
Inferring and Asserting Distributed Invariants

by

Stewart Grant

BSc. Computer Science, University of British Columbia, 2016

A THESIS SUBMITTED IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR THE DEGREE OF

Master of Science

in

THE FACULTY OF GRADUATE AND POSTDOCTORAL

STUDIES

(Computer Science)

The University of British Columbia

(Vancouver)

August 2018

c© Stewart Grant, 2018

The following individuals certify that they have read, and recommend to the Fac-
ulty of Graduate and Postdoctoral Studies for acceptance, the thesis entitled:

Inferring and Asserting Distributed Invariants

submitted by Stewart Grant in partial fulfillment of the requirements for the de-
gree of Master of Science in Computer Science.

Examining Committee:

Ivan Beschastnikh, Computer Science
Supervisor

Bill Aiello, Computer Science
Supervisory Committee Member

ii

Abstract

Distributed systems are difficult to debug and understand. A key reason for this is

distributed state, which is not easily accessible and must be pieced together from

the states of the individual nodes in the system.

We propose Dinv, an automatic approach to help developers of distributed sys-

tems uncover the runtime distributed state properties of their systems. Dinv uses

static and dynamic program analyses to infer relations between variables at differ-

ent nodes. For example, in a leader election algorithm, Dinv can relate the variable

leader at different nodes to derive the invariant ∀ nodes i, j, leaderi = leader j.

This can increase the developer’s confidence in the correctness of their system.

The developer can also use Dinv to convert an inferred invariant into a distributed

runtime assertion on distributed state.

We applied Dinv to several popular distributed systems, such as etcd Raft,

Hashicorp Serf, and Taipei-Torrent, which have between 1.7K and 144K LOC and

are widely used. Dinv derived useful invariants for these systems, including invari-

ants that capture the correctness of distributed routing strategies, leadership, and

key hash distribution. We also used Dinv to assert correctness of the inferred etcd

Raft invariants at runtime, using these asserts to detect injected silent bugs.

iii

Lay Summary

Distributed systems are programs that run on more than one machine. They are

difficult to program due to their scale, complexity, and need to consider failure

scenarios. Many software tools such for aiding developers exist for single machine

systems, but few for distributed systems.

An invariant is a property that always holds true: for example The first rule of

tautology club is the first rule of tautology club, Understanding such properties is

known to help developers. In this work we describe a software tool called Dinv

which infers and enforces invariants to give developers peace of mind that their

program works.

A key factor the difficulty of this work is that every computer has a clock and

their times are not synchronized. This makes ordering events hard. Our contribu-

tion is a technique which infers distributed invariants in the general setting where

clocks are not synchronized.

iv

Preface

The work presented in this thesis was conducted by the author in collaboration with

Hendrick Chech, Amanda Carbonari, and Kuba Karpierz under the supervision

of Dr. Ivan Beschastnikh. The body of this thesis was published as at the 40th

International Conference On Software Engineering (ICSE 2018) [23] as ”Inferring

and Asserting Distributed Invariants”.

Implementation of the Dinv tool and the design of its associated algorithms

Chapter 3.1, 3.2, 3.3, 3.4 was completed by myself. All tables, and figures were

designed by myself with the mediation of Ivan. Amanda, and Kuba designed and

implemented a proof of concepts of Dinv’s distributed assertion mechanism 3.5,

which was extended and modified by myself for the algorithms correctness and

ability to apply to real systems. I conducted the evaluation of the Dinv tool on

Etcd 5.6, and Taipei-Torrent 5.5. The evaluation on Serf 5.3 and Groupcache 5.4

were conducted by Hendrick Chech. All performance measurements of Dinv 5.8

were taken by myself. All work in this thesis was shepherded by Ivan Bescasht-

nikh.

v

Table of Contents

Abstract . iii

Lay Summary . iv

Preface . v

Table of Contents . vi

List of Tables . viii

List of Figures . ix

Glossary . xi

Acknowledgements . xii

1 Introduction . 1

2 Background and assumptions . 4

3 Design . 6
3.1 System instrumentation . 6

3.2 Extracting global states . 9

3.3 Strategies to group global states 12

3.4 Inferring distributed invariants 15

3.5 Asserting inferred invariants . 15

vi

4 Implementation . 17

5 Evaluation . 18
5.1 Using Dinv . 18

5.2 Evaluation: inferring invariants 19

5.3 Analyzing the SWIM protocol in Serf 19

5.4 Analyzing Groupcache . 21

5.5 Analyzing Taipei-Torrent . 22

5.6 Analyzing etcd Raft . 23

5.7 Evaluation: asserting invariants 25

5.8 Evaluation: Dinv overhead . 26

5.9 Distributed assertions overhead 28

6 Discussion . 30

7 Related work . 32

8 Conclusion . 34

Bibliography . 35

vii

List of Tables

Table 3.1 Instrumentation strategies and the control (automatic/manual)

offered by each strategy for selecting state logging location and

the set of logged variables. 9

Table 5.1 Invariants listed by system, their corresponding distributed state

invariants, and descriptions. 20

Table 5.2 LOC to implement and time (sec) to detect an invariant violation

with probabilistic asserts. 24

Table 5.3 Impact of Dinv annotations on Raft performance. 27

Table 5.4 Generated Dinv log size and Dinv’s dynamic analysis running

time for varying system run times, for two systems: etcd Raft

and GroupCache (GCache). 28

viii

List of Figures

Figure 1.1 Overview of the invariant inference steps in Dinv. 1

Figure 3.1 Code excerpt from Serf with underlined network interacting

variables contained in the forward slice from conn.Read() on

line 3. Line 6 (L2) and line 12 (L1) are example instrumenting

annotations. 8

Figure 3.2 (a) Message-sequence diagram of an execution of code in Fig-

ure 3.1 with two nodes, their local vector clocks paired with

each event (in brackets), and message deltas computed for each

event (-1,0,+1). (b) (Partial) lattice of the execution. Each ver-

tex displays the corresponding vector time and ground states

are bolded. 9

Figure 3.3 Execution of SWIM code from Figure 3.1. Node 1 responds to

a Ping from Node 0. Concurrently Node 2 propagates Node 3’s

Gossip message. L1 & L2 mark local logged state (messages

& events in Figure 3.1). Dashed lines mark three global states

(which are also ground states), each an n-tuple of the closest

local node states above the dashed line. 11

ix

Figure 3.4 The merging of local states from 3 global states by our three

grouping strategies. On the left each Global State corresponds

to a dashed line from Figure 3.3. Logged local states are marked

by grey circles, each contains the variables listed on Figure 3.1

line 12. On the right are group id’s from the respective strate-

gies All States Merge (AS): all-states, Send Receive Merge
(SR): send-receive, and Total-Order Merge (TO): total order.

Highlighted is a group of states merged by all-states. In bold

is a group of states merged by send-receive. 13

Figure 3.5 A distributed assertion that checks that all nodes in a cluster

agree on the leader. 15

x

Glossary

LOC Lines of Code

TCP Transmission Control Protocol

IP Internet Protocol

UDP User Datagram Protocol

RPC Remote Procedure Call

HTTP Hyper Text Transfer Protocol

DHT Distributed Hash Table

XOR Exclusive Or

AST Abstract Syntax Tree

RTT Round Trip Time

CPU Central Processing Unit

LTL Linear Temporal Logic

IOPS Input/Output Operations Per Second

AS All States Merge

SR Send Receive Merge

TO Total-Order Merge

xi

Acknowledgements

This research was funded by grants from both the Natural Science and Engineering

Research Council of Canada (NSERC) Discovery Grand, Huawei, and the Institute

for Computing, Information and Cognitive Systems (ICICS) at the University of

British Columbia.

Special thanks to Ivan Beschastnikh for his superb mentorship, teaching, and

leadership over the years. To my NSS lab-mates, thank you for making the lab a

daily joy to attend. Thank you to the Grain Workers Union Local 333 for giving

students well paying summer jobs, and funding my undergraduate. Finally thank

you to my parents and family for being my rock.

xii

Chapter 1

Introduction

Instrumentation

Network usage
detector

Vector clock
injection

System execution Mining distributed state

Daikon

Input
Go code

Detecting invariants

System
execution

Global state
extraction

Global state
grouping

Detected
Invariants

Runtime invariant assertions

Figure 1.1: Overview of the invariant inference steps in Dinv.

Developing correct distributed systems remains a formidable challenge [7, 58].

One reason for this is that developers lack the tools to help them extract and reason

about the distributed state of their systems [45, 49]. The state of a sequential pro-

gram is well defined (stack and heap), easy to inspect (with breakpoints) and can

be checked for correctness with assertions. However, the state of a distributed exe-

cution is resident across multiple nodes and it is unclear how to best compose these

node states into a coherent picture, let alone check these distributed node states for

correctness.

In this work we propose a program analysis tool-chain called Dinv for infer-

ring likely data properties, or invariants, between variables at different nodes in a

distributed system, and for checking these distributed invariants at runtime.

Dinv-inferred invariants help developers reason about the distributed state of

their systems in various ways. In particular, they can confirm expected relation-

ships between variables separated by a network to improve developer confidence

in their system’s correctness.

