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Abstract

Distributed systems are difficult to design and implement correctly, leading

academia and industry to explore using formal methods to address these

complexities. In previous work, we presented PGo, a framework for build-

ing verified distributed system implementations. PGo compiles distributed

system models into executable programs.

Using PGo to build systems, we face a new paradigm where PGo models

serve dual roles as both models and programs. Models and programs are

inherently different. Models are designed for ease of reasoning and provide a

simplified representation of the system, while programs prioritize efficiency

and performance for execution on the hardware.

This work addresses the duality problem inherent in PGo models, where

they must serve both as models and programs. We analyze various aspects

of the duality we faced while building distributed systems using PGo. We

propose techniques that reconcile the model-implementation duality. Addi-

tionally, we introduce a framework for constructing modular systems using

PGo. Modularity is essential for building real-world distributed systems, as

distributed systems are rarely implemented as monolithic systems.

Our evaluation demonstrates that despite the duality problem, we can

satisfy the requirements of both the model and implementation sides in

complex systems. We used PGo to model, compile, and evaluate several

distributed systems, including key-value stores based on Raft and primary-

backup protocols, as well as Conflict-free Replicated Data Types. Our Raft-

based key-value store with three nodes is model checked and has 41% higher

throughput than similar verified systems.
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Lay Summary

Designing and implementing distributed systems accurately is challenging.

In a prior work, we presented the PGo framework for building correct dis-

tributed systems. PGo compiles specifications of distributed systems into

programs. When using PGo, we encounter a new challenge: the specifica-

tion we create must serve as both a simplified representation for reasoning

(model) and an efficient program for execution (implementation). This study

addresses this duality inherent in PGo specification. Our evaluation demon-

strates that despite the duality, we can satisfy the requirements of both the

model and implementation sides in complex distributed systems.
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Chapter 1

Introduction

If an army, that sheddeth the

blood of lovers, grief raise

Content together are I and the

Saki; and up its foundation, we

cast

Hafiz

Distributed systems are a key part of the modern software stack. They

support important applications such as banking, communication, and social

networks. Despite decades of research and industry experience, building

correct distributed systems is still notoriously hard. As a consequence, sys-

tems in production often have bugs leading to degraded performance [23],

outages [25, 67], and data loss [24]. For example, Roblox, an online gaming

service with more than 100 million users, experienced a 73 hours outage

in November 2021 [64] due to bugs in Consul [31], a distributed key-value

store.

In recent years, developers started using formal methods to ensure the

correctness of their systems [57]. Typically, developers create models of their

systems and use the available tools to verify the correctness of a model.

Then, they translate the model into an actual implementation, which is a

manual and error-prone task. This approach leaves the final implementation
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unverified, creating a gap between the verified model and the implementa-

tion.

PGo [29] bridges the model-implementation gap by automatically com-

piling a model of a distributed system into a program in the Go programming

language. PGo introduces the MPCal modeling language, which is built on

top of PlusCal/TLA+ family of languages [43, 44]. For verification, PGo

leverages model checking to verify the correctness of MPCal models. On

the implementation side, PGo compiles MPCal models into Go programs.

Users have to write a few lines of configuration code to make the compiled

Go program executable.

Building distributed systems using PGo helps developers with the model-

implementation gap. However, it introduces a new paradigm where MPCal

code serves both as a model and a program. Modeling and implementa-

tion have different purposes and concerns. Models are designed to facilitate

reasoning and provide a simplified representation of the system under con-

sideration. They aim to capture the essential aspects of the system while

abstracting away unnecessary details. By reducing complexity, models en-

able easier analysis and reasoning about system behavior and properties.

On the contrary, programs are intended for execution on hardware, where

efficiency and performance are key concerns. Programs operate at a lower

level of abstraction, taking into account specific hardware and implementa-

tion considerations. While models focus on conceptual understanding and

verification, programs prioritize practical execution and optimal utilization

of hardware resources. Thus, models and programs serve different purposes

and operate at different levels of abstraction to fulfill their respective goals.

Similarly, modeling languages and programming languages serve distinct

purposes and exhibit differences in their design and features. Programming

languages prioritize aspects such as performance, efficiency, and ease of pro-

gramming. On the other hand, modeling languages are specifically designed

to facilitate the expression and analysis of systems. As a result, typically,

we have different languages for writing programs and models.

MPCal code is a model itself but since it is compiled into a program, it

has to fulfill the needs of a program, as well. This introduces a duality in

2



the MPCal code where it has two purposes, as a model and as a program.

When using PGo to build systems, the development process begins with

constructing the model, which is then compiled into an executable program.

As a result, considerations and constraints from the program side impact

modeling decisions. In this work, we explore the model-program duality in

PGo and discuss how the two sides with different concerns can be reconciled.

Managing complexity is a crucial aspect when developing large-scale sys-

tems. Modularity plays a fundamental role in the managing of complexity.

Mainly, modularity is vital for verified systems to manage the verification

cost [1, 15]. By decomposing the system into smaller, interconnected mod-

ules, we can effectively handle the intricacies of system design and verifica-

tion. This work introduces a framework for constructing modular systems

using PGo.

Throughout this work, we present RaftStore as an example to address

the challenges arising from the duality of building a complex distributed

system. RaftStore is a distributed key-value store database based on the

Raft consensus protocol [59]. By employing RaftStore as a running example,

we demonstrate how we tackled the duality concerns as a practical showcase

for the concepts and techniques discussed in this work. We built a modular

version of RaftStore, named RaftStoreMod, consisting of consensus and key-

value store components. We use RaftStoreMod to demonstrate the modular

design in an intricate distributed system.

In summary, the contributions of this work are:

• We propose techniques to reconcile the duality between modeling land

and implementation land using the provided PGo primitives. We rely

on RaftStore as a running example to show how two sides with different

concerns can be reconciled.

• We show how to build modular verified systems using PGo. This de-

sign approach allows us to reduce the trusted-computing base, model

complexity, and model-checking cost, while building larger scale sys-

tems.

• Our evaluation shows that despite the duality problem, we are able

3



to build high performance and fault-tolerant systems while model-

checking them within reasonable bounds.
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Chapter 2

PGo Background

In the end, it is a social process

that determines whether

mathematicians feel confident

about a theorem.

Richard A. De Millo, Richard J.

Lipton and Alan J. Perlis

PGo is a compiler toolchain that automatically translates MPCal models

to TLA+ for model-checking. In addition, it compiles MPCal models to the

Go programming language for execution.

Figure 2.1 shows the PGo workflow. The left side of the workflow is the

verification side, where users can model check their MPCal models. The

right side of the workflow is the implementation side, where the MPCal

model is compiled into a Go program. Note that we use the words pro-

gram and implementation interchangeably in this work. Next, we review

the necessary information to understand PGo and the different pieces in the

workflow. We use a distributed lock service as a running example through-

out the chapter. The lock service has a central server that manages a lock.

Clients request to acquire or release the lock through the network.
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Modular
PlusCal

PlusCal

TLA+

PGo

GoCompiled
GoPGo

Main
(program setup)

distsys
libraries

Go runtime

Model Checker (TLC)

Correctness
Properties

Distributed deployment

Abstract model Concrete realization

Figure 2.1: PGo workflow. The shaded blue components must be
provided by the user.

2.1 Model checking

Model checking is a technique used to verify whether a given model of a

system meets a specific specification. By exhaustively examining all possi-

ble states of the system model, a model checker ensures that the properties

defined in the specification hold true in each state. Often, the model check-

ing process is confined within a finite search space, limiting the scope of

exploration. If a model checker detects a state that violates a property, it

generates a counterexample, which represents the execution trace leading to

that state.

Specifications are expressed as system properties. Properties can be

categorized as either safety or liveness properties [2, 40]. Safety properties

focus on preventing undesirable events or states from occurring within the

system, ensuring that nothing bad happens. On the other hand, liveness

6



@ i, j ∈ ClientSet : i 6= j ∧ statei = HasLock

∧ statej = HasLock

(a) Safety property: there are no two clients that hold the lock at the same time
(mutual exclusion).

∀i ∈ ClientSet : �(statei = WaitLock

=⇒ ♦(statei = HasLock))

(b) Liveness property: always (�) every client that waits for the lock, eventually
(♦) holds the lock. Note that satisfying the safety property above does not guarantee
this fact, since a lock server that never grants the lock to any client trivially satisfies
the safety requirement.

Figure 2.2: Example safety and liveness properties of a lock service.
ClientSet is the set of all clients in the system, and statei is
the i-th client state.

properties emphasize the guarantee that the system eventually reaches a

desirable state or accomplishes some good outcome.

Figure 2.2 lists a safety and a liveness property for the lock service.

2.2 TLA+

TLA+ [43] is a language that employs a declarative approach to model

systems based on set-theory and first-order logic [61]. The TLC model

checker [78] can verify that a TLA+ model adheres to both safety and live-

ness specifications within bounded limits. A TLA+ model is made of several

predicates. Predicates define the modeled system’s initial state and the tran-

sition relation describing how the system progresses with new states. The

transitions are atomic steps in the system.

For example, Figure 2.3 shows our lock server modeled in TLA+. The

initial state is defined in the Init predicate, and the Next predicate defines

the transition relations at each step. Possible transitions to the next state

7



are either serverReceive or serverRespond. A variable without prime (e.g.,

msg) represents the value in the old state. A variable with prime (e.g., msg′)

represents the value in the new state. We modeled the network by a set of

unbounded arrays, network. The lock server has a queue denoted by the

variable q. The first client in the queue holds the lock, and the rest of the

clients in the queue are waiting for the lock. In the serverReceive predicate,

the server receives a request and stores it for processing if there is no other

request pending. During serverRespond the server processes the received

message. For lock requests, the server grants the lock to the requesting

client if the queue is empty, and it adds that client to the end of its queue.

For unlock requests, the server pops the requesting client from the head of

its queue and grants the lock to the next client waiting in the queue, if any.

2.3 PlusCal

PlusCal [44] is a modeling language for specifying algorithms. PlusCal

code can be translated to TLA+. Within PlusCal, system’s behavior is

defined procedurally, with different processes having their behavior defined

by statements and interacting using control flow structures such as while

loops and if statements. To convert PlusCal specifications into TLA+, users

can utilize a PlusCal translator, which enables them to use the TLC model

checker on PlusCal models.

A PlusCal spec is comprised of one or more processes. Each process runs

sequentially, and different processes can run concurrently. PlusCal processes

consist of labels. Each label contains a block of statements that define an

atomic step in the model. PlusCal provides a C-like goto statement that

allows jumping between different labels. We also refer to labels as critical

sections. During compilation to TLA+, each block of labels in PlusCal is

converted into a TLA+ transition. Designers must consider the trade-off

presented by labels, as incorporating more labels enables increased con-

currency between labels in different processes, resulting in a more realistic

model. However, this can lead to an exponential increase in the state space

and its associated costs.
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In the initial state, no message in the network and the1

server’s queue is empty.2

Init
∆
= ∧ network = [n ∈ NodeSet 7→ 〈〉]3

∧ q = 〈〉4

∧msg = Nil5

Next
∆
= Possible transitions to the next state.6

∨ serverReceive7

∨ serverRespond8

serverReceive
∆
= Receving a request from clients9

∧msg = Nil10

Ensure that the server’s buffer is not empty.11

∧ Len(network [ServerId ]) > 012

Receiving a message by reading the first element13

in the server’s network buffer.14

∧msg ′ = Head(network [ServerId ])15

After reading the message, we can remove it from the buffer.16

∧ network ′[ServerId ] = Tail(network [ServerId ])17

serverRespond
∆
= Handling the request and responding back18

∨ ∧msg .type = LockMsg19

∧ q = 〈〉 ⇒20

Sending a message to msg.from by adding it21

to the end of recipient’s network buffer.22

let dst
∆
= msg .from23

in network ′[dst ] = Append(network [dst ], GrantMsg)24

∧ q ′ = Append(q , msg .from)25

∧msg ′ = Nil26

∨ ∧msg .type = UnlockMsg27

∧ q ′ = Tail(q)28

∧ q ′ 6= 〈〉 ⇒29

Sending a message to Head(q ′)30

let dst
∆
= Head(q ′)31

in network ′[dst ] = Append(network [dst ], GrantMsg)32

∧msg ′ = Nil33

1

Figure 2.3: Lock server specification in TLA+.
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Figure 2.4 shows our lock server modeled in PlusCal. It has the same

semantics as the TLA+ model in Figure 2.3. Besides the usual control flow

statements, PlusCal has two other essential statements that do not typically

exist in programming languages: (1) The await statement has the form

await cond, where cond is a boolean expression. await blocks the process

execution until cond becomes true. For example, in line 11 of Figure 2.4, the

server blocks until its network queue becomes non-empty. (2) The either

statement has the form either {clause1} or {clause2}, where clause1 and

clause2 are statements. either nondeterministically executes one of the

executable clauses. The either statement is executable if at least one of the

clauses is executable; otherwise, the process blocks.

