems. In Formal Description Techniques and
Protocol Specification, Testing and Verification, pages 439–456. Springer,
1998. → page 4

[28] T. Leesatapornwongsa, M. Hao, P. Joshi, J. F. Lukman, and H. S. Gunawi.
Samc: Semantic-aware model checking for fast discovery of deep bugs in
cloud systems. In OSDI, pages 399–414, 2014. → pages 2, 4, 5, 25, 68

[29] M. Lesani, C. J. Bell, and A. Chlipala. Chapar: Certified causally consistent
distributed key-value stores. SIGPLAN 2016. → pages 1, 6

[30] X. Liu, Z. Guo, X. Wang, F. Chen, X. Lian, J. Tang, M. Wu, M. F. Kaashoek,
and Z. Zhang. D3S: Debugging Deployed Distributed Systems. In Networked
Systems Design and Implementation (NSDI), San Francisco, CA, USA, 2008.
→ page 6

72

[31] J. F. Lukman, H. Ke, C. A. Stuardo, R. O. Suminto, D. H. Kurniawan,
D. Simon, S. Priambada, C. Tian, F. Ye, T. Leesatapornwongsa, et al. Flymc:
Highly scalable testing of complex interleavings in distributed systems. In
Proceedings of the Fourteenth EuroSys Conference 2019, pages 1–16, 2019.
→ pages 2, 4, 5, 25, 68

[32] M. Musuvathi, S. Qadeer, T. Ball, G. Basler, P. A. Nainar, and I. Neamtiu.
Finding and reproducing heisenbugs in concurrent programs. In OSDI,
volume 8, pages 267–280, 2008. → page 4

[33] C. Newcombe, T. Rath, F. Zhang, B. Munteanu, M. Brooker, and
M. Deardeuff. How amazon web services uses formal methods. Commun.
ACM, 58(4):66–73, Mar. 2015. → page 5

[34] novalagung. go-eek. https://github.com/novalagung/go-eek, 2020. → page 35

[35] A. Panda, M. Sagiv, and S. Shenker. Verification in the age of microservices.
In Proceedings of the 16th Workshop on Hot Topics in Operating Systems,
pages 30–36. ACM, 2017. → page 5

[36] A. Pnueli. The temporal logic of programs. In 18th Annual Symposium on
Foundations of Computer Science (sfcs 1977), pages 46–57. IEEE, 1977. →
pages 8, 67

[37] P. Reynolds, C. Killian, J. L. Wiener, J. C. Mogul, M. A. Shah, and A. Vahdat.
Pip: Detecting the Unexpected in Distributed Systems. In 3rd conference on
Networked Systems Design & Implementation - Volume 3, NSDI’06, page 9.
USENIX Association, 2006. → page 6

[38] C. Scott, A. Panda, V. Brajkovic, G. Necula, A. Krishnamurthy, and
S. Shenker. Minimizing Faulty Executions of Distributed Systems. In NSDI,
2016. → page 6

[39] T. Tu, X. Liu, L. Song, and Y. Zhang. Understanding real-world concurrency
bugs in go. In Proceedings of the Twenty-Fourth International Conference on
Architectural Support for Programming Languages and Operating Systems,
pages 865–878, 2019. → pages 13, 43, 48, 55

[40] J. R. Wilcox, D. Woos, P. Panchekha, Z. Tatlock, X. Wang, M. D. Ernst, and
T. Anderson. Verdi: A framework for implementing and formally verifying
distributed systems. In PLDI 2015. → pages 1, 6

73

[41] M. Yabandeh, N. Knezevic, D. Kostic, and V. Kuncak. Crystalball: Predicting
and preventing inconsistencies in deployed distributed systems. In The 6th
USENIX Symposium on Networked Systems Design and Implementation
(NSDI’09), 2009. → page 4

[42] J. Yang, T. Chen, M. Wu, Z. Xu, X. Liu, H. Lin, M. Yang, F. Long, L. Zhang,
and L. Zhou. Modist: Transparent model checking of unmodified distributed
systems. In NSDI 2009. USENIX Association. → pages 2, 4, 9

[43] D. Yuan, Y. Luo, X. Zhuang, G. R. Rodrigues, X. Zhao, Y. Zhang, P. Jain, and
M. Stumm. Simple testing can prevent most critical failures: An analysis of
production failures in distributed data-intensive systems. In OSDI, pages
249–265, 2014. → page 6

[44] A. Zaostrovnykh, S. Pirelli, L. Pedrosa, K. Argyraki, and G. Candea. A
formally verified nat. In Proceedings of the Conference of the ACM Special
Interest Group on Data Communication, pages 141–154. ACM, 2017. →
page 5

74

	Abstract
	Lay Summary
	Preface
	Table of Contents
	List of Tables
	List of Figures
	Acknowledgments
	1 Introduction
	2 Related Work
	3 Background
	3.1 Model Checking
	3.1.1 Concrete Model Checkers

	3.2 Go Runtime Background

	4 Design
	4.1 Overview
	4.2 Concrete Model Checker
	4.2.1 Controlling Nondeterminism
	4.2.2 Overlord
	4.2.3 Instrumenter
	4.2.4 Global Scheduler
	4.2.5 Local Scheduler
	4.2.6 Explorer
	4.2.7 Property Checker

	4.3 Exploration Strategies
	4.3.1 Distributed Code Coverage

	5 Implementation
	5.1 Dara - Concrete MC
	5.1.1 Modified Go Runtime
	5.1.2 System Event Capture
	5.1.3 Overlord
	5.1.4 Local Scheduler
	5.1.5 Global Scheduler
	5.1.6 Explorer
	5.1.7 Property Checker
	5.1.8 Instrumenter

	5.2 Auxiliary Tools
	5.2.1 Replay Engine
	5.2.2 Schedule Info Tool
	5.2.3 Coverage Report Tool
	5.2.4 PropChecker Report Tool
	5.2.5 ShiViz Converter Tool

	6 Evaluation
	6.1 Experimental Setup
	6.2 Can Dara find and replay Go concurrency bugs
	6.2.1 Data Race Crash bug
	6.2.2 Data Race Property Violation
	6.2.3 Channel synchronization bug
	6.2.4 Summary

	6.3 Can Dara find bugs in systems
	6.3.1 Dining Philosophers

	6.4 Performance cost of property checking
	6.5 Performance cost of instrumenting the system
	6.6 Performance cost of modifying the go runtime
	6.6.1 Cost of Intercepting System Calls
	6.6.2 Cost of Writing Events to Shared Memory
	6.6.3 Cost of Recording Coverage Information

	6.7 Performance cost of scheduling actions

	7 Discussion
	7.1 Limitations
	7.2 Future Work

	8 Conclusion
	Bibliography