1

For example, consider a two-phase commit protocol [4] in which the coordi-

nator first queries other nodes for their vote and if all nodes, including the co-

ordinator, voted COMMIT then the coordinator broadcasts a TX COMMIT, oth-

erwise it broadcasts a TX ABORT. At the end of this protocol all nodes should

either commit or abort. To check if several non-faulty runs of the system are cor-

rect, a developer can examine the Dinv-inferred distributed state invariants for this

set of executions. In this case they can check whether Dinv mined the invariant

coordinator.commit = replicai.commit for each replica i in the system. This would

mean that the commit state across all nodes was identical at consistent snapshots

of the system. They can also use Dinv to add a runtime assertion to check this

invariant in future runs.

Dinv is the first automated end-to-end tool to infer distributed system state

invariants. The closest prior work by Yabandeh et al. [56] requires developers

to manually identify variables to log, instrument their systems, identify distributed

cuts, and so on. Dinv automates the entire process and requires minimal input from

the developer. Dinv is also complementary with many existing tools for checking

distributed systems like Modist [57] and D3S [37]. These tools expect the devel-

oper to manually specify properties to check; Dinv can make these tools easier to

use. Finally, Dinv includes a light-weight and probabilistic assertion mechanism

that can detect invariant violations with low, controllable, overhead.

Dinv works by first statically instrumenting the system’s code, either automati-

cally or with user-supplied annotations. Dinv uses static program slicing to capture

those variables that affect or are affected by network communication at each node.

During system execution, Dinv instrumentation tracks these variables, collects their

concrete runtime values, tags them with a vector timestamp, and logs the values at

each node. Once the developer has decided that the system has run long enough

(e.g., execution of a test suite), they run Dinv on the generated logs. Dinv uses

vector timestamps in the logs to compose distributed states, and then merges these

states using three novel strategies into a series of system snapshots. Dinv then uses

a version of the Daikon tool [19] to infer likely distributed state invariants over the

tracked variables in the merged snapshots.

Our approach with Dinv is pragmatic: it does not require the developer to for-

mally specify their system and it scales to large production systems and long exe-

2

cutions. Although Dinv uses dynamic analysis, which is incomplete (Dinv cannot

reason about executions it does not observe), we believe that it is useful because

(1) most distributed systems developers today use dynamic analysis to check their

systems (e.g., with testing) and (2) we have been able to use Dinv to infer and assert

useful properties in several large systems.

We evaluated Dinvby using it to study four systems written in Go: Coreos’s

etcd [13], Taipei-Torrent [28], Groupcache [20], and Hashicorp Serf [26]. We tar-

geted different safety and liveness properties in these large systems and ran Dinv

on a variety of executions of each system. For example, etcd uses the Raft con-

sensus algorithm [43] and we checked that the Raft executions we induced satisfy

the strong leader principle, log matching, and leader agreement. We used Dinv

over several iterations to infer distributed state invariants that confirmed that the

executions we studied satisfy each of the targeted properties. We also used Dinv’s

assertion mechanism to catch bugs injected into Raft that silently violate three key

Raft invariants. We evaluated Dinv’s overhead and found that it can instrument

etcd Raft in a few seconds and that 5 logging annotations in a Raft cluster of 6

nodes induced a 13% system slowdown and used 1KB/s of extra bandwidth.

To summarize, this paper makes the following contributions:

• We propose a static analysis technique for automatically detecting variables

which comprise distributed state.

• We propose a hierarchy of three strategies for grouping global system states

(snapshots) for invariant inference and show that each strategy is useful for

detecting different types of distributed invariants.

• We describe a runtime distributed invariant checking mechanism based on

real-time snapshots. We evaluate its efficacy by using it to find injected

silent bugs in etcd Raft.

• We implemented the above techniques in Dinv, an open source tool [17], and

evaluate it on a variety of complex and widely used Go systems that have

between 1.7K and 144K LOC.

3

Chapter 2

Background and assumptions

In this section we overview our model of distributed state and how it can be ob-

served from the partially ordered logs of an execution.

We consider a system composed of a number of nodes, each of which has an

independent thread of execution. During a node’s execution, each instruction is

an event and an event instance refers to a specific event (we sometimes use event

for both). The state of a node at an event instance is the set of values for all the

variables resident in the nodes memory. The state of a node can be recorded by

writing the variable values to a log. Event instances on a single node are totally

ordered.

In this paper we consider message passing systems in which sending and re-

ceiving events create a partial ordering of event instances across nodes. Dinv uses

vector clocks to establish this happened-before ordering [40]. Using a log of vector

clocks, causal chains of events from an execution can be analyzed. We use log to

refer to the sequence of node states paired with vector clocks generated in a single

execution of the system. Section 3.1 discusses how Dinv automatically instruments

systems to write states, and vector clocks to a log.

Most of Dinv’s analyses run on a log produced by a system after it has executed.

Detecting meaningful distributed invariants requires determining valid combina-

tions of concrete node states to use for inference. For a given log, a consistent cut

is a set of events such that if an event e happened before event f (according to

vector clocks), then if f is in the cut, e is also part of the cut. Local states on the

4

frontier of a cut form a global state. The complete set of global states which occur

during the execution of a system form a lattice. A point in this lattice is an n-tuple

of local node states composing a single global state. A lattice edge connects two

global states, g→ h, if g happened before h (again, according to vector clocks)

and the vector clock timestamps of g and h are separated by a single increment in

logical time. A ground state is a global state in which all messages sent up until

that point have also been received (i.e., no messages are in flight) [1]. Sections 3.2

and 3.3 cover Dinv’s global state analysis. Next, we detail Dinv’s design.

5

Chapter 3

Design

Automatically inferring distributed invariants requires resolving three research chal-

lenges:

1. What state should be logged and when?

2. How to infer distributed invariants from logged state?

3. How to enforce inferred distributed invariants?

Dinv’s analyses are a step by step procedure for solving these challenges (Fig-

ure 1.1). This section details each step of the analysis.

3.1 System instrumentation
Challenge 1: What state should be logged and when? Determining state to log is

difficult because state with interesting distributed properties is hard to identify. For

example, some state is local to the node and is unaffected by other nodes in the

system; distributed invariants over such state are uninteresting. We propose and

use the following heuristic: interesting distributed state must have dataflow to or

from the network.

Variables which interact with the network can be detected statically using pro-

gram slicing [44, 52]. Forward slices rooted at network reads, and backward slices

from network writes identify the affected and affecting variables, respectively. We

6

developed an inter-procedural slicing library for Go, and use Go’s networking con-

ventions to statically identify network reads and writes. Variables contained in

slices rooted at network calls comprise the set of network interacting variables.

Figure 3.1 lists partial code from Serf [26] that implements the SWIM proto-

col [16]. We will use this example throughout the paper. Logging point L1 on

line 12 logs variables transitively affected by the network read on line 3. Affected

variables are underlined in the listing.

When should state be logged? Network interacting variables may be used

throughout a system’s codebase. Invariant inference depends crucially on where

in the code the values of these variables are logged — logging at different points

may produce wildly different invariants. For example, to infer the mutual exclu-

sion invariants variables must be logged inside a critical section; if not, then the

captured state would not reflect that the node ever executed a critical section, a

critical omission!

Dinv provides developers with three mechanisms to control where to log state

(Table 3.1). Two of these automate the choice of locations (function entrances/exits

or network calls) and choice of state (all network interacting variables). The third

strategy provides the developer with fine-grained control over where and what state

to log.

Figure 3.1 illustrates two logging annotations: L2 a //@dump annotation (line

6) and L1 a parameterized Dump statement (line 12). The first logs distributed state

when a Ping is received, the second logs state before checking for timeouts.

Tracking partial order. Vector clocks are a canonical means for record-

ing the happens-before relation in a distributed system [40]. Dinvautomatically

instruments any Go program that uses Go’s networking net library with vector

clocks. It does this by detecting uses of the net library and by mutating the ab-

stract syntax tree. Dinv supports common protocols like Internet Protocol (IP),

User Datagram Protocol (UDP), Transmission Control Protocol (TCP), Remote

Procedure Call (RPC), and IPC. Vector clocks are appended or stripped from net-

work payloads, and the original function is executed on the instrumented argu-

ments. For example, a network write like conn.Write(buffer) is transformed into

dinv.Write(conn.Write,buffer).

In summary, our solution to challenge 1 is to log only the variables that inter-

7

1 func (s serfNode) serf(conn UDPConnection) {
2 for true {
3 msg := conn.Read()
4 switch msg.Type {
5 case PING:

7 conn.WriteToUDP("ACK", msg.Sender)
8 break
9 case GOSSIP:
10 s.Events = append(s.Events, msg.Event)
11 }

13 timeout := s.CheckForTimeouts()
14 switch timeout.Type {
15 case PING:
16 conn.WriteToUDP("PING",timeout.Node)
17 break
18 case GOSSIP:
19 gossip(s.Events)
20 break
21 } } }

6 //@dump

12 dinv.Dump("L1",msg.Type,msg.Sender,msg.Event,s.Events)

L2

L1

Figure 3.1: Code excerpt from Serf with underlined network interacting vari-
ables contained in the forward slice from conn.Read() on line 3. Line 6
(L2) and line 12 (L1) are example instrumenting annotations.

act with the network, at automatically generated, and user specified lines of code.

Next, we explain how the logs are analyzed to infer distributed invariants.