PlusCal mixes the details of the system and its environment such that

it is not possible to distinguish them. For example, in Figure 2.4, the lock

server logic, which is the definition of the system, is mixed with its environ-

ment, the buffered network.

2.4 MPCal

MPCal is a modeling language built on top of PlusCal. MPCal provides

extra abstractions to separate the system definition and its environment.

Having this separation allows the PGo compiler to compile MPCal mod-

els into implementations. PGo compiles MPCal code into PlusCal, where

users can use the TLC model checker for verification. MPCal adds three

additional abstractions to PlusCal: (1) archetype definitions, (2) archetype

instantiations, and (3) mapping macros.

Archetypes are similar to PlusCal processes, but they only contain sys-

tem definitions. An archetype does not have access to global variables sim-

ilar to a PlusCal process. An archetype only can interact with environment

instances, which are the parameters that an archetype takes. Archetype pa-

rameters are called resources. Resources describe archetypes’ environment

dependencies. The definition of an archetype contains all the necessary in-

formation for PGo to create a functional system, including the interfacing

points where the system definition interacts with its environment.
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1 variables network = [id \in NodeSet |-> <<>>];

2

3 \* fair keyword specifies assumption of fair scheduling

4 fair process (Server = 1)

5 variables msg, q = <<>>;

6 {

7 serverLoop:

8 while (TRUE) {

9 serverReceive:

10 \* blocks the process until the there is some message available

11 await Len(network[self]) > 0;

12 msg := Head(network[self]);

13 network[self] := Tail(network[self]);

14 serverRespond:

15 if (msg.type = LockMsg) {

16 \* if q is empty

17 if (q = <<>>) {

18 network[msg.from] := Append(network[msg.from], GrantMsg);

19 };

20 q := Append(q, msg.from);

21 } else if (msg.type = UnlockMsg) {

22 q := Tail(q);

23 \* if q is not empty (/= is the not equals operator)

24 if (q /= <<>>) {

25 network[Head(q)] := Append(network[Head(q)], GrantMsg);

26 };

27 };

28 };

29 }

Figure 2.4: Lock server specification in PlusCal.

Archetypes access environment through their resources and mapping

macros define how resources are working. Mapping macros define the be-

havior of resources (e.g. buffered network) through a simple read/write API.

PGo does not compile mapping macros into implementation since they con-

tain verification-specific parts of the model, such as semantics of an abstract

environment.

Archetype instantiations provide existing archetypes with the right set

of resources and connect resources to mapping macros to define the behavior

of resources.

Figure 2.5 shows the lock server modeled in MPCal. Archetype AServer
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1 archetype AServer(ref network[_])

2 variables msg, q = <<>>;

3 {

4 serverLoop:

5 while (TRUE) {

6 serverReceive:

7 msg := network[self];

8 serverRespond:

9 if (msg.type = LockMsg) {

10 if (q = <<>>) {

11 network[msg.from] := GrantMsg;

12 };

13 q := Append(q, msg.from);

14 } else if (msg.type = UnlockMsg) {

15 q := Tail(q);

16 if (q /= <<>>) {

17 network[Head(q)] := GrantMsg;

18 };

19 };

20 };

21 }

22

23 mapping macro ReliableFIFOLink {

24 read {

25 await Len($variable) > 0;

26 with (readMsg = Head($variable)) {

27 $variable := Tail($variable);

28 yield readMsg;

29 };

30 }

31 write {

32 yield Append($variable, $value);

33 }

34 }

35

36 variables network = [id \in NodeSet |-> <<>>];

37

38 fair process (Server = 1) == instance AServer(ref network[_])

39 mapping network[_] via ReliableFIFOLink;

Figure 2.5: MPCal specification of the lock server, corresponding to
Figure 2.4.
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is defined on line 1, and it has a resource, ref network[_]1. The server

receives a message from the network in line 7 by reading from the network

parameter. The behavior of this read operation is defined in the read sec-

tion of the ReliableFIFOLink mapping macro, starting on line 24. Then,

in the serverReceive label, the server processes the received message. We

send a message by writing to the network variable. Similar to the read

case, the behavior of network write is defined in the write section of the

ReliableFIFOLink mapping macro.

Mapping macros define the behavior of read/write operations on re-

sources by injecting code wherever operations are used. These can be ar-

bitrary PlusCal code, which the PGo compiler inserts into an instantiated

archetype definition’s body. Each mapping macro has a read and a write sec-

tion that defines the behavior of read and write operations, respectively. Ex-

pressions in these sections have access to two special parameters. $variable

is the underlying state variable to operate on, and $value is the value writ-

ten by the caller (an archetype). In addition, the yield(_) statement yields

the computed output of its expression as the result of the operation.

Archetype AServer is instantiated on line 1 of Figure 2.5 with ref network[_]

as its parameter. The network is a global variable defined on line 36.

The statement mapping network[_] via ReliableFIFOLink on line 39 de-

clares that the behavior of network resource is being defined by the ReliableFIFOLink

mapping macro.

2.5 PGo

Using the PGo compiler, the MPCal code can be translated to PlusCal,

and then it can be translated to TLA+. Users can express the properties

of Figure 2.2 in TLA+ and use the TLC model checker to verify the model

against these properties.

PGo compiler translates archetypes into implementations in Go. PGo

ensures that the compiled Go program has the same semantics as its corre-

1The ref keyword means this parameter is a passed by reference. The [_] syntax
means indexed access and restricts accessing network resource to be only indexed.
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sponding MPCal. The distsys Go library is responsible for providing such

guarantees. An essential part of distsys is offering atomicity guarantees for

each label while maximizing concurrency. distsys executes each archetype

in a main loop that provides the necessary semantics of critical section and

control flow.

Figure 2.6 shows the serverReceive critical section of Figure 2.5 compiled

into Go. This is almost a direct translation from MPCal to Go. PGo

compiles each archetype into a set of critical sections, and the distsys’s

main loop is responsible for correctly executing them. The serverReceive

critical section acquires access to resources msg and network in lines 6-7. Note

that it treats both archetype parameters and local variables as resources;

however, the access calls are slightly different. The critical section body has

an archetype interface as input iface that allows the archetype to access

its resources through read and write calls, as demonstrated in lines 11 and

15. These correspond to operations on line 7 of Figure 2.5. Line 19 is the

implicit jump at the end of the serverReceive label where it finishes, and

the program goes to the next label, serverRespond.

Resource implementations have to follow the interface defined in Fig-

ure 2.7. Inspired by the two-phase commit protocol, this API allows the

distsys library to provide correct linearizability semantics for critical sec-

tions. distsys main loop starts executing a critical section by applying the

changes temporarily. Then it performs the pre-commit stage across all par-

ties participating in a critical section. The main loop proceeds to the com-

mit stage if PreCommit does not return any error for any of the resources.

In the commit stage, each resource commits the critical section changes. If

at least one of the resources involved in the critical section fails in the pre-

commit stage, the main loop aborts the critical section by calling Abort on

all resources and tries to execute the critical section again. Commit always

supposed to succeed and this assumption might cause liveness issues, such

as blocking the process execution forever. In addition, distsys provides a

library of commonly used resources such as networking and storage.

The user configures the generated Go code with the resource implemen-

tations. Figure 2.8 shows the code that bootstraps the compiled AServer
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1 distsys.MPCalCriticalSection{

2 Name: "AServer.serverReceive",

3 Body: func(iface distsys.ArchetypeInterface) error {

4 var err error // setup

5 _ = err

6 msg := iface.RequireArchetypeResource("AServer.msg")

7 network, err := iface.RequireArchetypeResourceRef("AServer.network")

8 if err != nil {

9 return err

10 } // read network[self]

11 networkRead, err := iface.Read(network, []tla.Value{iface.Self()})

12 if err != nil {

13 return err

14 } // msg := <value>

15 err = iface.Write(msg, nil, networkRead)

16 if err != nil {

17 return err

18 }

19 return iface.Goto("AServer.serverRespond")

20 },

21 },

Figure 2.6: The serverReceive label from the archetype definition in
Figure 2.5 compiled to Go.

1 type ArchetypeResource interface {

2 Abort()

3 PreCommit() error

4 Commit()

5 ReadValue() (tla.Value, error)

6 WriteValue(value tla.Value) error

7 }

Figure 2.7: Go archetype resource interface definition.

archetype. The user begins by creating an MPCalContext object for each

archetype. MPCalContext contains the main loop for its given archetype. It

requires an archetype name, an archetype instance, and a list of archetype

resources. In this case, we provided TCPMailboxes for the network resource.

Lines 7 to 16 configure the TCPMailboxes with the right set of network ad-

dresses. Finally, the user runs the instantiated archetype in line 18.
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1 ctxServer := distsys.NewMPCalContext(

2 serverId,

3 AServer,

4 distsys.EnsureArchetypeRefParam(

5 "network",

6 resources.NewTCPMailboxes(func(v tla.Value)

7 (resources.MailboxKind, string) {

8 addr := addressMap[v.AsNumber()]

9 var kind resources.MailboxKind

10 if v.Equal(serverSelf) {

11 kind = resources.MailboxesLocal

12 } else {

13 kind = resources.MailboxesRemote

14 }

15 return kind, addr

16 })),

17 )

18 err := ctxServer.Run()

Figure 2.8: Bootstrapping the compiled AServer archetype in Go.
Archetype AServer is instantiated with appropriate resource im-
plementations.

2.6 Assumptions

As described earlier, PGo has two workflows, verification and implementa-

tion. In the verification workflow, the user trusts the MPCal to PlusCal

translation process provided by the PGo compiler. Moreover, users trust

PlusCal to TLA+ translation and the TLC model checker. TLC assumes

the user has provided the right properties in the given specification. On

the implementation side, users trust the MPCal compilation with PGo, the

distsys library, including all the resource implementations. Also, users have

to trust the Go runtime and the underlying operating system.
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Chapter 3

Model-Implementation

Duality

Aren’t programs simpler than

logical formulas? The answer is

no.

Leslie Lamport

PGo offers two distinct workflows, namely verification and implemen-

tation, which were previously discussed in Chapter 2. In each of these

workflows, the MPCal code is utilized as the source code, which is subse-

quently compiled into different target languages to serve both as a model

and a program. We define this as model-implementation duality in MPCal

code, where the same code is employed to address two different concerns.

This section discusses the similarities and differences between models and

programs, and provides additional insight into the duality problem.

3.1 Models and Programs

A model and a program both involve describing a system in an abstract

formal language. Models and programs are defined based on abstractions;

however, their abstraction level is different. Models and programs serve
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Table 3.1: Comparison of models and programs across different as-
pects.

Program Model

Purpose
Execution
on hardware

Reasoning
by human/tools

Non-functional
requirement

Correctness Correctness

Abstraction level Concrete Abstract

Performance
measure

Execution time,
resource usage

Degree and cost
of reasoning

Complexity High Low

Verification cost High Low

Language Closer to hardware Closer to math

different purposes. The primary objective of a program is to be executed on

a hardware platform, such as a CPU. In contrast, models are not necessarily

designed for execution. The primary goal of a model is to enable reasoning

about a system. These distinct purposes result in different abstraction levels

and requirements for models and programs, while an essential requirement

for both models and programs is correctness. Table 3.1 summarizes the

comparison of models and programs across different aspects.

3.1.1 Models

Developers create models to aid in the analysis and reasoning of their sys-

tems. This reasoning can be performed either manually by humans or au-

tomatically by tools. For example, Unified Modeling Language (UML) [4]

is a modeling language intended to visualize software systems primarily for

human analysis. In contrast, the TLA+ modeling language is based on logic

and enables automated reasoning about models through tools such as model

checking, automated theorem proving, and randomized testing.

Models are designed to facilitate reasoning, and as such, they tend to

be simpler than programs and abstract away details as much as possible.

Typically, models are only a few hundred lines of code, making them easy

to modify. In addition, models focus on one specific concern and abstract
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away unrelated ones. For example, consider a model of a replication protocol

where nodes communicate through the network. Such a model would focus

solely on the replication protocol and would abstract away other system

components, such as the network. To achieve this, the model would only

use a simple abstract representation of the network that has the necessary

guarantees for the replication protocol.