8

Node 1Node 0

Ping

Ack

[0,1]

[1,2]

[1,3]

[1,4]

[2,0]

[1,0]

[3,0]

[4,3]

[0,0]

[0,1] [1,0]

[1,1] [2,0]

[2,1] [3,0][1,2]
[2,2] [3,1][1,3]

[2,3] [3,2][1,4]

[3,3]

[4,3]
(b)(a)

0+1

+1
-1

+1 0

00
…

…

…

[0,2]

Figure 3.2: (a) Message-sequence diagram of an execution of code in Fig-
ure 3.1 with two nodes, their local vector clocks paired with each event
(in brackets), and message deltas computed for each event (-1,0,+1). (b)
(Partial) lattice of the execution. Each vertex displays the corresponding
vector time and ground states are bolded.

Instrumentation strategy Location choice Variables choice

Function entrances/exits Auto Auto
Network calls Auto Auto
User-defined annotations Manual Manual or Auto

Table 3.1: Instrumentation strategies and the control (automatic/manual) of-
fered by each strategy for selecting state logging location and the set of
logged variables.

3.2 Extracting global states
Challenge 2: How to infer distributed invariants from logged state? An omnipo-

tent observer can establish a total order on all distributed events. In practice, an

ordering that is feasible to derive is the happens-before relation, defined by the

9

causal precedence of sent, and received messages. The happens-before is a partial

ordering on events. We use lattice to refer to this ordering.

Each point in the lattice is a consistent cut (defined in Section 2) of the logged

execution, and the entire lattice is the set of all consistent cuts [3, 12]. Figure 3.2

relates a message sequence diagram, to its corresponding lattice for an execution of

the code in Figure 3.1 with two nodes. A lattice point, is a global state composed of

an n-tuple of local states. Global invariants, or invariants that hold across multiple

nodes, are testable by extracting the corresponding global state from a log, and

asserting the invariant on that state.

Due to its generality, this lattice analysis incurs significant complexity. In the

worst case, an execution without messages with n nodes and e events will produce

a lattice of size en.

Because testing invariants on an exponential number of states is infeasible, we

propose ground states [1] as a heuristic for reducing the number of lattice points to

test for invariants. A ground state is a consistent cut with the additional constraint

that all sent messages have been received (i.e., no messages are in flight). Intu-

itively a ground state is a line through a message sequence diagram which does not

cross any messages (see Global States in Figure 3.3).

Analyzing just the ground states reduces completeness: a global state which

is not a ground state may violate an invariant. However, distributed algorithms

are typically specified with invariants over ground states, when the system has

acquiesced and all messages have been processed. As well, inference on ground

states reduces analysis time by orders of magnitude, and provides a quality sample

of global states in real systems1.

A variety of lattice construction algorithms exist [21]. Long-running execu-

tions of loosely communicating systems can easily generate lattices larger than

main memory. To avoid this, Dinv utilizes a sequential antichain algorithm which

generates a lattice level by level. Generating level n of a lattice requires a log and

level n−1 of the lattice. This allows Dinv to flush most of the lattice to disk as just

two levels must be maintained in memory.

Ground states are computable with a linear scan of both a log and lattice. First,

1 For completeness Dinv allows users to analyze all global states at the cost substantial runtime.
All results in this paper are based on ground state analysis.

10

Node 0 Node 1
L1

Ack

Node 2 Node 3

Timeout Ping

L2

L1

L1

L1
Timeout

L1

Gossip

TimeoutGossip

L1

Global
State 1

Global
State 2

Global
State 3

Figure 3.3: Execution of SWIM code from Figure 3.1. Node 1 responds to
a Ping from Node 0. Concurrently Node 2 propagates Node 3’s Gossip
message. L1 & L2 mark local logged state (messages & events in Fig-
ure 3.1). Dashed lines mark three global states (which are also ground
states), each an n-tuple of the closest local node states above the dashed
line.

a log is scanned and a delta of (sent− received) number of messages is calculated

per local event on each node. For example, if by some event e a node had sent 3

messages, and received 1 message, e’s delta is +2. The lattice is then scanned, and

for each global state the deltas of each local event in a global state are summed. A

sum of 0 identifies a ground state (e.g., Figure 3.2).

Lost messages pose a theoretical threat to ground state analysis: a single mes-

sage loss rules out future ground states. In practice, lost messages do not affect re-

ceiver’s state and are functionally equivalent to local events at the sender. Dinv han-

dles executions with lost messages by detecting lost messages using vector clock

timestamps and omitting them from the ground state computation.

The first component of our solution to the challenge of inferring distributed

invariants from logged state is to infer invariants over ground states. We choose

this approach because it is scalable and makes no assumptions about the system.

11

3.3 Strategies to group global states
Some invariants hold globally at all times, but others hold during protocol-specific

event sequences and between select nodes. Without apriori system knowledge,

many possible combinations of global states may support or refute an invariant.

The possible combinations of global states in a lattice is 2en
, which is intractable to

analyze (and also largely redundant) for real systems. Our goal is to automatically

tease apart distinct protocols, group the global states in which they executed, and

infer invariants on the group. Our solution relies on the observation that many

protocols are specified as causal chains of events. One of our research contribution

is a set of 3 strategies for grouping global states for invariant inference:

1. group all global states together (all-states)

2. group states by sending and receiving node pairs (send-receive)

3. group states by totally ordered message sequences (total-order)

Figure 3.3 is an example execution showing two protocol specific causal chains

(Ping-Ack and Gossip-Gossip), included are three global states (shown as dashed

lines). Figure 3.4 further shows how the global states in Figure 3.3 are decomposed

by each strategy, and how the state tuples with matching identifiers (highlighted)

are grouped for further invariant inference. We will use Figure 3.4 to explain each

strategy.

All-states strategy. The most general form of system invariant, is one which

holds on all observable state, and between arbitrary nodes. All-states merges

all local states of a global state together regardless of causality between them.

Each local state has an ID: (nodeID.logID), where nodeID denotes the node and

logID denotes the logging statement. A merged set of such IDs form a groupID:

[(node0.logi), . . . ,(noden.log j)]. Merged local states which share a groupID, are

grouped together for invariant inference.

Figure 3.4 shows All-states (AS) merging all local states from the three global

states. The groupID resulting from all-states merging Global State 1 is [N0.L1,

N1.L2, N2.L1, N3.L1]; no other merged state shares this groupID. Merged states

from Global State 2, and Global State 3, highlighted in orange, share the groupID

[N0.L1, N1.L1, N2.L1, N3.L1]. GroupIDs produce multiple groups when there

12

AS: [N0.L1, N1.L1, N2.L1, N3.L1]
SR: [N1.L1, N2.L1], [N2.L1, N3.L1]
TO: [N1.L1, N2.L1, N3.L1]

Node 0 Node 1

L1
Ping

L2

Node 2 Node 3

L1

Gossip
L1

Global State 1

AS: [N0.L1, N1.L2, N2.L1, N3.L1]
SR: [N0.L1, N1.L2], [N2.L1, N3.L1]
TO: [N0.L1, N1.L2], [N2.L1, N3.L1]

Node 0 Node 1 Node 2 Node 3

L1

Gossip
L1

Global State 2

SR: [N0.L1,N1.L1], [N2.L1,N3.L1]
TO: [N0.L1, N1.L1], [N2.L1, N3.L1]

L1

Ack
L1

Node 0 Node 1 Node 2 Node 3

L1

Gossip L1

Global State 3

L1

L1

Gossip

AS: [N0.L1, N1.L1, N2.L1, N3.L1]

Figure 3.4: The merging of local states from 3 global states by our three
grouping strategies. On the left each Global State corresponds to a
dashed line from Figure 3.3. Logged local states are marked by grey cir-
cles, each contains the variables listed on Figure 3.1 line 12. On the right
are group id’s from the respective strategies AS: all-states, SR: send-
receive, and TO: total order. Highlighted is a group of states merged by
all-states. In bold is a group of states merged by send-receive.

is more than one logging statement per node. Using the logID as a component

of a groupID ensures that each merged state in a group contains exactly the same

variables, as separate logging statements need not contain the same set of variables.

Invariants inferred by the all-states strategy are the strongest, as they hold across

the largest sample of observable states and across all nodes.

Send-receive strategy. Many protocols dictate the behavior between pairs of

13

nodes. The send-receive strategy merges together the states of directly communi-

cating pairs of nodes. Send-receive groupIDs are pairs of nodes at specific log in-

stances of the form [(nodep.logi),(nodeq.log j)], where nodep communicated with

nodeq and logi executed before the communication and log j executed after the

communication. For example, in Figure 3.4 Global State 1 send-receive (SR) has

two groups: the first group, [N0.L1,N1.L2], corresponding to the Ping between

Node 0 and Node 1; and, group [N2.L1,N3.L1] captures the Gossip message.

An advantage to this strategy is that properties which hold after communica-

tion, but not at all times, are tested on subsets of states. Invariants like those that

depend on eventual consistency require this for detection. From our running exam-

ple; each SWIM node maintains a list of events which are synchronized with Gos-

sip messages. If the invariant N1.events = N2.events was tested on the AS group

from Figure 3.4 highlighted in orange, the invariant would be violated because in

Global State 2 Node 1 has not yet received the Gossip message. In contrast, if the

same invariant was tested on the send-receive group [N1.L1, N2.L1] from Global

State 3, it would hold because Node 1 synchronized its events after receiving the

message.

Total-order strategy. Fine-grained protocols, such as leader election, dictate

a causal behavior across multiple nodes. The total-order strategy merges the local

states from causal chains of communicating nodes. The groupID for this strategy

has the form [(nodep.logi), . . . ,(nodeq.log j)], such that the local state (nodep.logi)

happened before (nodeq.log j) and all intermediate (nodeID, logID) pairs. In Fig-

ure 3.4 the TO merged group [N1.L1,N2.L1,N3.L1] from Global State 3 is the

result of merging all local states along the Gossip messages causal path from Node

3 to Node 1.

Total-order has the same ability as send-receive to detect eventual consistency

in Serf, but it detects it in a stronger context. In the case of Global State 3 group

[N1.L1,N2.L1,N3.L1], the invariant N1.events = N2.events = N3.events would be

inferred.

Our complete solution to challenge 2 is to infer invariants on groups of global

states merged by one of three strategies. These strategies encode heuristics in-

formed by best practices in distributed system design and radically decrease the

space of possible groupings. Dinv further scales its analysis by, for example, dis-

14

Figure 3.5: A distributed assertion that checks that all nodes in a cluster agree
on the leader.

carding identical logged instances of node states which span separate global states

since these provide no new information.

Next, we explain how Dinv infers invariants using a modified version of Daikon.

3.4 Inferring distributed invariants
Daikon [19] is designed for sequential system and does not support inference over

partially ordered collections of states with disjoint variable sets. Further, Daikon

includes templates for binary and ternary invariants, and does not support n-ary

invariants necessary for distributed specifications.

Dinv uses Daikon by presenting it with a synthetic program point that corre-

sponds to a distributed state. However, in a sequential program the same variables

are always present at each program point and merged states may be composed of

different sets of variables from various logging points. Our solution, reviewed in

Section 3.3, is to only merge states with identical sets of variables2.

We also added several n-ary templates, such as equality, to Daikon. Inferred

invariants span the local state of all nodes. For example the group [N1.L1, N2.L1,

N3.L1] from Figure 3.4’s Global State 3 TO would have the invariant Node1.Events

= Node2.Events = Node3.Events, rather than the two binary invariants. This re-

duces effort in comprehending relations spanning more than two nodes.

3.5 Asserting inferred invariants
Challenge 3: How to enforce inferred distributed invariants?

Dinv includes an assertion library to help developers check inferred distributed

safety properties at runtime with user-defined assertions (Figure 3.5 shows an ex-

2As a more advanced heuristic, Dinv also supports analysis of intersections of logged variables

15

ample). Prior approaches to checking distributed predicates

rely on variants of the global snapshot algorithm based on logical clocks [9].

By contrast, Dinv uses a light-weight real-time global snapshot algorithm for as-

sertions.

Dinv’s real-time assertions have 3 components: a round trip time (RTT) es-

timator, a physical clock synchronizer, and an assertion algorithm. The Round

Trip Time (RTT) estimator periodically pings other nodes and computes an esti-

mate of RTT between each node. To synchronize clocks Dinv uses the Berkeley

algorithm [25].

The assertion algorithm works as follows. When a node A executes an assertion

statement, A blocks until the asserted predicate is resolved. First, using the RTT

estimator, A schedules a state snapshot time t that is in the future by the largest

RTT from A to the other nodes. Next, A sends a snapshot request with time t and

requested variable names to all nodes. On receiving a request from A, a node B

creates a thread that sleeps until t. Once B reaches t, this thread snapshots the

values of the requested variables and sends these to A. Once A has received all the

snapshots it needs, it evaluates the asserted predicate.

Scheduling snapshots with physical clocks, even if they are synchronized, has

the disadvantage that the resulting snapshot may violate the happens-before rela-

tion (e.g., node C snapshots its state, send a message to node D, and then D snap-

shots its state). To avoid inconsistent snapshots Dinv uses vector clock timestamps

to determine if a snapshot represents a ground state for the system. If not, Dinv

logs the failure to assert, skips the assertion, and will retry the assertion the next

time it is reached.

Due to blocking semantics, asserts in frequently executed code can reduce per-

formance. Dinv allows developers to mitigate this with probabilistic assertions,

which execute with some user-defined probability. We expect developers to use

high probabilities during testing, for precision, and low probabilities in produc-

tion, for performance.

Our solution to challenge three is a mechanism for probabilistic distributed

assertions.

16

Chapter 4

Implementation

Dinvis implemented in 8K1 lines of Go code [17]. It has been tested on Ubuntu

14.04 & 16.04, and relies on Go 1.6. Dinv implements an optimized version of

the vector clock algorithm and uses a manually-constructed database of wrapper

functions for Go’s net. We use Go’s Abstract Syntax Tree (AST) library to build,

traverse, and mutate the AST of a program for instrumentation. Dinv’s state instru-

mentation builds on control and data flow algorithms in GoDoctor [29]. Dinvuses

Daikon version 5.2.4.

1All Lines of Code (LOC) counts in the paper were collected using cloc [2]; test code is omitted
from the counts.

17

Chapter 5

Evaluation

5.1 Using Dinv
In this section we describe our methodology for evaluating Dinv on complex sys-

tems in Section 5.2. For our example we use Serf’s eventually consistent group

membership property. Prior to this evaluation we had no knowledge about the sys-

tems we analyzed, with the exception of the paper describing Raft [43]. In the

evaluation we used Dinv in concert with documentation and source code to under-

stand each system. We highlight four techniques we used and that we believe make

Dinv more usable.

When applying Dinv to a new codebase we used its completely automated fa-

cilities to survey the systems invariants to learn about its behaviour. Initially,

we instrumented Serf1, which injected 400 logging statements that logged 20-40

variables each. We ran the system’s test suite, and processed the logs with Dinv.

The merging strategies parsed the log into 1000 groups of global states. In aggre-

gate across all groups, Daikon inferred approximately 1 million invariants, many

of which related constants. We used the massive set of invariants to identify vari-
ables relevant to consistency. Using line numbers as indexes into the source code

we refined our analysis to a smaller set of functions.

A second execution, resulted in 50 groups and a total of 1,700 invariants. all-

1Serf uses encoders and required the manual addition of 20 lines, one for each sending and re-
ceiving line of code.

18

states invariants falsified node state equality, so we deduced that consistency did

not hold globally at all times. We examined send-receive invariants for a fine-

grained view of the system. The updates were fully observable by monitoring as-

signments to a single structure which maintained the cluster’s health, so we com-
posed dump statements to instrument this structure. Running the tests again,

while logging only the cluster’s health, resulted in 25 groups, with a total of 40

inferred invariants. Send-receive, and total-order outputs were composed of the

desired equality invariants between the node states.

In our evaluation of Dinv with three other complex systems, we followed the

above approach of iterative refining the logged variables to zero in on properties

over key distributed state.

To generate assertions from the inferred invariants we manually wrote boolean

functions (e.g., Figure 3.5) to check an invariant across nodes at runtime. Sec-

tion 5.7 describes our experiences with using the assertion mechanism.

5.2 Evaluation: inferring invariants
In the following subsection we use Dinv to analyze four systems: Hashicorp Serf [26]

(our running example), Groupcache [20], Taipei-Torrent [28], and Coreos’s etcd [13].

We describe each system and their properties, and report on invariants detected by

Dinv and what they tell us about the correctness of the system. Table 5.1 overviews

the invariants we targeted in our study.

Experimental setup. All inference experiments were run on an Intel machine

with a 4 core i5 Central Processing Unit (CPU) and 8GB of memory, running

Ubuntu 14.04. All applications were compiled using Go 1.6 for Linux/AMD64.

Experiments were run on a single machine using a mixture of locally referenced

ports, and iptable configurations to simulate a network. Runtime statistics were

collected using runlim [47] for memory and timing information, and iptables for

tracking bandwidth overhead.

5.3 Analyzing the SWIM protocol in Serf
Serf [26] is a system for cluster membership, failure detection, and event propaga-

tion. Serf has 6.3K LOC and is used by HashiCorp in several major products. Serf

19

System and Targeted
property

Dinv-inferred invariant Description

Serf - Eventual consis-
tency

∀ nodes i, j, NodeStatei =
NodeState j

Nodes distribute member-
ship changes correctly.

Groupcache - Key
ownership

∀ nodes i, j, i 6= j,
OwnedKeysi ∩
OwnedKeys j = /0

Nodes are responsible for
disjoint key sets.

Kademlia - Log. re-
source resolution

∀ request r, ∑ (msgs for r)
≤ log(|peers|)

All resource requests must
be satisfied in no more than
O(log(n)) messages.

Kademlia - Minimal
distance routing

∀ key k, node x, if
XOR(k,x) minimal, then x
stores k

DHT nodes stores a value
only if its ID has the min-
imal XOR distance in the
cluster to the value ID.

Raft - Strong leader
principle

∀ follower i, len(leader
log) ≥ len(i’s log)

All appended log entries
must be propagated by the
leader.

Raft - Log matching ∀ nodes i, j, if i-log[c] = j-
log[c]→
∀(x ≤ c), i-log[x] = j-
log[x]

If two logs contain an en-
try with the same index
and term, then the logs are
identical in all previous en-
tries.

Raft - Leader agree-
ment

If ∃ node i, s.t. i leader,
then ∀ j 6= i, j follower

If a leader exists, then all
other nodes are followers.

Table 5.1: Invariants listed by system, their corresponding distributed state
invariants, and descriptions.

builds on a gossip protocol library based on SWIM [16].