Models often utilize math because it offers well-defined semantics for

various constructs, making reasoning easier [42]. Models tend to use math-

ematical objects like sets and vectors which are used instead of complex

objects and data structures. Unlike programs, models are not necessarily

executable. Models typically adopt a declarative approach and are designed

to specify the what rather than the how. Consequently, a model may not

define a single method of computation, but instead they may declare classes

of computation [45]. An example of this is the either statement in MPCal,

which indicates that one of several possibilities may occur without specifying

which.

3.1.2 Programs

Programs are designed to be executed on hardware and, as such, they are

more concrete than models, with abstractions that are closer to the under-

lying hardware. Programs operate in real environments and need to imple-

ment the full stack of the underlying system they rely on. For instance, a

networked system needs to have the complete network stack implementation

in order to interact with it. Due to the level of abstraction, programs are

often large. It is not unusual to have programs consisting of hundreds of

thousands of lines of code.

A vital requirement for programs is execution performance, which in-

cludes factors such as execution time and resource usage (e.g., CPU, mem-

ory, and disk). To meet performance and efficiency requirements, programs

often become increasingly complex. This complexity, combined with their

large size, can make them difficult to change over time.

The complexity of programs presents a significant challenge in verifying
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their correctness. As a result, developers often rely on techniques with

weaker guarantees, such as testing, to analyze program correctness.

3.1.3 Languages

The distinct goals and concerns associated with models and programs ne-

cessitate the use of different languages to express them. Modeling languages

aim to enhance the understandability of models and enable verification of

their correctness.

Different modeling languages are tailored for specific types of analy-

sis. Unified Modeling Language (UML) and Systems Modeling Language

(SysML) [22] are designed to visualize software systems, making them eas-

ier to understand. Alloy [36], on the other hand, is a declarative modeling

language based on first-order logic that can be used to express complex struc-

tural constraints and behavior in software systems. Meanwhile, TLA+ and

PlusCal are well-suited for specifying concurrent and distributed systems.

Isar [70] and Gallina [68] are specification languages for the Isabelle [70]

and Coq [69] automated theorem provers, respectively, and are particularly

effective for writing proofs.

Programming languages prioritize execution optimization and ease of

writing large programs. Each programming language offers its unique set of

features. For instance, C is a low-level programming language that enables

high performance, while a language such as Java provides garbage collec-

tion, which removes the memory management burden from programmers.

However, such convenience comes at the cost of performance.

3.2 Duality

We discussed that models and programs have different purposes and levels

of abstraction. When the same code serves both as a model and a program,

it has to satisfy two different set of goals and even has to operate in two

different levels of abstraction, where models are abstract and programs and

implementations are concrete. We call this model-implementation duality.

The PGo workflow begins with the construction of a system model in
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MPCal. As the model is compiled into a program, the requirements and con-

siderations of the program side begin to impact the model. This integration

of program-specific concerns into the model introduces duality challenges.

The main idea behind MPCal is to provide abstractions that effectively

separate the concerns of the model and the program. However, effectively

utilizing these abstractions to build complex systems and navigating through

the duality can be challenging.

Archetypes serve as a common system definition that remains consistent

between the model and the compiled program in PGo. As a result, the

PGo compiler compiles archetypes into the Go code. On the other hand,

mapping macros define the system environment, where the model and pro-

grams operate at different levels of abstraction. Hence, users provide re-

source implementation for mapping macros. The first design consideration

revolves around determining the appropriate division between archetypes

and mapping macros in terms of what functionality should be included in

each. Archetypes must be able to compile into executable programs. Writ-

ing a model that does not compile into a meaningful program is easy. We

discuss an example illustrating this point in Chapter 6 in the context of

fault-tolerant systems. When it comes to mapping macros, it is crucial to

provide resource implementations with similar guarantees. Another point

to consider is that overloading mapping macros with excessive responsibil-

ities can increase the trusted computing base (TCB) size, as the resource

implementations may not be fully verified.

Models and programs operate at different levels of abstraction, leading

to fundamental differences between them. For example, there is no notion of

time in an MPCal model, while programs need timing guarantees for various

reasons. Programs require efficient IO and memory access to be performant,

while in MPCal models, we only have access to high-level immutable data

types. Duality reflects programs’ performance optimization concerns on the

model side.

Similarly, implementation-side requirements can introduce complexity

into models. For instance, programs aiming for improved performance often

rely on concurrency. However, a highly concurrent system increases com-
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plexity, enlarges the state space, and escalates the cost of model checking.

This presents a trade-off in terms of reflecting performance optimization re-

quirements in the model while maintaining a manageable level of reasoning

complexity.

In the next chapter, we present an overview of RaftStore, a distributed

key-value store we built using PGo. We use RaftStore as a running example

in the rest of the work, where we more precisely discuss different aspects of

duality.
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Chapter 4

RaftStore

In this work, we leverage PGo to develop a distributed key-value store called

RaftStore, which is built upon the Raft consensus protocol. RaftStore serves

as our primary example throughout this work. This chapter provides an

overview of RaftStore, starting with a concise review of the Raft consen-

sus protocol. Subsequently, we delve into the architecture of RaftStore,

highlighting its extended functionalities, including the integration of client

interaction and a key-value store layer.

4.1 Raft Basics

Consensus algorithms are commonly formulated as a state machine replica-

tion problem, which can be solved using a replicated log. In this approach,

each server maintains a log, with each entry representing a command for

execution. The consensus algorithm ensures that the log remains consistent

among all servers containing the same set of commands in the same order.

Raft consensus protocol works by electing a distinguished leader. The

elected leader replicates the commands it receives from clients to other

servers and tells them when it is safe to apply log entries to their state

machines. A Raft cluster consists of multiple servers, each of which can be

in one of three states: follower, candidate, or leader. Under normal opera-

tion, there is one leader, and all other servers are followers. A follower server
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Figure 4.1: Raft servers’ state transitions. This figure is taken from
the Raft paper [59].

recognizes the leader and replicates its log entries. The leader server is re-

sponsible for accepting new client requests and replicating them across the

followers. In the candidate state, a server is not a follower nor a leader and

is running an election round to become the new leader. Figure 4.1 depicts

the transitions between different server states.

Raft divides time into terms. Terms act as a logical clock [41] and each

server stores its monotonically increasing clock in its currentTerm variable.

Raft guarantees there is at most one leader at any given term.

We can divide the Raft protocol into two parts: (1) leader election:

servers select a new leader for the cluster when no leader exists or the pre-

vious one has failed. (2) log replication: the elected leader replicates new

log entries to the other servers and notifies them when they can apply a log

entry to their state machine.

4.1.1 Leader Election

Initially, all the servers in a Raft cluster start in the follower state. Servers

rely on heartbeats to initiate a leader election round. A follower remains

in the follower state if it receives period heartbeats. A leader periodically

sends heartbeat messages to followers. A follower times out if it does not

receive a heartbeat after a while. Then, it increases its currentTerm by one,

transitions into the candidate state, and starts a new election. A candidate

node sends RequestVote messages to all other servers to run an election
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round. A candidate wins an election if it receives votes from at least a

majority of nodes. A candidate might become a follower if it receives a

heartbeat message from another server. After some time, if none of these

happen, the candidate times out and starts another election round.

4.1.2 Log Replication

After a leader has been elected in a Raft cluster, it begins to process client

requests. The leader adds each request to its log and then replicates it to

other servers in the cluster through AppendEntries messages. These mes-

sages also serve as heartbeats for leader election. Raft guarantees that all

committed log entries are durable and will eventually be executed by all

available servers’ state machines. An entry is considered committed once

the leader has successfully replicated it on a majority of the servers in the

cluster. Each Raft server stores the index of the latest log entry known to be

committed in a local variable commitIndex, which increases monotonically.

4.2 Design Overview

RaftStore is a distributed key-value store that uses the Raft protocol to

replicate data among servers. RaftStore has a cluster of servers. Servers im-

plement the Raft protocol with a key-value dictionary as their state machine.

Clients interact with the cluster by sending requests to the leader. Client

interaction is implemented as an extension of the Raft protocol [58, 59].

Figure 4.2 shows RaftStore in a normal operation, where one server is the

leader and interacts with the clients.

RaftStore MPCal model has several archetypes and mapping macros.

Figure 4.3 shows a partial architecture of RaftStore MPCal model, includ-

ing some of its archetypes and mapping macros. Two IO resources are

being used in a server: net is the network, and log is the Raft log that

gets persisted on disk. Servers have other resources such as failure detectors

that they use for fault-tolerance and several timers such as leaderTimeout

for leader election. In addition, a Raft server has several variables that

are shared among its archetypes. These variables include the server state
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Figure 4.2: RaftStore architecture in a normal operation: (1) Leader
receives a request from a client. (2) Replicates the new entry
to followers by sending AppendEntries. (3) After receiving a
majority of responses from followers, leader replies back to the
client.

(state), current term (currentTerm), commit index (commitIndex), and can-

didate ID that the server is voted for in the current term (votedFor).

A RaftStore server has several archetypes that run concurrently. These

archetypes are:

• AServerHandler handles the incoming messages in a server.

• AServerRequestVote starts a new election round in case of a leader

timeout.

• AServerBecomeLeader detects if the current server has a quorum of
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votes and then promotes itself to be the leader.

• If the current server is the leader, AServerAppendEntries broadcasts

new entries.

• AServerAdvanceCommitIndex increases the commit index and replies

back to the clients.

The RaftStore client consists of one archetype. The user-facing archetype

AClient relays input requests from a channel (reqCh) to instances of AServer

via ReliableFIFOLink. It passes corresponding responses to the user via the

channel (respCh).

AServerBecome
Leader

AServer
AppendEntries

AServerRequest
Vote

appendEntriesCh
Channel

log
PersistentLog

net
ReliableFIFOLink

AServerHandler

leaderTimeout
Timer

AServerAdvance
CommitIndex

Shared Variables: 
- state
- commitlndex
- currentTerm
- votedFor

Write Write

Write

Write

Write

Read

Read
Read

Read

Write

AClientreqCh
Channel

net
ReliableFIFOLink

respCh
Channel

Incoming
Request

Received
Response

Write
Read

WriteRead

Read

(a) Architecture of MPCal Raft server

(b) Architecture of MPCal Raft client

Archetype resource
Mapping Macro

Legend:

Figure 4.3: Partial architecture of RaftStore MPCal model. Arrows
show the interaction between archetypes and mapping macros.
The direction of each read/write arrow denotes the direction of
data flow.
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4.3 Checking Correctness

We specified five properties of the Raft protocol in the RaftStore MPCal

model. These properties are:

• Election Safety: in every term there is at most one elected leader.

• Leader Append-Only: a leader only appends new entries to its log,

without changing or deleting the log entries.

• Log Matching: If there exists an entry with the same index and term

in two logs, it indicates that the logs are identical for all entries until

the specified index.

• Leader Completeness: When a log entry is committed during a

term, it implies that the same entry will be found in the logs of the

leaders of subsequent higher-numbered terms.

• State Machine Safety: Once a server has successfully applied a log

entry to its state machine at a specific index, it guarantees that no

other server will apply a different log entry for that same index.

We used the TLC model checker for the RaftStore model with the prop-

erties above. In the model checking mode, TLC explores all the possible

states the model allows using breadth-first search by default. We bounded

this search by the number of servers, clients, failures, election rounds, and

the number of entries committed to the log.

The Raft protocol may not always maintain liveness in an asynchronous

network, as the FLP result indicates [19]. However, in scenarios that do not

reach the worst-case conditions, Raft is designed to be capable of electing

a leader and making progress. The inherent randomness observed in real-

world environments enables consensus systems to function effectively despite

the inherent impossibility of achieving consensus.

We have specified two liveness properties for RaftStore:

• Election Liveness: At any given point, eventually a server will be

elected as the leader.
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• Client Progress: A client eventually receives a response for the re-

quest it had sent. Note that a client can retry and send a request

multiple times.

These properties always get violated during model checking since TLC

explores all possible states. For example, in the execution path where servers

keep timing out before having a majority for election, the election liveness

property will be violated. We used TLC simulation mode to ensure that

RaftStore is live in a real environment. In simulation mode, TLC starts

from a randomly selected initial state and chooses the next step randomly

up to a limited number of steps. We expect our liveness properties to hold

during simulation mode with enough steps.
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Chapter 5

Performing IO

Pessimists sound smart.

Optimists make money.

Nat Friedman

Real-world applications often use input/output (IO) operations, such as

networking and storage, to interact with their environment. However, the

representation and treatment of IO in models and programs differ signifi-

cantly. In models, IO is typically abstracted due to two main reasons. First,

the model’s primary focus is often not the IO operation itself. In addition,

executing actual IO operations can be costly and time-consuming. As a re-

sult, models tend to simplify and abstract IO operations, making them more

concise and straightforward. Conversely, programs must handle IO opera-

tions comprehensively, considering their full intricacies and complexities.