Each SWIM node maintains an array of all other nodes liveness state: alive,

suspected or dead. A suspected failure is gossiped when heartbeat messages are not

acknowledged, and complete failures (dead) is gossiped once a specified subset of

nodes suspect a failure. Throughout this process, node state updates are attached

to pings, ping-reqs and acks, and spread by gossip messages to ensure eventual

consistency. A receiving node j applies updates it receives only if it does not have

more recent information. Dinv can observe this property by logging state changes,

i.e., node i sets node k’s state to alive. The send-receive strategy inferred the invari-

20

ant nodei.stateO f K = node j.stateO f K, for all pairs of nodes i and j. Further, the

total-order strategy inferred the invariant nodei.stateO f K = node j.stateO f K =

· · · = nodem.stateO f K on all transitive sequences of gossip messages on clusters

up to 4 nodes. The detection of this invariant required all orderings of gossip prop-

agation to occur many times and thus required the longest executions, and analysis

time.

In instrumenting network calls, two code paths had to be considered, one for

TCP and one for UDP. Dinv’s automatic instrumentation worked for UDP. In the

TCP case custom stream decoding prevented automatic instrumentation; instead,

we wrote 20 LOC to insert/extract vector clocks.

We setup an execution environment where nodes were periodically partitioned

to force frequent propagation of membership updates. Observing 3-4 nodes in an

execution with 100 such partitions resulted in Dinv inferring all invariants. We

were also able to observe and gather similar results about Serfs’ behavior in more

complex executions, i.e., round-robin partitions.

An execution with 100 partitions was running for 24 minutes2 and produced

1.6 MB of log files, which Dinv analyzed in less than 2 minutes. The results and

lack of contradicting invariants leaves us confident that Serf’s update dissemination

is correct.

5.4 Analyzing Groupcache
Groupcache is an open source Go implementation of memcached, written in 1786

LOC [20]. Groupcache nodes act as both clients and servers for key requests. Like

memcached, Groupcache assigns key ownership to nodes, but nodes hold no state

apart from multiple caches. Each node is responsible for a unique set of keys which

it owns exclusively.

Groupcache requires users to provide a Getter function which maps keys to

values. Get messages are encoded using Protobuf and exchanged over Hyper Text

Transfer Protocol (HTTP). Protobuf encapsulates Go’s standard networking library,

making the calls invisible to Dinv’s vector clock instrumentation. We manually

2Serf was given 7 seconds after and before each partition to detect and propagate membership
changes.

21

augmented the HTTP header with vector clocks, which required 6 additional LOC.

Because of Groupcache’s static key partitioning, the invariant nodei.keys 6=
node j.keys holds globally at all times, and not on precise protocol-specific se-

quences. Our Groupcache test program was run on configurations of 2–8 nodes,

each of which requested 2K keys. Dinv detected the central key distribution prop-

erty (see Table 5.1) with each merging strategy. Here all-states provides the strongest

evidence of the invariants correctness, as the key ownership can be demonstrated

to hold on all observable global states.

The key ownership property was quickly identified with Dinv by a third-year

undergraduate student, who had little experience with Dinv or Groupcache.

5.5 Analyzing Taipei-Torrent
Taipei-Torrent is an open source BitTorrent client and tracker. Its client program

uses Nictuku’s implementation of the Kademlia distributed hash table (Distributed

Hash Table (DHT)) protocol to resolve peer and resource queries [30, 41]. Taipei-

Torrent and Nictuku are implemented in 5.8K and 4.9K LOC, respectively.

Kademlia uses a virtual binary tree routing topology structured on unique IDs

to resolve resources and peers. Peers maintain routing information about a sin-

gle peer in every sub-tree on the path from their location to the root of the tree.

Kademlia has 2 primary types of messages: Store and Find Value.

Store instructs a peer to store a value. Find Value resolves requests for stored

values. A peer’s response to a Find Value query is the list of peers on its sub-tree

with the closest Exclusive Or (XOR) distances to the requested value. Find Value

is executed iteratively on the peer list until the value is found. These queries are

resolved within O(log(|peers|)) where |peers| is the total number of peers.

We automatically injected vector clocks into Taipei-Torrent in 3s. Manual log-

ging functions were used because variables containing routing information were

not readily available. We introduced our own counter with 2 lines of code to track

the number of Find Value messages propagated in the cluster. Taipei-Torrent has

sparse communication between nodes; the result is a large space of partial order-

ings. Lattices built from the traces of Taipei-Torrent consisted of 20–100 million

points. Log analysis took upwards of 15 minutes, with an upper limit of 2 hours,

22

requiring frequent writes to disk as the lattice exceeded available memory. Dinv

succeeded in analyzing these executions, although the communication pattern was

a challenge for our techniques. Lattice inflation limited our analysis to executions

with at most 7 peers.

Kademlia specifies that peers must store and serve resources with the minimum

XOR distance to their IDs. Further, Find Value requests must resolve to the min-

imum distance peer. To test the correctness of Find Value requests we added a 5

line function which output the minimum distance of the peers and resources in the

routing table and logged it. To test routing we ran clusters with 3–6 peers using a

variety of topologies by controlling peer IDs. We logged state after the results of

a Find Value request were added to a peer’s routing table. On each execution we

found that ∀ peers i, j, peeri.min distance = peer j.min distance in all total-order

groups. This invariant, in conjunction with O(Log(n)) message bound, provides

strong evidence for the correctness of Nictuku’s implementation of Kademlia.

5.6 Analyzing etcd Raft
Etcd is a distributed key-value store which relies on the Raft consensus algo-

rithm [43]. Raft specifies that only leaders serve requests, and followers replicate

a leader’s state. Followers use a heartbeat to detect leader failure, starting elec-

tions on heartbeat timeouts. Etcd is used by applications such as Kubernetes [33],

fleet [14], and locksmith [15], making the correctness of its consensus algorithm

paramount to large tech companies such as eBay. Etcd Raft is implemented in

144K LOC.

Etcd uses encoders to wrap network connections, so manual vector clock in-

strumentation was required. Log analysis took between 10-15s. Etcd was con-

trolled using scripts. One to launch a clusters of 3-5 nodes, another to partition

nodes, and one to issue a 30s YCSB-A workload (50% put, 50% get requests) [11].

Strong leadership. An integral property of Raft is strong leadership: only the

leader may issue an append entries command to the rest of the cluster. This prop-

erty manifests itself in a number of data invariants. A leader’s log should be longer

than the log of each follower. Further, the leader’s commit index, and log term

should be larger than that of the followers. We logged commit indices, and the

23

Raft invariant LOC P=1.0 P=0.1 P=0.01
Strong leadership 11 0.07 0.05 2.96

Leadership agreement 13 0.36 0.34 6.75
Log matching 72 2.22 4.35 6.07

Table 5.2: LOC to implement and time (sec) to detect an invariant violation
with probabilistic asserts.

length of the log. In each case the invariant leader.logsize≥ f ollower.logsize, and

leader.commitIndex ≥ f ollower.commitIndex was detected by the send-receive

strategy.

Log matching. Raft asserts “if two logs contain an entry with the same index and

term, then the logs are identical in all entries up to the given index” [43]. This

property is hard to detect explicitly because it requires conditional logic on arrays.

We were able to detect that in all cases nodei.commitIndex = node j.commitIndex

∧ nodei.log[commitIndex] = node j.log[commitIndex] → nodei.log = node j.log

up to the all-states grouping. This shows that if any two nodes have the same log

index, and the value at that index match, their entire logs match; this is evidence of

the log matching property.

Leadership agreement. At most one leader can exist at a time in an unparti-

tioned network, and all unpartitioned members of a cluster must agree on a leader

after partitioning. By logging leadership state variables when leadership was es-

tablished, we were able to derive that: nodeistate = Leader→ ∀ j node j.leader =

nodei ∧∀ j 6= i, node j.state = Follower. These invariants were detected in both

send-receive and total-order groups. This indicates that after the partition occurred,

all nodes agree on a leader, and that all nodes but the leader are followers.

Strong leadership, log matching, and leadership agreement are invariants of

a correct Raft implementation. By checking their existence, we produced strong

evidence for the correctness of etcd Raft. Further, we have shown Dinv’s ability to

detect useful properties over distributed state of large and non-trivial system.

24

5.7 Evaluation: asserting invariants
Dinv-inferred invariants can be used for comprehension. However, they can also

be converted into assertion predicates to find regression errors at runtime. Here

we detail how we used the Dinv assert mechanism to check the inferred etcd Raft

invariants at runtime.

We developed distributed assertions for each of etcd’s invariants. We then eval-

uated the ability of these assertions to find bugs by using them with buggy versions

of Raft. For this we manually created three bugs, each of which violates one of the

three Raft invariants. All bugs cause a violation without causing Raft to crash, or

impact its ability to serve client requests. That is, each bug produces silent errors

and is difficult to detect.

Strong leadership bug. In Raft only the leader may issue the command to

append entries to a replicated log. In our two line bug an unauthorized follower

broadcasted append entries, and committed to its own log. Raft’s algorithm toler-

ates this bug because the leader has authority to overwrite followers logs. However,

once a leader has written to disk in a term, the system expects that all followers’

logs are synchronized. Etcd does not verify synchronization so the bug causes the

leader to perpetually issue log correction messages to the buggy follower. The

invariant for strong leadership is that the leaders log size is greater than all the

followers’ logs if the leader has committed in the current term.

Leadership agreement bug. If a leader exists in a given term, all nodes must

agree on this leader for leadership agreement to hold. We introduced a 4-line bug

which caused followers to randomly select a leader from their list of peers post

election. Etcd continues to execute with this bug. However, followers periodically

time out waiting for messages from a false leader and initiate a new election. In a

non-buggy execution if any two nodes agree on a leader for a given term then they

agree on the same leader.

Log matching bug. Log matching is critical to etcd’s fault tolerance. If log

matching does not hold etcd’s key value store returns inconsistent results depending

on which node is the leader. Etcd assumes that all log entries written to disk are

correct. To violate the log matching invariant we injected a 7-line bug to corrupt a

committed log at a random place and time. With this bug etcd executes as normal

25

and assumes that the nodes’ logs are correct. The log matching invariant states that

if any two nodes have an entry with the same term, index, and data, then all prior

log entries match.

Table 5.2 shows our experimental results. Assertions for above invariants

ranged in size. Log matching was the most complex (72 LOC): checking it requires

a comparison of logs from every pair of nodes. The assertion iterates through all

pairs of node logs, checking them for inconsistencies. The other two assertions

were expressed in under 15 LOC.

We ran Raft with each bug and used assertions with probabilities of 1.0, 0.1,

and 0.01. We measured the average time delay between the instant a bug was

injected and when it was detected. We found that all asserts found the bugs, but

they took longer with lower probabilities. Considering the severity of these bugs,

we believe that the delay of a few more seconds to detect the problem is reasonable

(given no other alternative). We discuss the associated decrease in overhead with

using probabilistic assertions in Section 5.9.

5.8 Evaluation: Dinv overhead
Dinv imposes several overheads. These include the time to instrument the system,

runtime and network overheads due to logging and injected vector clocks, and the

running time of the dynamic analysis that Dinv must perform on the collected logs.

This section details these overheads.

Static analysis runtime. To benchmark the performance of Dinv’s static anal-

ysis (detecting networking calls, adding logging code, etc) we used etcd Raft,

which contains 144K LOC and thousands of variables. We measured instrumenta-

tion time with increasing counts of randomly located dump annotations. Instrumen-

tation time remained constant at 3s until 4K annotations at which point it increased

slightly to 3.2s. At 64K annotations (far beyond practical use) runtime was 4.7s.

Logging overhead. Logging state at runtime slows down the system. We in-

strumented etcd Raft with increasing number of logging statements, each one log-

ging 7 variables. We benchmarked a cluster with 3 nodes, and a YCSB-A work-

load. Each cluster was run 3 times and we averaged the total running time. Ta-

ble 5.3 shows a linear relationship between the number of logging statements and

26

Number of
annotations

Executed
annotations

Log size
(MB)

Runtime (s) Runtime
overhead %

0 0 0 2.66 0
1 2.8K 3.2 2.70 1.5
2 5.6K 4.3 2.77 4.0
5 14K 9.7 3.01 12.9
10 28K 18.0 3.31 24.3
30 85K 51.7 4.48 68.0
100 261K 167.9 7.66 187.5

Table 5.3: Impact of Dinv annotations on Raft performance.

runtime. In practice just two annotations were sufficient to detect the Raft invari-

ants. The average execution time of a single logging statement is 20 microseconds.

In our local area network with a round trip time of 0.05ms while running etcd with

1 second timeouts we can introduce approximately 50K logging statements per

node before perturbing the system.

Bandwidth overhead. Vector clocks introduce bandwidth overhead. Each en-

try in Dinv’s vector clocks timestamp has two 32 bit integers: one to identify the

node, and the other is the node’s logical clock timestamp. The overhead of vec-

tor clocks is a product of the number of interacting nodes in an execution and the

number of messages: 64bits×nodes×messages. To evaluate bandwidth overhead

in a real system we executed etcd Raft using the setup above while varying the

number of nodes. The bandwidths of all nodes was aggregated together for these

measurements. We found that adding vector clocks to Raft slowed down the broad-

cast of heartbeats and caused a reduction in bandwidth of 10KB/s for all nodes in

a 4 node cluster. At 5 nodes and above the bandwidth overhead grew linearly with

an overhead of 1KB/s for 5 nodes and 10KB/s for 6 nodes.

Dynamic analysis runtime. Dinv’s dynamic analysis runtime is affected by

the size of the log and the number of nodes in the execution. To measure its perfor-

mance versus the length of execution, we analyzed etcd Raft and Groupcache. We

exercised them by issuing 10 requests per second to each system. To demonstrate

how Dinv’s analysis performs with regard to the length of execution, we analyzed

the resulting logs of 3 node clusters, which were run for intervals in increments of

30s. Results in Table 5.4 show that Dinv’s log analysis scales linearly with system

27

System
runtime (s)

Raft
log (MB)

Raft
analysis (s)

GCache
log (MB)

GCache
analysis (s)

30 5.1 12.7 0.3 2.8
60 10.5 28.1 0.3 3.0
90 13.7 35.9 1.7 19.6
120 17.4 48.7 1.4 21.2
150 22.5 68.8 1.8 11.3
180 27.7 99.1 2.1 18.6

Table 5.4: Generated Dinv log size and Dinv’s dynamic analysis running time
for varying system run times, for two systems: etcd Raft and GroupCache
(GCache).

running time.

To measure how analysis time is affected by the number of nodes in an ex-

ecution we ran etcd for 30s, exercising it with 10 client requests per second and

running clusters with increasing number of nodes. Our results show that Dinv’s

runtime grows exponentially with the number of nodes. We measured analysis

times of 25s, 75s, and 725s for logs containing 4, 5, and 6 nodes, respectively.

Dinv’s runtime is exponential in the number of nodes due to the exponential growth

of partial orderings our analysis techniques compute. This indicates that Dinv is

currently limited to analyzing distributed systems with a small number of nodes.

5.9 Distributed assertions overhead
We evaluated the overhead of Dinv’s assertion mechanism on Microsoft Azure.

The setup consisted of 4 VMs (3 servers and 1 client), all running Ubuntu 16.04.

The server VMs had 3.5GB of memory and a single core capable of performing

3200 Input/Output Operations Per Second (IOPS). The client was used to saturate

the servers and had 16 cores and 56GB of memory, and could perform 51200 IOPS.

Below we measure the end-to-end latency of client requests to the etcd cluster.

We established a baseline using unmodified etcd. The system was exercised at

3 load levels: 100, 150, and 200 client request per second, each test was run for

100s. Each assert in Section 5.7 was run under the same conditions. Assertions

were placed in etcd’s inner event loop which executed on every received message

and timer event. On average 5 events occurred per client request. We also ran

28

experiments with probabilistic asserts with two probabilities: P=0.1 and P=0.01

and measured the median slowdown in client request response times.

The greatest slowdown was incurred when asserts were placed at bottleneck

program points. For example, asserting strong leadership with P=1.0 caused a

52x slowdown, as each client request was forced to wait for multiple asserts to

execute. Using P=0.1 reduced this to 2.5x, and P=0.01 reduced it further to 1.02x.

Leader agreement and log matching asserts were performed by followers, which

are not on the critical path for client request processing. Both assertions with P=1.0

introduced only a 1.09x slowdown.

29

Chapter 6

Discussion

Effort in using Dinv. In our evaluation we considered four large distributed sys-

tems, none of which we were familiar with prior to this study. In each case we

used all of the resources available to us (papers, source code, documentation) to

understand the desired system properties and to interpret Dinv’s output. As we had

no prior knowledge about the four systems in our evaluation, and were success-

ful in inferring interesting properties, we are confident that with proper training

developers would be able to similarly instrument their systems.

Although we did not formally evaluate Dinv with developers, we do have two

pieces of anecdotal evidence that Dinv is not difficult to use. First, graduate stu-

dents with no prior distributed systems background successfully used Dinv on their

systems in a distributed systems course. Second, Groupcache (Section 5.4) was an-

alyzed by an undergraduate student who was familiar with distributed systems but

not with Dinv. After installing Groupcache and becoming familiar with its test suit,

he was able to isolate the key distribution invariant within a workday. Although

anecdotal, we believe these experiences indicate that Dinvis usable by developers.

We plan to evaluate Dinv with developers in our future work.

Dynamic analysis. Dinv infers likely invariants because it is a dynamic anal-

ysis approach that only considers a finite set of system behaviours. The inferred

invariants are not a verification of the system, but they could be used for runtime

checking (as we demonstrated in Section 5.7), or to bootstrap verification [42].

Executions containing failures. Dinv’s inference pipeline was designed to in-

30

fer invariants from executions with no node failures. Dinv’s assertion mechanism,

however, can detect invariant violations even when failures occur.

31

Chapter 7

Related work

Mining distributed systems information. Dinv is a specification mining tool that

builds on Daikon [19], which cannot mine distributed state invariants on its own.

Daikon has been previously used to assist a theorem prover in verifying distributed

algorithms by running over simulated execution traces [42].

The closest work to Dinv is work by Yabandeh et al. [56] who infer almost-

invariants in distributed systems: invariants that are true in most cases. They also

build on Daikon but the process of identifying variables to log, instrumenting the

system, piecing together distributed cuts and composing logs from different nodes,

is a manual process. Our approach actually instruments the system, computes

ground states, and also checks invariants at runtime.