IO operations are often regarded as part of the system environment. In

the context of RaftStore, we consider IO devices such as the network and

persistent log to be elements of the system environment, distinct from the

system’s core definition, which encompasses the Raft protocol and the key-

value store layer. In an MPCal model, IO operations can be abstracted

using mapping macros. Each mapping macro corresponds to a resource im-

plementation on the implementation side. These resource implementations

must adhere to the resource API defined in Figure 2.7. Modeling various IO
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interfaces using simple read/write APIs of mapping macros presents a chal-

lenge. Ensuring consistent guarantees across both the IO mapping macros

and resource implementations can be difficult, particularly when striving for

optimal performance.

Next, we will explore the process of constructing fundamental IO devices,

such as networking and storage, using PGo.

5.1 Networking

The link abstraction serves as a representation of the network components in

a distributed system. In this work, we assume a bidirectional link connects

every pair of nodes, resulting in a topology that ensures complete connec-

tivity among all nodes. However, various topologies may be employed in

practical implementations to realize this abstraction, potentially utilizing

routing algorithms [6].

Link abstractions must be defined to be modeled effectively in MPCal,

and a corresponding resource implementation can be provided. Links re-

source implementations must have the same guarantees as the resource in

the MPCal model.

5.1.1 Unordered Lossy Link

A simple link abstraction is an unordered lossy link that connects two nodes.

Two parties can send messages to each other, but the unordered lossy link

guarantees neither message delivery nor the order. Hence, node A can send

a message m to node B, and B might not receive m or it might receive m

before another message m′ that A has sent before m.

Figure 5.1 illustrates a model of an unordered lossy link in MPCal. Each

node has a network queue, and UnorderedLossyLink utilizes it to model the

link abstraction. In the read part of the UnorderedLossyLink mapping macro,

we wait until some message is available in the network queue. We use the

with statement to randomly select one of the messages from the queue, not

only the first one. This modeling approach captures the unordered nature of

the link. In the write section of the mapping macro, we employ the either
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statement for non-deterministic behavior, allowing the message to either be

added to the queue or discarded. This modeling strategy represents the

lossy characteristic of the link.

It is important to note that in our simulation, we utilized nondetermin-

ism to model message loss and out-of-order delivery. However, these aspects

are inherent properties of the environment in the implementation. There-

fore, the actual implementation does not need to simulate them explicitly.

The unordered lossy link resource implementation makes its best effort to de-

liver messages, but it does not incorporate specific mechanisms to guarantee

message delivery and ordering. Message loss and reordering are properties

that arise naturally from the system environment during runtime.

To implement the UnorderedLossyLink mapping macro, a resource imple-

mentation must adhere to the ArchetypeInterface interface in Figure 2.7.

In the absence of delivery and ordering guarantees we can use the UDP

protocol for the implementation of this mapping macro, hence we refer to

the implementation as UDP mailboxes. UDP mailboxes must handle two

distinct cases: local mailbox, which serves received messages through the

ReadValue method, and remote mailboxes, responsible for transmitting mes-

sages to other nodes via the WriteValue method. It is important to note

that a local mailbox does not support the WriteValue method, while remote

mailboxes do not support the ReadValue method.

A remote UDP mailbox is responsible for sending messages to a specific

remote node. It buffers written values in a local buffer. In case of an abort,

it discards the buffer content. In case of a commit, it sends the buffered

messages through a UDP socket to its remote node without waiting for an

ack. Note that we can skip the pre-commit phase since UnorderedLossyLink

does not guarantee message delivery.

A local UDP mailbox is responsible for handling received messages from

all nodes. It has a queue to store these received messages. When the

ReadValue method is invoked, the local UDP mailbox removes the first mes-

sage in the queue, returns it as the result, and stores it in a temporary buffer.

If the execution of the critical section is successful, the local UDP mailbox

discards the contents of the temporary buffer. However, in the event of an
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abort, the messages in the temporary buffer are added back to the head

of the queue. If no message is available during a ReadValue call, the local

mailbox returns an error causing the critical section to abort, prompting

the PGo runtime to execute the critical section again. This results in busy

waiting instead of the blocking on archetypes’ goroutines.

The primary challenge in building a resource implementation lies in man-

aging MPCal’s atomicity semantics. The ArchetypeInterface simplifies this

process by reducing it to implementing a flexible interface. The key aspect

here is that the interface does not have to be as expensive as a full two-phase

commit protocol. Consequently, in the resource implementation discussed

earlier, we could skip the pre-commit phase due to the weak guarantees of

unordered lossy links.

The unordered lossy link has an efficient resource implementation. The

cost of sending and receiving messages is the same as normal send and

receive operations. Using the UDP protocol further avoids the intricacies

associated with more complex protocols like TCP, leading to potential per-

formance improvements in specific environments. However, it is important

to note that model checking becomes expensive when using unordered lossy

links due to the increased non-determinism in the model. As a result, we

opted not to employ unordered lossy links in most of the systems built in

MPCal, including RaftStore, prioritizing model checking efficiency for these

scenarios.

5.1.2 Reliable FIFO Link

A reliable FIFO link guarantees both delivery and order to senders and

receivers. Figure 5.2 shows a mapping macro that models this link in MPCal,

the network model that we used in the lock server example in Chapter 2 and

the RaftStore MPCal model.

Reliable FIFO links combined with the semantics of MPCal labels are

powerful as we can use them to implement atomic broadcast. The AtomicBroadcast

archetype, depicted in Figure 5.3, transmits a message to two nodes within

a label. Since labels execute atomically, either both nodes receive the mes-
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1 mapping macro UnorderedLossyLink {

2 read {

3 await Len($variable) > 0;

4 with (readMsg \in $variable) {

5 $variable := $variable \ readMsg;

6 yield readMsg;

7 };

8 }

9 write {

10 either {

11 yield $variable;

12 } or {

13 yield $variable \cup {$value};

14 };

15 }

16 }

Figure 5.1: Unordered lossy link modeled in MPCal.

sage or none of them. This characteristic poses a challenge for the resource

implementation of the ReliableFIFOLink, as the critical section can be as

complex as a full consensus round [9, 11].

The resource implementation of ReliableFIFOLink utilizes the TCP pro-

tocol for reliable packet transmission over the network, referred to as TCP

mailboxes. Similar to UDP mailboxes, TCP mailboxes handle local and re-

mote mailboxes separately. The implementation of TCP mailboxes ensures

that all nodes participating in a critical section either receive all messages in

the same order or none of them receive anything. Thus, TCP mailboxes im-

plement the full two-phase commit protocol [26] in the ArchetypeInterface.

During the pre-commit phase, TCP mailboxes ensure that all participating

nodes agree on the messages and their order before attempting to commit

the critical section. If the pre-commit phase fails, TCP mailboxes abort

the critical section. TCP mailboxes assume the commit phase always suc-

ceeds. This is based on the ArchetypeInterface assumptions and may causes

liveness issues as mentioned in Chapter 2.
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1 mapping macro ReliableFIFOLink {

2 read {

3 await Len($variable) > 0;

4 with (readMsg = Head($variable)) {

5 $variable := Tail($variable);

6 yield readMsg;

7 };

8 }

9 write {

10 yield Append($variable, $value);

11 }

12 }

Figure 5.2: Reliable FIFO link modeled in MPCal.

1 archetype AtomicBroadcast(ref network[_]) {

2 lbl:

3 network[NodeA] := "hi";

4 network[NodeB] := "hi";

5 }

Figure 5.3: Modeling atomic broadcast using reliable FIFO links.

5.1.3 Relaxed Reliable Link

Performing a full consensus round for every network send introduces signifi-

cant overhead. However, in many cases, this additional cost can be avoided.

For instance, consider the serverReceive operation presented in Figure 2.5

within Chapter 2, which involves a single network operation. In this sce-

nario, employing TCP mailboxes that implement the complete two-phase

commit protocol would result in unnecessary overhead. Since there is only

one network send operation within the critical section, and the remaining

operations are local and do not trigger an abort, we can optimize the pro-

cess. After sending the message and receiving an acknowledgment for its

delivery, we can be confident that the execution of the critical section will

succeed. As a result, we can safely skip the pre-commit and commit phases.

PGo empowers users to mitigate the additional performance overhead

associated with reliable FIFO links by leveraging extra domain knowledge

to relax resource semantics. In the case of the serverReceive critical section,
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a relaxed resource implementation can be employed. This implementation

can simplify the pre-commit and commit phases, treating them as trivially

successful and only sending messages without requiring coordination for fail-

ure cases. Our relaxed implementation of TCP mailboxes assumes that no

abort will occur during execution. Consequently, if an abort does happen,

the implementation will panic. To achieve the best performance, we used

the relaxed version of TCP mailboxes in the implementation of RaftStore.

This approach of semantic weakening can be applied to various relevant

scenarios with careful consideration. It provides a means to prioritize perfor-

mance over heavier-weight correctness guarantees when necessary. However,

it is important to note that these relaxations may increase the size of the

trusted computing base as they deviate from the complete implementation

of an MPCal resource definition. Nevertheless, through developer discipline

and good practices, we have observed that these trade-offs can be effectively

managed while still leveraging the benefits of protocol-level verification. We

leave automated methods of ensuring the correctness of these relaxations to

future work.

5.2 Storage

Storage is a crucial IO device for storing data. Storage devices offer various

interfaces, including block, file system, log, and object. Effectively modeling

these storage interfaces is essential to achieve high performance. We delve

into the techniques and strategies employed in this chapter to ensure efficient

modeling, enabling us to optimize performance with storage operations.

5.2.1 File System

The file system is a fundamental abstraction that facilitates working with

storage systems. In our modeling approach, we represent the file system

using a map data structure. Each element of the map will refer to a file, with

keys and values being required to be string-typed, and keys being required

to refer to valid paths (or create-able paths, if a key is written to before it

is read). The file system model in MPCal is illustrated in Figure 5.4.
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1 mapping macro FileSystem {

2 read { yield $variable; }

3 write { yield $value; }

4 }

5

6 variable fs = [id \in NodeSet |-> []];

Figure 5.4: A simple file system modeled in MPCal.

The resource implementation of the FileSystem mapping macro incor-

porates a buffering mechanism for written values, which temporarily stores

them in memory. Upon invoking the Commit operation, the implementa-

tion atomically writes the buffered values to a specified location within the

file system. Conversely, in the event of an abort, the in-memory buffer is

simply discarded. Given our assumption that writing to the underlying file

system is always possible, the pre-commit phase trivially succeeds. This de-

sign efficiently handles file system operations while maintaining the desired

semantics and guarantees of the FileSystem mapping macro.

5.2.2 Persistent Log

RaftStore has a log that has to be persisted on disk. The log supports the

following operations:

• Reading a range of elements within the log.

• Appending one or more elements to the end of the log.

• Removing one or more elements from the end of the log.

The file system abstraction does not align well with the requirements

of a log, where elements are added or removed from the end. To address

this, we have devised an alternative approach to model the log in a way

that provides a streamlined interface within the MPCal specification. The

PersistentLog mapping macro, depicted in Figure 5.5, embodies our log

specification in MPCal. The SubSeq function there returns a subsequence

of log between the given indexes. Leveraging a list as the underlying data
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1 mapping macro PersistentLog {

2 read {

3 yield $variable;

4 }

5

6 write {

7 if ($value.cmd = LogConcat) {

8 \* \o is the concatenation operator

9 yield $variable \o $value.entries;

10 } else if ($value.cmd = LogPop) {

11 yield SubSeq($variable, 1, Len($variable) - $value.cnt);

12 };

13 }

14 }

Figure 5.5: Raft persistent log modeled in MPCal.

1 log[i] := [

2 cmd |-> LogConcat,

3 entries |-> entries

4 ];

5

6 log[i] := [

7 cmd |-> LogPop,

8 cnt |-> count

9 ];

Figure 5.6: Raft persistent log add and remove operations.

structure for the log, the PersistentLog mapping macro defines the seman-

tics of read and write operations. In a read operation, the entire list is sim-

ply returned. However, the write operation is more intricate, as it requires

different arguments to distinguish between addition and removal scenarios.

The interaction between the archetypes and the log, involving the writing

of a record with specific fields, is illustrated in Figure 5.6.

The resource implementation of PersistentLog leverages BadgerDB [51,

63] as the storage engine, which is an embedded high-performance key-value

store. The pre-commit, commit, and abort phases in the resource imple-

mentation of the PersistentLog mapping macro closely resemble those of

the file system resource implementation.
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Chapter 6

Modeling and Dealing with

Failures

A distributed system is one in

which the failure of a computer

you didn’t even know existed can

render your own computer

unusable.

Leslie Lamport

Failure is a critical aspect to consider when designing distributed sys-

tems. Failures are prevalent in real-world scenarios, and distributed systems

deployed in a production environment must be able to tolerate failures.

In a production environment, failures can arise due to factors including

software errors, hardware malfunctions, network outages, and power disrup-

tions. However, failures do not inherently exist in models and users have to

model them accurately.

PGo-based systems have a dual requirement that they must be able to

handle failure both on the model side and implementation side. During

model checking, the model itself must be capable of tolerating simulated

failures, while the compiled Go program must be equipped to handle failures

during execution.
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1 mapping macro FaultyLink {

2 read {

3 \* same as the reliable FIFO link

4 }

5 write {

6 either {

7 yield Append($variable, $value);

8 } or {

9 yield $variable; \* silently drop message

10 };

11 }

12 }

Figure 6.1: Modeling a faulty network link in MPCal.

Fault tolerance is dependent on the system model and failure model.

In this chapter, we assume an asynchronous computing model where there

is no bound on message delays. We assume nodes fail with crash failure

semantics [6] and/or network partitions might happen. This model is a

realistic assumption about distributed systems running in data centers. We

build RaftStore using this system model.

In the rest this chapter, we will describe how we can simulate failure

behavior in the model and how we can handle them in the model and the

compiled system.

6.1 Modeling Failure Behavior

Network faults in PGo can be represented using a mapping macro that in-

corporates weak guarantees. For instance, the fault model depicted in Fig-

ure 6.1 demonstrates a faulty network link. When a message is transmitted

through this link, it may or may not be delivered. To capture this non-

deterministic behavior, we employ the either statement, which allows us to

express the two or more possible outcomes.

The idiom presented in Figure 6.2 offers a mechanism to simulate crash

failures. In order to simulate a crash failure for the AServer archetype, a

concurrent process named ServerCrasher is executed alongside it, and it

is responsible for triggering the crash of the server. To prevent a failed
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1 process ServerCrasher(serverId) {

2 serverCrash:

3 netEnabled[serverId] := FALSE;

4 fdUpdate:

5 fd[serverId] := TRUE;

6 }

7

8 archetype AServer(ref net[_], ref netEnabled[_]) {

9 lbl:

10 \* beginning of a critical section that might fail

11 \* \lnot is the logical negation operator

12 if (\lnot netEnabled[self]) {

13 await FALSE;

14 };

15 }

Figure 6.2: Modeling crash failures in MPCal.

process from receiving any network messages, we use the toggle netEnabled

to disable networking for the server. This ensures that the failed process is

isolated from incoming network communication.

ServerCrasher turns off the networking of its corresponding server in

the first label, serverCrash. In the AServer archetype, there exists a code

snippet at the beginning of its critical sections that stops the server’s exe-

cution if its networking is disabled. This is achieved by blocking the server

forever using await FALSE; statement. The disabled networking serves as a

reliable indication of a server failure. Moving on to the fdUpdate label of

ServerCrasher, it updates the state of its failure detector, which is further

discussed in Section 6.2.

We used PlusCal processes for ServerCrasher because we only want them

for model checking, and there is no need to compile them to Go since, during

runtime, failures manifest as a result of the environment. Similarly, we

provide dummy resource implementation for netEnabled such that it does

not interfere with normal execution of an archetype.
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1 either {

2 network[id] := msg; \* some communication

3 } or {

4 \* handle failure...

5 };

Figure 6.3: Each branch will be taken non-deterministically at run-
time. This makes the process to execute handle failure branch
without even knowing that a failure has happened.

1 either {

2 network[id] := msg; \* some communication

3 } or {

4 await fd[id]; \* only run if failure detector reports <id> has failed

5 \* handle failure...

6 };

Figure 6.4: Handling failures with a failure detector in MPCal
archetypes.

6.2 Handling Failures with Failure Detectors

Producing a model of failure handling from which PGo can generate a rea-

sonable implementation can be subtle. For example, an either statement

can be used to explore failures with model checking, but this expresses what

could happen. Consider Figure 6.3, which over-approximates failure in a

way that does not work in an implementation. During verification, this

code means that either line 2 will execute successfully, or a failure will be

handled on line 4. This is fine for verification, as it expresses what could

happen, either due to some transient issue, or due to the failure of a peer.

This type of pattern would allow an implementation to spontaneously handle

a failure, regardless of whether any failure was detected. Since the PGo run-

time schedules attempts at executing branches of an either statement using

a round-robin strategy, this means that, while the system would technically

implement the specification, roughly one in two network operations would

directly jump to failure recovery without even attempting communication.

In the implementation, we want to attempt the network send operation
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1 mapping macro PerfectFailureDetector {

2 read { yield $variable; }

3 write { yield $value; }

4 }

Figure 6.5: Perfect failure detector modeled in MPCal. A perfect fail-
ure detector guarantees strong completeness and strong accu-
racy.

initially and, if a timeout occurs, proceed to execute the failure handling

code. However, MPCal has no notion of time, and we discuss this more in

Chapter 7.

To handle failures, we use failure detectors to abstract time and eliminate

unwanted executions. This approach is depicted in Figure 6.4. By employing

a suitable implementation of the fd resource, the failure handling branch will

only be executed when the fd resource indicates that the remote process has

failed. If fd[id] returns FALSE, the execution will be rolled back, allowing

the other branch to be attempted. This design enables having practical

failure checks during runtime and parameterizes verification with different

failure detectors.

Failure detectors are characterized by two properties, completeness and

accuracy [9]. Strong completeness states that eventually every node that

crashes is permanently suspected by every correct node. Strong accuracy

states that no process is suspected before it crashes. A perfect failure de-

tector is a failure detector that is both strongly complete and accurate.

Figure 6.5 depicts a mapping macro in MPCal that represents a perfect fail-

ure detector. The resource fd is associated with this failure detector and

its values are updated by the ServerCrasher, as illustrated in Figure 6.2.

When a server fails, its networking is first disabled, and eventually its fail-

ure is detected by the failure detector. A failure detector eventually detects

node failures by updating the fd resource in a separate label following the

serverCrash label within the ServerCrasher process.

In an asynchronous environment in practice, we do not have any accuracy

guarantee for failure detectors. Chandra and Toueg [9] showed that it is
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1 mapping macro PracticalFailureDetector {

2 read {

3 if ($variable = FALSE) { \* process is alive

4 \* no accuracy guarantee

5 either { yield TRUE; } or { yield FALSE; };

6 } else {

7 yield $variable; \* strong completeness

8 };

9 }

10

11 write { yield $value; }

12 }

Figure 6.6: Practical failure detector modeled in MPCal. Practical
failure detector guarantees strong completeness.

possible to solve consensus in an asynchronous environment using a perfect

failure detector. From the FLP result [19], we know solving consensus in

an asynchronous network environment is impossible. Thus, having a perfect

failure detector in an asynchronous network environment is impossible too.

We can have a failure detector in practice that guarantees strong com-

pleteness. This failure detector eventually detects crashed nodes as failed,

but alive nodes might get detected as failed due to the lack of accuracy.

Figure 6.6 captures this failure detector in MPCal, named practical failure

detector.

We used failure detectors in RaftStore to detect failed nodes while send-

ing messages to other nodes. We have tried both perfect and practical failure

detectors in RaftStore. Using practical failure detectors gives us stronger

guarantees as it is closer to the runtime environment; however, it makes the

model checking process more expensive by adding more non-determinism.

A model with a failure detector is still a model, and the essential question

is how close of an approximation one desires to the real runtime environment.

Full fidelity is neither feasible nor desirable, considering a model’s purpose

is to be an abstract verification tool.
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6.3 Resource Implementation

Failure detectors resource implementation consist of two abstractions: mon-

itor and failure detector resource.

A monitor monitors archetypes execution. It provides an API for reg-

istering archetypes and it monitors the archetypes by wrapping them. A

monitor provides the IsAlive API, which can be queried to find out whether

a specific archetype is alive. At most one monitor should be defined in each

OS process and it catches all archetypes’ goroutines errors and panics. In

the case of an error or a panic, the monitor responds false to IsAlive re-

quests. The Monitor exposes the IsAlive API as a Remote Procedure Call

(RPC). In the event of a complete failure of the OS process, subsequent calls

to IsAlive times out. This timeout behavior serves as an indication of the

failure of the queried archetype.

Failure detector is an archetype resource that provides guarantees of a

failure detector in practice, as modeled in Figure 6.6. Each server is assigned

an index, such that fd[i] represents the state of the failure detector for

server i. The failure detector periodically initiates the IsAlive RPC to check

the state of the corresponding servers. On a false response or a timeout of

the RPC call, the failure detector marks the respective archetype as failed.

An example scenario demonstrating the execution of the monitor and failure

detector, where the monitor responds with false, is illustrated in Figure 6.7.

Another scenario is depicted in Figure 6.8, where the monitor’s OS process

crashes, resulting in a timeout during the failure detector’s call.

45



OS Process OS Process

Server 1 Failure 
Detector Monitor Server 2

IsAlive

true

IsAlive

true

fd[2]
FALSE

fd[2]
FALSE IsAlive

false XServer 2 
fails

fd[2]
TRUE

Figure 6.7: Failure detector and monitor execution example, when an
archetype crashes and monitor replies false to the subsequent
IsAlive request.

OS Process OS Process

Server 1 Failure 
Detector Monitor Server 2

IsAlive

true

IsAlive

true

fd[2]
FALSE

fd[2]
FALSE IsAlive

XOS process 
crashes

fd[2]
TRUE

XTimeout

Figure 6.8: Failure detector and monitor execution example, in a case
where the the entire OS process crashed and the failure detector
detects that with a timeout.
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Chapter 7

The Problem with Time

Other times are just special

cases of other universes.

David Deutsch

Timing plays a pivotal role in the design of systems, finding applica-

tion in numerous common patterns. Time-based mechanisms are vital for

addressing challenges like timeouts, scheduling periodic activities, cache ex-

piration, leases, and leader election. However, a key duality problem arises

concerning time in the context of models and programs. While programs

require timing for the aforementioned purposes, MPCal models lack the

notion of time. This raises the fundamental question of how to construct

models that lack the concept of time, while at the same time enabling their

corresponding programs to use timing effectively.

In the context of failure detection, as outlined in Section 6.2, we proposed

the abstraction of failure detectors as a means to abstract time. However,

failure detectors are limited to the failure detection problem and we cannot

solve all the problems that need timing with failure detectors. Because many

of the problems that deal with timing, such as scheduling activities, do not

necessarily involve failures.

On the implementation side timing problems can be effectively addressed

by employing a straightforward timer abstraction. Algorithm 1 presents a
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timer implementation that offers a viable solution. In the first line of the

algorithm, a timer object t is created to trigger after the specified timeout

duration. This timer object includes a method called t.Wait(), which sus-

pends the execution of the current process until the timer fires. By using

such timer objects, we can solve the timing-related problems in programs.

The duality problem arises where there is no notion of time in models.

Hence, we cannot have such a timer object in MPCal models.

Algorithm 1 Simple timer object

t← timer(timeout)
t.Wait() . process blocks until t fires

We propose an abstract timer on the model side and a concrete timer

resource on the implementation side. We demonstrate that the execution

semantics of the concrete timer resource aligns with the timer on the model

side. We ensure that both sides consistently handle timing-related aspects

while satisfying their concerns.

In an MPCal model, we represent a timer by a boolean value that serves

as a resource passed to archetypes. The resource, denoted as t, is true when

the timer has fired, and false otherwise. To illustrate this, consider the

archetype ANode shown in Figure 7.1, where it is has the timer resource t.

The archetype ANode will be blocked until the timer t fires, indicating t is

true.

The key question to address is when does t fire and what is its timeout

value. On the model side, we assume that regardless of the timeout value,

every time the archetype ANode executes, the timer t also fires. Essentially,

this treats t as a dummy value on the model side that is always true.

The timer resource implementation provides a proper implementation of

a timer object. It takes a timeout value and implements the timer object

described in Algorithm 1 as an archetype resource. The implementation in-

cludes an internal timer object, and when this timer has fired, the ReadValue

function returns true; otherwise, it returns false. In the await statement

demonstrated in Figure 7.1, waiting on the timer implies that the execution

of the critical section will be aborted if the timer resource’s value is false.
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1 \* archetype Node has access to timer t as a resource

2 archetype ANode(ref t) {

3 lbl:

4 await t; \* ANode blocks until t fires

5 \* some work

6 }

Figure 7.1: A timer modeled as a boolean resource in MPCal. Every
time when archetype ANode gets executed, timer t is true, which
means it has fired.