Other approaches that mine distributed/concurrent specifications produce sym-

bolic message sequence graphs to group machines into classes based on similarities

in their communication patterns [34], Linear Temporal Logic (LTL) properties re-

lating events between nodes [5], and infer communicating finite state machines [6].

This prior work focuses on events and can trace its roots back to Cook and Wolf’s

original work that noted concurrency as a challenge [10]. None of these techniques

can detect distributed data properties.

Other work mines a variety of distributed system information for SE purposes.

For example, some work uses mining to detect dependencies [38], anomalies [53,

55], and performance bugs [48].

Other analysis of distributed systems. Dynamic analysis of distributed sys-

32

tems has yielded several tools to aid developers. For example, DistIA [8] imple-

ments impact analysis, Googles Dapper [51] analyzes traces to produce call graphs

and performance information, and lprof [59] instruments Java bytecode with syn-

chronized timestamps and uses logs to infer temporal properties.

Two prior tools use Daikon to derive invariants of networked and concurrent

systems. InvarScope [24] detects invariants in JavaScript applications, but does

not generalize beyond client-server systems. Udon [35] infers data invariants of

multi-threaded programs where program state is shared between threads.

Monitoring systems such as Fay [18] and Pivot tracing [39] use dynamic instru-

mentation for real-time diagnosis of distributed systems by activating trace points

at runtime. These tools do not infer properties from the traces they capture.

Formal methods for distributed systems. Unlike recent methods that use

theorem proving to synthesize correct systems by construction [27, 50, 54], our

work is immediately applicable to existing production systems. Previous work also

considers checking existing system implementations directly [32, 57], or checking

system properties at runtime or during program replay [22, 31, 36, 37, 46].

Dinv also includes a runtime assertion checking mechanism. But, in contrast

to prior work like D3S [37], Dinv’s mechanism schedules node state snapshots

using synchronized physical clocks and uses probabilistic assertions to decrease

overhead.

More fundamentally, previously work assumes that a developer can, and is

willing to, specify properties of their system. By contrast, Dinv does not require

the developer to formally specify their system and aims at elucidating the runtime

properties of the system.

33

Chapter 8

Conclusion

Distributed state is a key element of distributed systems that impacts consistency,

performance, reliability, and other system features. However, distributed state is

difficult to tease out, understand, and check. We presented a novel automated

analysis approach to (1) identify distributed state, (2) instrument it and record it

at runtime, (3) combine it using three different strategies, and (4) use it to infer

likely distributed state invariants. We also introduced a lightweight probabilistic

assertion mechanism to check distributed state invariants at runtime using real-time

snapshots.

We realized our approach in Dinv, a tool for systems written in Go. We eval-

uated Dinv with four complex and widely used systems. Our evaluation demon-

strates that Dinv can infer critical correctness properties of these systems, and that

Dinv assertions can detect silent violations of these properties. For example, Dinv

detected a violation of each of the three invariants of etcd Raft in under 7s with

assertion overhead of just 1.02x.

Dinv is an open source tool [17].

34

Bibliography

[1] M. Ahuja, A. D. Kshemkalyani, and T. Carlson. A basic unit of computation
in distributed systems. In International Conference on Distributed
Computing Systems (ICDCS), 1990. → pages 5, 10

[2] AlDanial. cloc: Count Lines of Code. https://github.com/AlDanial/cloc,
2016. → page 17

[3] O. Babaoglu and M. Raynal. Specification and Verification of Dynamic
Properties in Distributed Computations. Journal of Parallel and Distributed
Computing, 28(2):173 – 185, 1995. ISSN 0743-7315. → page 10

[4] P. Bernstein and E. Newcomer. Principles of Transaction Processing: For
the Systems Professional. Morgan Kaufmann Publishers Inc., San Francisco,
CA, USA, 1997. ISBN 1-55860-415-4. → page 2

[5] I. Beschastnikh, Y. Brun, M. D. Ernst, A. Krishnamurthy, and T. E.
Anderson. Mining Temporal Invariants from Partially Ordered Logs.
SIGOPS Oper. Syst. Rev., 45(3):39–46, Jan. 2012. ISSN 0163-5980.
doi:10.1145/2094091.2094101. URL
http://doi.acm.org/10.1145/2094091.2094101. → page 32

[6] I. Beschastnikh, Y. Brun, M. D. Ernst, and A. Krishnamurthy. Inferring
Models of Concurrent Systems from Logs of Their Behavior with CSight. In
International Conference on Software Engineering (ICSE), 2014. → page 32

[7] I. Beschastnikh, P. Wang, Y. Brun, and M. D. Ernst. Debugging distributed
systems: Challenges and options for validation and debugging.
Communications of the ACM, 59(8):32–37, Aug. 2016. → page 1

[8] H. Cai and D. Thain. DistIA: A Cost-effective Dynamic Impact Analysis for
Distributed Programs. In International Conference on Automated Software
Engineering (ASE), 2016. → page 33

35

https://github.com/AlDanial/cloc
http://dx.doi.org/10.1145/2094091.2094101
http://doi.acm.org/10.1145/2094091.2094101

[9] K. M. Chandy and L. Lamport. Distributed snapshots: determining global
states of distributed systems. ACM TOCS, 3(1):63–75, Feb. 1985. ISSN
0734-2071. doi:10.1145/214451.214456. URL
http://doi.acm.org/10.1145/214451.214456. → page 16

[10] J. E. Cook and A. L. Wolf. Discovering Models of Software Processes from
Event-based Data. ACM TOSEM, 7(3):215–249, July 1998. ISSN
1049-331X. doi:10.1145/287000.287001. URL
http://doi.acm.org/10.1145/287000.287001. → page 32

[11] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears.
Benchmarking Cloud Serving Systems with YCSB. In Symposium on Cloud
Computing (SoCC), 2010. → page 23

[12] R. Cooper and K. Marzullo. Consistent Detection of Global Predicates. In
ACM/ONR Workshop on Parallel and Distributed Debugging (PADD), 1991.
→ page 10

[13] CoreOS. Distributed reliable key-value store for the most critical data of a
distributed system. https://github.com/coreos/etcd, 2013. → pages 3, 19

[14] CoreOS. A Distributed init System. https://github.com/coreos/fleet, 2013.
→ page 23

[15] CoreOS. Reboot manager for the CoreOS update engine.
https://github.com/coreos/locksmith, 2014. → page 23

[16] A. Das, I. Gupta, and A. Motivala. Swim: Scalable weakly-consistent
infection-style process group membership protocol. In International
Conference on Dependable Systems and Networks (DSN), 2002. → pages
7, 20

[17] Dinv. Dinv homepage. https://bitbucket.org/bestchai/dinv/. → pages
3, 17, 34

[18] Ú. Erlingsson, M. Peinado, S. Peter, and M. Budiu. Fay: Extensible
Distributed Tracing from Kernels to Clusters. In Symposium on Operating
Systems Principles (SOSP), 2011. → page 33

[19] M. D. Ernst, J. H. Perkins, P. J. Guo, S. McCamant, C. Pacheco, M. S.
Tschantz, and C. Xiao. The Daikon system for dynamic detection of likely
invariants. Science of Computer Programming, 69(1–3):35–45, Dec. 2007.
→ pages 2, 15, 32

36

http://dx.doi.org/10.1145/214451.214456
http://doi.acm.org/10.1145/214451.214456
http://dx.doi.org/10.1145/287000.287001
http://doi.acm.org/10.1145/287000.287001
https://bitbucket.org/bestchai/dinv/

[20] B. Fitzpatrick. Groupcache. https://github.com/golang/groupcache, 2014.
→ pages 3, 19, 21

[21] V. K. Garg. Maximal Antichain Lattice Algorithms for Distributed
Computations. In Distributed Computing and Networking, pages 240–254.
Springer, 2013. ISBN 978-3-642-35668-1. → page 10

[22] D. Geels, G. Altekar, P. Maniatis, T. Roscoe, and I. Stoica. Friday: Global
Comprehension for Distributed Replay. In Symposium on Networked
Systems Design and Implementation (NSDI), Cambridge, MA, USA, 2007.
→ page 33

[23] S. Grant, H. Cech, and I. Beschastnikh. Inferring and asserting distributed
system invariants. In Proceedings of the 40th International Conference on
Software Engineering, ICSE ’18, pages 1149–1159, New York, NY, USA,
2018. ACM. ISBN 978-1-4503-5638-1. doi:10.1145/3180155.3180199.
URL http://doi.acm.org/10.1145/3180155.3180199. → page v

[24] F. Groeneveld, A. Mesbah, and A. Van Deursen. Automatic invariant
detection in dynamic web applications. Technical report, Delft University of
Technology, Software Engineering Research Group, 2010. → page 33

[25] R. Gusella and S. Zatti. The Accuracy of the Clock Synchronization
Achieved by TEMPO in Berkeley UNIX 4.3BSD. IEEE TSE, 15(7):
847–853, July 1989. ISSN 0098-5589. doi:10.1109/32.29484. URL
http://dx.doi.org/10.1109/32.29484. → page 16

[26] Hashicorp. Service orchestration and management tool.
https://www.serf.io/docs/internals/gossip.html, 2014. → pages 3, 7, 19