Consequently, the archetype will execute only when the timer value is true,

indicating that its internal timer has fired.

On both the implementation side and the model sides, a critical section

with a timer gets executed only if its timer is true. Therefore, the timer

resource has the same semantics both on the model and implementation

side. It is important to note that this is not a formal proof showing the

strict equivalence, and particularly, we did not reason about implementation

of the timer resource.

In RaftStore, we employ timers in two different places. First, the leader

employs a timer to schedule the periodic sending of AppendEntries messages

to its followers. This ensures that the followers receive regular updates from

the leader. Second, each follower maintains a timer that triggers if it does

not receive an AppendEntries message within a specified timeout period.

Once this timeout occurs, the follower transitions into a candidate state and

initiates a new round of leader election.

Note that instead of using failure detectors, we could handle failures by

implementing timeouts using timers. However, this approach significantly

increases the state space on the model side. It also reduces the flexibility of

failure detection and leads to exploring the failure handling branch on the

model side regardless of the receiving node’s state. In contrast, using failure

detectors, as discussed in Chapter 6, provides greater flexibility in handling

failures and improves the efficiency of model checking.
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Chapter 8

Achieving High Concurrency

The wise use of leisure, it must

be conceded, is a product of

civilization and education.

Bertrand Russell

In this chapter, we explore the process of building concurrent systems

using PGo. Initially, we examine the duality challenges that arise during the

development of such systems, considering both the model and implementa-

tion aspects. Subsequently, we present our experience in building RaftStore

and how we addressed its need for a concurrent server implementation.

8.1 Concurrency and Duality

Efficiency and performance are essential requirements for a software imple-

mentation. High concurrency plays a significant role in attaining better

performance. By leveraging high concurrency, software systems can effec-

tively utilize available resources and maximize throughput. Concurrent exe-

cution allows multiple tasks to be executed simultaneously, minimizing idle

time and maximizing the utilization of processing capabilities, resulting in

improved throughput and latency in the system.

In the context of model-implementation duality in PGo, achieving high
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performance, which often involves high concurrency, is primarily an imple-

mentation concern. However, when building systems using PGo and compil-

ing models into programs, this requirement also influences the model side.

As users develop an MPCal model, they must consider how this model com-

piles into Go.

Introducing a high level of concurrency in an MPCal model can lead to

increased complexity and a larger state space. We can increase the con-

currency level in an MPCal model by having more concurrently executing

archetypes or by utilizing finer-grained labels. However, such expansions

result in a larger state space, which in turn escalates the cost of model

checking. As a result, a duality trade-off emerges, wherein a more concur-

rent model becomes more challenging to reason about while offering the

potential for improved implementation concurrency. Striking a balance be-

tween these factors is crucial for users, as they must identify a point where

the model checking cost remains feasible while achieving a desired level of

implementation concurrency.

When building a highly concurrent system in PGo, users must consider

the compilation semantics that influence the execution behavior. It is pos-

sible to have two different models that describe the same system; however,

when compiled into a Go program, one may execute concurrently while the

other does not. For instance, consider the system depicted in Figure 8.1,

which comprises an archetype SingleThread having an either statement that

non-deterministically executes either TaskA or TaskB. In contrast, Figure 8.2

models the same system using two archetypes, ThreadA or ThreadB, each ex-

ecuting TaskA and TaskB respectively. Both models, ultimately, compile to

the same TLA+ specification, illustrated in Figure 8.3, capturing the two

possible transitions for the next step, TaskA and TaskB, in the system’s state

machine. The resulting PGo program from Figure 8.1 runs sequentially as

a single archetype, while the program generated from Figure 8.2 comprises

two archetypes capable of concurrent execution.

It is important to mention that high concurrency does not necessarily

result in a high performance. In a highly concurrent program, problems such

as resource contention and process coordination can be expensive. Some of
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1 archetype SingleThread() {

2 lbl:

3 while (TRUE) {

4 either {

5 \* TaskA

6 } or {

7 \* TaskB

8 };

9 };

10 }

Figure 8.1: Archetype SingleThread models a system which either
does TaskA or TaskB at each step. PGo compiles this archetype
into a sequential program.

1 archetype ThreadA() {

2 lbl:

3 while (TRUE) {

4 \* TaskA

5 };

6 }

7

8 archetype ThreadB() {

9 lbl:

10 while (TRUE) {

11 \* TaskB

12 };

13 }

Figure 8.2: Archetypes ThreadA and ThreadB model a system where
either does TaskA or TaskB at each step. PGo compiles this
archetype into a concurrent program, where two archetypes run
concurrently.

Next , TaskA ∨ TaskB

Figure 8.3: TLA+ compilation of Figure 8.1 and Figure 8.2.
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these problems actually have to be addressed on the model side, however,

are not visible during model checking and they become apparent by running

the compiled program.

In an MPCal model, archetypes typically represent individual nodes in

the system, and each archetype runs sequentially. However, high-performance

systems often involve multiple threads executing concurrently. To accom-

modate such scenarios in PGo-based systems, we adopted a new design

approach to run multiple archetypes on the same node simultaneously. Al-

though this pattern enables enhanced performance, it introduces new chal-

lenges, such as the need to share resources between these archetypes and

coordinate their execution.

To facilitate communication between archetypes running on the same

machine, we use channels inspired by the Go programming language and

communicating sequential processes (CSP) [34]. In this design, senders can

transmit messages through a channel, and the receiver will receive the mes-

sage. If a channel happens to be empty, the receiver will be blocked until

a message becomes available on the channel. This mechanism enables syn-

chronization and coordination among concurrent archetypes.

Sharing variables among different archetypes works as expected with-

out any additional work on the model side. However, on the implementa-

tion side, using unprotected local resources when different archetypes access

them can lead to data inconsistency and race conditions. To address this, we

introduced a shared resource that encapsulates a local resource with a read-

/write lock. This approach allows multiple readers to access the resource

simultaneously, while ensuring that only one writer can modify it at a time.

The shared resources use timeout when acquiring the lock to prevent dead-

locks. In case of a timeout, the execution of the critical section is aborted

and the PGo runtime retries the execution.

8.2 How We Made RaftStore Highly Concurrent

In the initial version of RaftStore, the Raft server was represented by a

single archetype. This resulted in a long either statement in the Raft server
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archetype, with various tasks specified in each branch. During execution, the

PGo runtime would nondeterministically select a branch to execute. If the

execution failed, the runtime would abort and attempt the critical section

again, choosing a different branch. The original model of the Raft server

archetype is depicted on the left side of Figure 8.4.

After compiling the initial RaftStore version to Go, we noticed some

problems. Specifically, we realized that leader election is not working due to

the sequential execution of the Raft server. According to the Raft consensus

algorithm, when a node becomes the leader, it should promptly notify the

other nodes by sending them AppendEntries messages. However, the sequen-

tial execution caused a delay in sending these messages, leading to timeouts

in other nodes, which triggered new election rounds repeatedly.

To address this problem, we separated the AppendEntries branch from

the main Raft server archetype and created a new archetype dedicated solely

to sending AppendEntries messages, if the current server is the leader. With

this change, the AppendEntries logic can now execute concurrently with the

rest of the Raft server, allowing for faster and more efficient communication

between the nodes during leader election. This change made the leader

election work in RaftStore.

To further improve RaftStore performance, we deleted the entire either

statement from the server archetype and created separate archetypes for

each branch. This architectural transformation allowed us to execute each

task concurrently, resulting in a significant performance boost. The revised

RaftStore server architecture is depicted on the right side of Figure 8.4.

Each of these archetypes now corresponds to a specific task, allowing them

to execute concurrently. Additionally, we introduced shared variables and

channels for synchronization and data sharing among the archetypes.

Throughout the development of the RaftStore model, we adopted a de-

liberate strategy to minimize the number of labels in each archetype. This

approach was crucial in ensuring that the model checking cost remains fea-

sible and manageable. Additionally, we made the assumption that all server

archetypes fate-share, thereby eliminating the possibility of partial failure

among them.
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archetype AServer() {
serverLoop:
  while (TRUE) {
    either {
      \* HandleMsg
    } or {
      \* AppendEntries
    } or {
      \* RequestVote
    } or {
      \* AdvanceCommitIndex
    } or {
      \* BecomeLeader
    };
  };
}

AServer
AppendEntries

AServerHandler

AServerAdvance
CommitIndex

AServerRequest
Vote

AServerBecome
Leader

Shared Variables: 
- state
- commitlndex
- currentTerm
- votedFor

appendEntriesCh
Channel

becomeLeaderCh
Channel

Archetype resource
Mapping Macro

Legend:

Old RaftStore Model New RaftStore Model

Figure 8.4: Architecture of RaftStore. The left side shows the initial
version, which had one archetype. The right side shows the new
architecture that enables concurrency. Arrows demonstrate how
we create a distinct archetype from each branch of the either

statement in the initial version.

One of the major challenges we encountered while transforming Raft-

Store into a concurrent system was the management of complexity. In addi-

tion to carefully designing the model to ensure that the model checking cost

remains feasible, we had to address the issue of managing shared variables

among the five server archetypes in RaftStore. To tackle this, we defined

all the shared variables as resources and passed them to each archetype.

However, this approach resulted in a significant amount of error-prone boil-

erplate code, both in the model and the implementation, to initialize the

system. With more appropriate language features in MPCal, we could have

mitigated these complexities and provided a more seamless developer ex-

perience. We consider these potential improvements as a topic for future

work.
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Chapter 9

Modular Design

Make each program do one thing

well.

Douglas McIlroy

So far, we have been talking about systems that consist of a single model.

This chapter explores a design approach where a system comprises several

models. We call this a modular design.

Building systems modularly is an essential step in building large-scale

systems. Modularity allows us to manage the complexity in large systems.

This design approach makes models smaller and easier to reason about.

It also reduces the state space of each component model, which makes it

possible to scale MPCal models beyond the conventionally viable limits of

model-checked systems.

The fundamental principle behind modular design is to divide the sys-

tem into smaller, more manageable components. Let us consider a modular

system denoted as S, having n components, namely c1, . . . , cn. Each compo-

nent, such as ci, interacts with a specific set of other components denoted as

Mi. The model of component ci abstractly defines its interactions with each

component cj ∈ Mi and establishes the communication protocol between

ci and cj . Moreover, component cj adheres to the communication contract

specified by ci and defines compatible communication channels in its own
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specification to ensure correct interaction.

We model check each component ci individually. This technique signifi-

cantly reduces the model checking cost. Let ci be a component with at most

ai enabled actions in each step, and we run the model checker for traces up

to depth d. If we consider a monolithic system L consisting of c1, . . . , cn,

the size of state space that the model checker needs to explore is(
n∑

i=1

ai

)d

.

While the size of state space that model checker explores for a modular

system S consisting of c1, . . . , cn is

n∑
i=1

ai
d.

It is trivial to see that size of state space in system S is smaller than L’s

state space, knowing ai and d values are positive.

We compile each module to Go and connect them on the implementation

side with respect to the communication contract that is defined in each

component’s model.

Modularity in PGo-based systems offers the advantage of reducing the

trusted computing base (TCB). We provide hand-written resource imple-

mentations in Go, which allows for maximum flexibility and the oppor-

tunity to perform various performance optimizations. However, such re-

source implementations contribute to the system’s TCB. To mitigate this

risk and minimize the TCB, it is essential to allow verification of resource

implementations, particularly since these resources may encapsulate com-

plex distributed protocols (e.g., distributed mailboxes). Users can define

components and necessary communication channels in a way that one com-

ponent uses the other component as a resource, and this way they can have

a verified resource implementation.

At this time, it is not feasible to integrate different MPCal specifications

in a way that ensures soundness during verification. The verification pro-
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cess is limited to one specification at a time. Nevertheless, it is still possible

to manually link MPCal specifications and align the semantics of differ-

ent components through manual correspondence. When combining different

specifications, users must ensure that the contracts between the components

remain valid after compilation. We recognize this as a challenge that could

benefit from further tooling automation, and we leave it as a topic for future

investigation and improvement.

To demonstrate the modular design in PGo, we developed a modular

version of RaftStore, called RaftStoreMod, which consists of two distinct

components. The high level architecture of RaftStoreMod is shown in Fig-

ures 9.1 and 9.2. The first component is the Raft protocol, named RaftProto,

represents the core Raft protocol without client interaction semantics. The

second component is the key-value store system, called DistKV, which oper-

ates as a distributed key-value store, handling client requests and interacting

with an abstract state machine replication component.

RaftProto and DistKV interact using two channels: accept and pro-

pose. Each RaftProto server has a pair of accept and propose channels.

A RaftProto server accepts new requests through its propose channel and

broadcasts committed entries through its accept channel.

DistKV is composed of multiple servers, each responsible for maintain-

ing a local key-value database. These servers interact with an abstract state

machine replication system to keep their local database in sync. Similar to

RaftProto, each DistKV server possesses a pair of accept and propose chan-

nels. When a client request is received, a DistKV server forwards the request

to the state machine replication component via its propose channel. Once

the new entry is committed in the state machine replication component, the

DistKV servers receive notifications through their accept channels, allowing

them to update their local database and respond to the clients accordingly.

By compiling each of these individual models and linking them in Go, we

obtain the full implementation of RaftStoreMod.

In Chapter 11 we compare the runtime performance of RaftStoreMod

store with several others, including RaftStore.
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DistKV

AcceptCh

AcceptChProposeCh

KV Server SMR

RaftProto

ProposeCh

Figure 9.1: Architecture of RaftStoreMod components. The left side
shows the high level architecture of DistKV. Each KV server
interacts with an abstract state machine replication component
(SMR). The right side shows the RaftProto component, where
it communicates with its propose and accept channels.

AcceptCh

KV Server

SMR

ProposeCh

Raft Proto

DistKV

AcceptCh

KV Server

SMR

ProposeCh

RaftProto

Figure 9.2: RaftStoreMod implementation architecture. On the im-
plementation side, we use RaftProto to implement the abstract
state machine replication (SMR) component of DistKV.
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Chapter 10

Development Process

Software engineering is what

happens to programming when

you add time and other

programmers.

Ross Cox

In this chapter, we outline our development process, which draws from

our experience in building systems using PGo. Managing duality is an inte-

gral aspect of our development approach, as we strive to optimize for both

model and program concerns. Balancing the requirements of the model and

the implementation is a central challenge, and our process aims to find the

most effective trade-offs to achieve a well-optimized and reliable system. We

share instances of our experience using this process while building RaftStore.

Our development process of building systems using PGo is an iterative

process of (1) model engineering and (2) implementation optimization.

Our system development process begins with model engineering. During

this stage, our focus is on modeling concerns, disregarding implementation

details. Our objective is to create an MPCal model of the system and

perform model checking to verify its correctness without delving into the

intricacies of implementation. To keep the model checking cost manageable,

we start by modeling the simplest system, comprising the minimal number
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of archetypes and labels. This approach ensures that we establish a solid

foundation by confirming the correctness of a basic system through model

checking.

Once we have our initial model-checked specification, we proceed with

compiling the model into Go and crafting the necessary glue code to create

the first version of the running system. At this stage, we begin to identify the

requirements originating from the implementation side, some of which have

implications on the model side. In cases where the model does not translate

coherently into a program, alternative specifications must be considered.

Additionally, due to the unique execution behavior of the implementation,

certain adjustments might be required in the model. An example of this

scenario is the RaftStore leader election, which we previously discussed in

Chapter 8.

The subsequent step involves improving the performance of the imple-

mentation. During the implementation optimization phase, we identify bot-

tlenecks in the implementation and strategize how to address them. Some

problems can be resolved on the implementation side, such as using relaxed

resources to get a performance boost. Some other problems require a dif-

ferent approach to modeling, for example, building a model that compiles

into a concurrent program. Furthermore, certain bottlenecks may be inher-

ent to the model itself, requiring the development of a more efficient model.

For instance, in RaftStore, we have implemented Raft optimizations, such

as batching [58], to improve performance. These protocol-level optimiza-

tions must be applied directly to the MPCal model to achieve the desired

efficiency.

After identifying the implementation requirements, we return to the

model engineering phase, where we incorporate these changes. Neverthe-

less, the primary focus remains on addressing the modeling concerns and

ensuring the system can be model-checked. Once the adjustments are made,

we compile the model into Go, and this iterative process continues until we

achieve the desired system. Figure 10.1 demonstrates this iterative process.

We recommend that new users interested in building systems with PGo

or similar frameworks follow this development process, commencing with
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Model 
Engineering

Implementation 
Optimization

Figure 10.1: Development process of building systems using PGo
where we face model-implementation duality. This is an it-
erative process of model engineering and implementation op-
timization.

the simplest model. As they progress from the model to a functioning im-

plementation, they will inevitably encounter duality challenges. Our work

addresses various duality challenges we faced while constructing complex

distributed systems using PGo. We believe that other users will also con-

front similar challenges, and we encourage them to refer to this paper for

guidance in addressing these issues.
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Chapter 11

Evaluation

The Eiffel Tower was built in 2

years and 2 months; that is, in

793 days. When completed in

1889, it became the tallest

building in the world, a record it

held for more than 40 years.

Jill Jonnes

In our evaluation, we address three key questions: (1) To what extent

were the requirements of each side (model and program) satisfied in the

presence of duality? Specifically, we assess how effectively we managed to

fulfill the requirements of both the model side and the program side. (2)

What is the development effort involved in building systems using PGo,

considering the challenges posed by duality? (3) What is the performance

overhead incurred when building modular systems using PGo?

11.1 Evaluated Systems and Methodology

Table 11.1 lists the seven systems we have constructed using MPCal. The

MPCal along with the compiled PlusCal, TLA+, and compiled and glue Go

code for these systems are available in our GitHub repository [28]. RaftStore

and RaftStoreMod are consensus-based key-value stores that we discussed
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in Chapters 4 and 9. RaftStoreMod is a modular composition of the pure

Raft protocol specification (RaftProto) and DistKV as described in Chap-

ter 9. PBStore is a primary-backup key-value store where the primary node

synchronously replicates client requests to backup nodes. PGoCRDT is an

add-wins observed removed set (AWORSet) state-based Conflict-free Repli-

cated Data Type (CRDT) [3] that uses vector clocks for merging and conflict

resolution. Lock service is the simple lock service system that we discussed

in Chapter 2.

We conducted a performance evaluation of multiple systems listed in

Table 11.1. Our experiments were conducted on Azure, with each system

deployed across Ubuntu 20.04 Standard B8ms VMs, utilizing default Azure

Cloud routing. To ensure reliability, we made our best effort to fully re-

initialize the server state between measurements, and each benchmarking

scenario was repeated 5 times. Each scenario involved tens of thousands

of operations and ran for an average duration of 10 minutes. To monitor

network performance, we examined network interface metrics to ensure that

no network connections were saturated. For reporting our results, we calcu-

lated the medians of the trials and represented the 10th and 90th percentiles

using whiskers on bar graphs.
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Table 11.1: Systems we developed using PGo. Our evaluation focuses on the bolded systems: (1) Raft-
StoreMod, which is a modular composition of RaftProto and DistKV (see Chapter 9), (2) monolithic
RaftStore, (3) PBStore, and (4) PGoCRDT.

System
Effort

(person days)
Properties model checked

Checked
# states

Checking
time (m)

Archetype
Count

MPCal
SLOC

Glue Go
SLOC

RaftProto 22 Five Raft properties [59] 2.7× 109 312 9 771 676
DistKV 3 Client interaction, consistency 2.6× 107 4 3 256 383

RaftStoreMod 25 - - - - - 1059
RaftStore 25 Client interaction plus Raft 3.1× 109 404 7 758 1099

Lock service 2 Mutual exclusion and liveness 4.6× 107 73 2 67 87
PBStore 10 Strong consistency 4.5× 107 235 4 420 270

PGoCRDT 10 Convergence and termination 5.8× 106 3954 2 160 185



11.2 Development Effort

All MPCal specifications were written primarily by me, with some help and

contributions from two other students. Table 11.1 lists their effort in person

days. The most complex systems we have developed are RaftStore and

RaftStoreMod. Table 11.1 also lists the number of archetypes and SLOC in

each MPCal spec, and SLOC for the Go code we hand-wrote to bootstrap

the generated Go implementation of each system.

Table 11.1 presents a comparison of the efforts required to build dif-

ferent systems. RaftStore was developed in less than one person-month,

whereas the construction of a similar system in Ivy [21] demanded 3 person-

months, Verdi [71] took 12 person-months, and IronFleet [32] required 18

person-months. These results are promising; however, it is important to

acknowledge that all these figures, including ours, are based on anecdotal

and self-reported data. Moreover, the efforts were undertaken by researchers

who may not represent the average software developer. Future studies should

focus on user-based evaluations to assess the usability of tools within this

domain.

During the process of constructing these systems, we observed a recur-

ring pattern of reusing mapping macros across different systems that share

identical or similar assumptions regarding failures or the environment. Ad-

ditionally, we have created and reused various implementations of commonly

used resources, such as the network and the file system.

11.3 Model Checking Performance

Table 11.1 presents the properties we defined and verified, the number of

states explored by the TLC model checker, and the time taken for TLC

checking. Our experiments were conducted on a machine equipped with 64

CPU cores and 128GB of RAM.

TLC is an exhaustive explicit state model checker. It comprehensively

explores the entire reachable state space provided to it before terminating.

This approach offers more robust guarantees compared to heuristic state

space sampling since it ensures the consideration of all reachable states.
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However, due to its bounded nature, TLC requires a finite state space for

exploration. As a result, we needed to impose restrictions on each system’s

state space during the verification process.

For the model checking of RaftStore and RaftProto, our configuration

included three servers, a single round of election, and at most two entries

committed to the log with the possibility of one node failure. For DistKV,

the model checking setting comprised five servers and three clients, where

the servers could process up to three client requests. For the lock service,

we used a model checking configuration with eight servers. In the PBStore

model, the configuration consisted of five servers and four clients. Similarly,

for PGoCRDT, the model checking configuration included five servers.

A previous study has demonstrated that reproducing all failures in a

complex distributed system can be achieved with a setup comprising at

most three nodes [79]. This highlights the effectiveness of our bounded

model checking setting in capturing bugs. Furthermore, by utilizing more

powerful machines, we could potentially apply even looser bounds and check

more states, as shown in Table 11.1.

11.4 Performance of Raft-Based KV Stores

We conduct a comparative analysis of our Raft-based KV stores against

several verified KV stores: Vard [72], a KV store verified in Verdi [71];

IronKV [33], a KV store verified in Dafny; and Ivy-Raft [21], a KV store

verified in Ivy. All the KV stores are Raft-based, except IronKV that im-

plements MultiPaxos. These implementations are extracted in OCaml, C#,

and C++ accordingly. To interact with the underlying platform, each im-

plementation employs custom shim code, communicating via plain TCP or

UDP. While IronKV supports SSL, we disable it for consistency with its

original evaluation. RaftStore and Vard incorporate disk-based durability,

whereas IronKV and Ivy-Raft do not. To assess the impact of disk-based

durability, we re-run selected benchmarks with this feature disabled in our

artifact, observing minimal changes in throughput. We also include bench-

mark results for etcd v3.5.4 [18] as a baseline, a widely used Raft-based KV
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Figure 11.1: Throughput of RaftStore and RaftStoreMod as com-
pared to various systems for a selection of standard YCSB
workloads.

store implemented in Go.

We attempted to include Coyote [13] and StateRight [55] in our evalu-

ation since they appeared to have Raft and Paxos prototypes, respectively.

However, we discovered that these prototypes were not directly comparable

with practical consensus implementations. The Raft prototype in Coyote

was designed solely as a model checking target, as confirmed by the au-

thors. Similarly, the authors of StateRight clarified that their Paxos proto-

type could only agree on a single value during an execution, necessitating a

system reset process for a second value to be agreed upon.

We assess the performance of these KV stores using the Yahoo! Cloud

Serving Benchmark (YCSB) suite [10], where we measure throughput and

latency. Our evaluation comprises five YCSB workloads: (A) 50/50 read-

/update Zipfian, (B) 95/5 read/update Zipfian, (C) read-only Zipfian, (D)

95/5 read/update latest (where the most recently inserted records are at

the head of the Zipfian distribution), and (F) 50/50 read/read-modify-write

(causally linked read/write) Zipfian. We exclude YCSB workload E as our

systems do not support scans.

Figure 11.1 illustrates the performance comparison between RaftStore

and RaftStoreMod, as well as other related work KV stores, across vari-

ous YCSB workloads. All systems were deployed in 3-node clusters. To
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Figure 11.3: Scalability of Raft-based KV systems with varying clus-
ter size.

obtain the peak possible throughput for each system and workload, we con-

ducted repeated benchmarks with varying numbers of concurrent clients and

recorded the highest achieved throughput.

Among all workloads, RaftStore had the highest throughput. It outper-

formed Ivy-Raft, the closest performing system, in terms of overall mean

throughput by 41%.