[27] C. Hawblitzel, J. Howell, M. Kapritsos, J. R. Lorch, B. Parno, M. L.
Roberts, S. Setty, and B. Zill. IronFleet: Proving Practical Distributed
Systems Correct. In Symposium on Operating Systems Principles (SOSP),
pages 1–17, New York, NY, USA, 2015. ACM. ISBN 978-1-4503-3834-9.
doi:10.1145/2815400.2815428. URL
http://doi.acm.org/10.1145/2815400.2815428. → page 33

[28] Jackpal. A(nother) Bittorrent client written in the go programming language.
https://github.com/jackpal/Taipei-Torrent, 2010. → pages 3, 19

[29] R. A. Jeff Overbey. Go Doctor - The Golang Refactoring Engine.
http://gorefactor.org/index.html, 2014. → page 17

37

http://dx.doi.org/10.1145/3180155.3180199
http://doi.acm.org/10.1145/3180155.3180199
http://dx.doi.org/10.1109/32.29484
http://dx.doi.org/10.1109/32.29484
http://dx.doi.org/10.1145/2815400.2815428
http://doi.acm.org/10.1145/2815400.2815428

[30] Y. Junqueira. Kademlia/Mainline DHT node in Go.
https://github.com/nictuku/dht, 2012. → page 22

[31] A. Khurshid, X. Zou, W. Zhou, M. Caesar, and P. B. Godfrey. VeriFlow:
Verifying Network-Wide Invariants in Real Time. In Symposium on
Networked Systems Design and Implementation (NSDI), 2013. → page 33

[32] C. Killian, J. W. Anderson, R. Jhala, and A. Vahdat. Life, death, and the
critical transition: finding liveness bugs in systems code. In Symposium on
Networked Systems Design and Implementation (NSDI), Cambridge, MA,
USA, 2007. → page 33

[33] Kubernetes. Production-Grade Container Scheduling and Management.
http://kubernetes.io/, 2014. → page 23

[34] S. Kumar, S.-C. Khoo, A. Roychoudhury, and D. Lo. Inferring Class Level
Specifications for Distributed Systems. In International Conference on
Software Engineering (ICSE), 2012. → page 32

[35] M. Kusano, A. Chattopadhyay, and C. Wang. Dynamic Generation of Likely
Invariants for Multithreaded Programs. In International Conference on
Software Engineering (ICSE), 2015. → page 33

[36] X. Liu, W. Lin, A. Pan, and Z. Zhang. WiDS Checker: Combating Bugs in
Distributed Systems. In Symposium on Networked Systems Design &
Implementation (NSDI), 2007. → page 33

[37] X. Liu, Z. Guo, X. Wang, F. Chen, X. Lian, J. Tang, M. Wu, M. F. Kaashoek,
and Z. Zhang. D3S: Debugging Deployed Distributed Systems. In
Symposium on Networked Systems Design and Implementation (NSDI), San
Francisco, CA, USA, 2008. → pages 2, 33

[38] J. G. Lou, Q. Fu, Y. Wang, and J. Li. Mining dependency in distributed
systems through unstructured logs analysis. SIGOPS Oper. Syst. Rev., 44(1):
91–96, Mar. 2010. ISSN 0163-5980. → page 32

[39] J. Mace, R. Roelke, and R. Fonseca. Pivot tracing: Dynamic causal
monitoring for distributed systems. In Symposium on Operating Systems
Principles (SOSP), 2015. → page 33

[40] F. Mattern. Virtual Time and Global States of Distributed Systems. In
Parallel and Distributed Algorithms, pages 215–226, 1989. URL
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.47.7435. →
pages 4, 7

38

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.47.7435

[41] P. Maymounkov and D. Mazières. Kademlia: A Peer-to-Peer Information
System Based on the XOR Metric. In International Workshop on
Peer-to-Peer Systems (IPTPS), 2002. → page 22

[42] T. Ne Win, M. D. Ernst, S. J. Garland, D. Kırlı, and N. Lynch. Using
simulated execution in verifying distributed algorithms. Software Tools for
Technology Transfer, 6(1):67–76, July 2004. → pages 30, 32

[43] D. Ongaro and J. Ousterhout. In Search of an Understandable Consensus
Algorithm. In USENIX ATC, 2014. → pages 3, 18, 23, 24

[44] K. J. Ottenstein and L. M. Ottenstein. The Program Dependence Graph in a
Software Development Environment. SIGPLAN Not., 19(5):177–184, Apr.
1984. ISSN 0362-1340. doi:10.1145/390011.808263. URL
http://doi.acm.org/10.1145/390011.808263. → page 6

[45] J. K. Ousterhout. The Role of Distributed State. In In CMU Computer
Science: a 25th Anniversary Commemorative, pages 199–217. ACM Press,
1991. → page 1

[46] P. Reynolds, C. Killian, J. L. Wiener, J. C. Mogul, M. A. Shah, and
A. Vahdat. Pip: Detecting the Unexpected in Distributed Systems. In
Symposium on Networked Systems Design and Implementation (NSDI),
2006. → page 33

[47] RunLim. RunLim. http://fmv.jku.at/runlim/, 2016. → page 19

[48] R. R. Sambasivan, A. X. Zheng, M. D. Rosa, E. Krevat, S. Whitman,
M. Stroucken, W. Wang, L. Xu, and G. R. Ganger. Diagnosing Performance
Changes by Comparing Request Flows. In Symposium on Networked
Systems Design and Implementation (NSDI), 2011. → page 32

[49] F. B. Schneider. Implementing fault-tolerant services using the state
machine approach: a tutorial. ACM Comput. Surv., 22(4):299–319, Dec.
1990. ISSN 0360-0300. doi:10.1145/98163.98167. URL
http://doi.acm.org/10.1145/98163.98167. → page 1

[50] I. Sergey, J. R. Wilcox, and Z. Tatlock. Programming and Proving with
Distributed Protocols. In Symposium on Principles of Programming
Languages (POPL), 2018. → page 33

[51] B. H. Sigelman, L. A. Barroso, M. Burrows, P. Stephenson, M. Plakal,
D. Beaver, S. Jaspan, and C. Shanbhag. Dapper, a large-scale distributed

39

http://dx.doi.org/10.1145/390011.808263
http://doi.acm.org/10.1145/390011.808263
http://fmv.jku.at/runlim/
http://dx.doi.org/10.1145/98163.98167
http://doi.acm.org/10.1145/98163.98167

systems tracing infrastructure. Technical report, Google, Inc., 2010. URL
http://research.google.com/archive/papers/dapper-2010-1.pdf. → page 33

[52] N. Walkinshaw, M. Roper, M. Wood, and N. W. M. Roper. The Java System
Dependence Graph. In International Workshop on Source Code Analysis
and Manipulation (SCAM), 2003. → page 6

[53] R. J. Walls, Y. Brun, M. Liberatore, and B. N. Levine. Discovering
specification violations in networked software systems. In International
Symposium on Software Reliability Engineering (ISSRE), 2015. → page 32

[54] J. R. Wilcox, D. Woos, P. Panchekha, Z. Tatlock, X. Wang, M. D. Ernst, and
T. Anderson. Verdi: A Framework for Implementing and Formally Verifying
Distributed Systems. In Conference on Programming Language Design and
Implementation (PLDI), 2015. → page 33

[55] W. Xu, L. Huang, A. Fox, D. Patterson, and M. I. Jordan. Detecting
Large-Scale System Problems by Mining Console Logs. In Symposium on
Operating Systems Principles (SOSP), 2009. → page 32

[56] M. Yabandeh, A. Anand, M. Canini, and D. Kostic. Finding
Almost-Invariants in Distributed Systems. In International Symposium on
Reliable Distributed Systems (SRDS), 2011. → pages 2, 32

[57] J. Yang, T. Chen, M. Wu, Z. Xu, X. Liu, H. Lin, M. Yang, F. Long,
L. Zhang, and L. Zhou. MODIST: Transparent Model Checking of
Unmodified Distributed Systems. In Symposium on Networked Systems
Design and Implementation (NSDI), 2009. → pages 2, 33

[58] P. Zave. Using Lightweight Modeling to Understand Chord. SIGCOMM
Comput. Commun. Rev., 42(2):49–57, Mar. 2012. ISSN 0146-4833. → page
1

[59] X. Zhao, Y. Zhang, D. Lion, M. F. Ullah, Y. Luo, D. Yuan, and M. Stumm.
Lprof: A Non-intrusive Request Flow Profiler for Distributed Systems. In
Symposium on Operating System Design and Implementation (OSDI), 2014.
→ page 33

40

http://research.google.com/archive/papers/dapper-2010-1.pdf

	Abstract
	Lay Summary
	Preface
	Table of Contents
	List of Tables
	List of Figures
	Glossary
	Acknowledgements
	1 Introduction
	2 Background and assumptions
	3 Design
	3.1 System instrumentation
	3.2 Extracting global states
	3.3 Strategies to group global states
	3.4 Inferring distributed invariants
	3.5 Asserting inferred invariants

	4 Implementation
	5 Evaluation
	5.1 Using Dinv
	5.2 Evaluation: inferring invariants
	5.3 Analyzing the SWIM protocol in Serf
	5.4 Analyzing Groupcache
	5.5 Analyzing Taipei-Torrent
	5.6 Analyzing etcd Raft
	5.7 Evaluation: asserting invariants
	5.8 Evaluation: Dinv overhead
	5.9 Distributed assertions overhead

	6 Discussion
	7 Related work
	8 Conclusion
	Bibliography