This demonstrates the level of flexibility enabled by the model-implementation

duality allows us to optimize I/O behavior and achieve an efficient multi-

threaded implementation. Our optimization efforts encompass dividing the
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MPCal model into multiple communicating processes, each dedicated to a

specific task, thus enabling more concurrent processing compared to existing

approaches. To achieve multi-threading, we had to modify and recompile

the model, which we subsequently model checked to ensure its correctness.

Additionally, we fine-tuned timeout values and the delay between log syn-

chronization attempts between nodes to maximize runtime performance.

These optimizations were performed on the Go side since our model does

not account for physical time.

Furthermore, we note that RaftStoreMod has a lower performance com-

pared to RaftStore, with a slightly lower maximum throughput than Ivy-

Raft. This observation indicates that partitioning a system into two separate

MPCal models might introduce some performance overhead. However, it is

worth considering that the discrepancy in performance could also be at-

tributed to our focus on fine-tuning the RaftStore implementation, which

might have contributed to its superior performance.

All systems, including RaftStore, have considerably lower performance

compared to the etcd baseline (not shown), with etcd achieving peak through-

put ranging from 5,866 to 10,504 operations per second across all workloads.

We attribute RaftStore’s lower throughput to two main factors. First, etcd’s

architecture allows for significantly higher concurrency in processing client

requests when compared to RaftStore. This difference arises due to a design

distinction between etcd and the other evaluated Raft-based KV stores.

Specifically, etcd implements a threaded extension of Raft [58], enabling

greater concurrency than the core Raft specification. While RaftStore lever-

ages more multi-threading than related systems, it remains rooted in the

original Raft TLA+ specification, without significant deviations from the

core protocol specification. Second, RaftStore uses inherently less efficient

immutable data structures within its compiled TLA+ representation. Al-

though these data structures offer asymptotically good performance, they

are known to carry substantial overheads compared to mutable counter-

parts. Addressing these issues and approaching performance levels closer to

production-grade tools like etcd is left for future research and improvements.

We analyze the relationship between latency and throughput for the
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benchmarked systems in Figure 11.2. This analysis involves clusters of size

3, executing workload A, and presents the median throughput and client

latency curves for different numbers of clients used in calculating maximum

throughput (as shown in Figure 11.1). For clarity, Vard has been excluded

from the plot; its maximum throughput was 31 op/s, and its minimum la-

tency was 738ms. The comparison shows that, on the whole, RaftStore

has 42% lower median latency than the lowest-latency related system, Ivy-

Raft, while achieving latency similar to that of etcd. This improved latency

in RaftStore can be attributed to our optimized multi-threaded implemen-

tation, which allow for internal data buffering and concurrent task execu-

tion when possible, rather than strictly adhering to the model’s higher-level

totally-ordered semantics.

Figure 11.3 demonstrates the scalability of each system concerning vary-

ing cluster sizes while utilizing workload A. Similar to Figure 11.1, we de-

termined the number of concurrent clients that resulted in peak throughput

for each system and cluster size. For consensus-based systems, it is ex-

pected that peak throughput will decrease as the cluster size increases due

to the increased coordination work required. This effect is clearly shown in

Figure 11.3.

Figure 11.4 depicts the fault tolerance capabilities of RaftStore during

the execution of YCSB workload A with a cluster size of 5, displaying the

throughput over time. The plot reveals a leader failure at approximately

22 seconds. Subsequently, after a timeout, the clients initiate the process of

finding a new leader. Later, at around 41 seconds, we deliberately terminate

a follower, which has minimal impact as the client communication with the

leader remains unaltered.

11.5 Performance of Primary-Backup KV Stores

PBStore is a distributed key-value store that operates based on the primary-

backup protocol. The PBStore architecture consists of a primary node re-

sponsible for synchronously replicating data to one or more backup nodes.

We compared PBStore’s performance with Redis, a widely-used key-value
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Figure 11.4: Throughput of RaftStore over time with three high-
lighted events: leader failure, new leader election, follower fail-
ure.

store written in C. We configured Redis’s replication to utilize the primary-

backup protocol in synchronous replication mode to closely match PBStore’s

behavior. Also, we attempted to evaluate Verdi’s primary-backup system,

but we could not proceed as we confirmed with the authors that they had

not implemented the necessary runtime glue code for evaluation purposes,

as it was solely used for verification purposes.

To perform the evaluation, we deployed both PBStore and Redis on three

machines, with one serving as the primary and the other two as backups. We

used the YCSB workload A to evaluate the systems’ performance. The peak

throughput of PBStore was found to be 340 op/s, while Redis demonstrated

an impressive throughput of over 50,000 op/s.

The performance disparity between PBStore and Redis is attributed to a

lack of protocol optimizations and tuning in PBStore. Specifically, PBStore

lacks support for batching incoming requests for replication and sending

replication requests to backups in parallel, which requires a more complex

set of correctness properties and implementation semantics that we did not

have sufficient time to implement and optimize.

72



4 8 12
Number of Nodes

0

20

40

60

Ti
m

e
to

C
on

ve
rg

e
(m

s) 60 60

68

29

36

62

PGoCRDT Roshi

Figure 11.5: Convergence times for PGoCRDT and Roshi.

11.6 Performance of CRDT-based Systems

In scenarios where strict consistency is not required for shared state, com-

mutative replicated data types (CRDTs) offer a reliable and efficient ap-

proach to represent such data. We evaluated our state-based CRDT set,

PGoCRDT, and an open-source CRDT set developed by SoundCloud, called

Roshi [5].

To compare these systems, we assessed the time it took for all nodes’

states to converge to a consistent value, which we refer to as convergence

time. During the experiment, each node participated in multiple rounds. In

round r, a node n added the pair 〈r, n〉 to its set and then waited until its

set contained all pairs of the form 〈r, i〉, for every node i. For each round,

we recorded the duration from when a node updated its local set until the

specified condition was met. We repeated this process for a total of 100

rounds. It is important to note that both systems apply updates locally,

and each node broadcasts its state every 50ms.

Figure 11.5 illustrates that Roshi outperforms PGoCRDT by up to 2×
in terms of performance, but PGoCRDT scales more consistently. Although

the performance gap is smaller compared to that between RaftStore and

etcd, it is likely attributed to Roshi benefiting from more person-hours ded-

icated to tuning and optimization, as well as potential inefficiencies in the

data structures utilized by PGo’s compiled output.
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Chapter 12

Related Work

12.1 Model-Checked DSLs

P [12, 14] presents a verifiable state machine model that shares similarities

with MPCal, although it employs a lower-level language similar to C aug-

mented with actor-like features. Mace [37, 38] introduces a model based on

nested state machines, working as a DSL integrated with C++. Mace lacks

some of the abstraction capabilities found in MPCal. StateRight [55] is a

DSL designed for model checking, built in Rust. It represents distributed

systems as state machines, resembling the approach taken by Mace. Sta-

teRight provides exhaustive model checking capabilities and leverages Rust’s

robust low-level safety assurances. Coyote [13], serves as an implementation

model checker for unaltered C# code, optionally incorporating an actor-

based DSL. ModP [15] is a programming system that enables compositional

reasoning (assume-guarantee) of distributed systems. ModP does not have

a model checker and employs systematic testing with weaker verification

guarantees.

The duality problem also arises in this category of work. We believe

MPCal provides more flexibility to developers, such that they can change

the model to optimize the implementation while avoiding the state space

explosion problem. Our evaluation shows we could build more performant

systems while exploring a larger state space during model checking.
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12.2 Automated Theorem-Proving

Techniques based on automated theorem proving provide a logical frame-

work in which a system can be formally specified, formal proofs can be

written about its properties, and an implementation can be automatically

generated. Explicit proofs avoid the state space explosion inherent to model

checking, and can provide strong guarantees about a given specification.

These proofs can, however, be prohibitively difficult to write, requiring many

person-years and measuring up to ten times the size of the system’s specifi-

cation [39]. Many efforts in this space aim to minimise proof effort for users,

often by automating or generalising certain proof patterns into DSLs.

Verdi [71] and Adore [35] present Coq [69] libraries and support im-

plementation extraction. Verdi primarily emphasizes relaxing assumptions

through refinement, while Adore reduces proof effort through protocol ab-

straction. EventML[62] is designed for Nuprl rather than Coq and em-

ploys a logic based on causal ordering of events. PSync [17] facilitates semi-

automated verification and operates under the assumption of a round-based

program structure. Disel [65] presents a Coq DSL designed for creating and

validating imperative specifications, utilizing a Hoare-style logic that offers

straightforward composition of verified elements. Chapar [48], another Coq

DSL, is specialized in specifying and verifying key-value stores and their

corresponding clients. IronFleet [32] supplies tools that enable developers

to demonstrate that practical implementations refine a high-level specifica-

tion created in Dafny [47]. Ivy [60], DuoAI [77], DistAI [76], SWISS [30],

and I4 [53] reduce the complexity associated with formulating inductive

invariants for verification. It is important to note that Ivy serves as the

verifier, while Ivy-Raft, a KV store [21], is a separate work by different

authors. Sift [54] presents a methodology centered around proof decomposi-

tion, utilizing automated refinement. Armada [16] introduces a specification

language similar to C for verified concurrent programs.

Building systems using automated theorem provers requires a significant

effort for writing proofs [74], while implementation concerns tend to be a

secondary concern. Reflecting implementation requirements on the system’s
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specification can be particularly difficult, as these adjustments can lead to

extensive modifications in the proofs.

12.3 Model Checking Implementations

Prior research has extended the concept of exploring state spaces to actual

system implementations [27, 46, 52, 56, 66, 75]. This pragmatic approach

successfully addresses challenging specification problems [20]. However, this

approach to model checking has inherent scalability limitations due to the

heightened concurrency and larger state space inherent in system implemen-

tations compared to system models. The duality problem does not arise in

these works since they do not have a model, and as a result, state space

explosion becomes an essential problem.

12.4 Go Systems Tooling

Recent research has introduced tools for detecting and addressing concur-

rency problems in Go [49, 50], as well as verifying the correctness of Go

code [7, 8, 73]. This body of work aligns with our framework, as it of-

fers a complementary approach to enhance users’ confidence in the Go code

generated by PGo.
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Chapter 13

Conclusion

In this work, we introduced the model-implementation duality and provided

solutions to reconcile the modeling land and implementation land. Duality

arises in different aspects and imposes trade-offs while building systems using

PGo. We proposed a framework for building modular systems to manage

the complexity and size of the trusted computing base. Our evaluation

shows that in the presence of duality, we satisfied the requirements of both

sides of the duality. We built several distributed systems and model-checked

them with at least three nodes. Our systems perform at least 40% better

than verified systems from related work and take at least 3× less time to

construct.

Our experience with duality can offer valuable insights for shaping fu-

ture efforts in building better frameworks for verified systems. Users can

refer to our shared experience in this to address duality-related challenges.

We believe that by addressing the duality challenge effectively, we can go

towards having practical and verified distributed system implementations.
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Appendix A

Supporting Materials

We include parts of the RaftStore MPCal model here.

1 \* A perfect failure detector. Can be replaced with other failure

2 \* detectors with different guarantees.

3 mapping macro PerfectFailureDetector {

4 read {

5 yield $variable;

6 }

7

8 write {

9 yield $value;

10 }

11 }

12

13 \* Persistent log mapping macro. It provides efficient add and

14 \* remove operations.

15 mapping macro PersistentLog {

16 read {

17 yield $variable;

18 }

19

20 write {

21 if ($value.cmd = LogConcat) {

22 yield $variable \o $value.entries;

23 } else if ($value.cmd = LogPop) {

24 yield SubSeq($variable, 1, Len($variable) - $value.cnt);
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25 };

26 }

27 }

28

29 \* A helper for handling failure when sending a network message.

30 macro Send(net, dest, fd, m) {

31 either {

32 net[dest] := m;

33 } or {

34 await fd[dest];

35 };

36 }

37

38 archetype AServerHandler(...) {

39 serverLoop:

40 while (TRUE) {

41 m := net[srvId];

42 handleMsg:

43 if (m.mtype = RequestVoteRequest) {

44 UpdateTerm(self, m, currentTerm, state, votedFor, leader);

45

46 \* HandleRequestVoteRequest

47 with (

48 i = srvId, j = m.msource,

49 logOK = \/ m.mlastLogTerm > LastTerm(log[i])

50 \/ /\ m.mlastLogTerm = LastTerm(log[i])

51 /\ m.mlastLogIndex >= Len(log[i]),

52 grant = /\ m.mterm = currentTerm[i]

53 /\ logOK

54 /\ votedFor[self] \in {Nil, j}

55 ) {

56 assert m.mterm <= currentTerm[i];

57 if (grant) {

58 votedFor[i] := j;

59 };

60 Send(net, j, fd, [

61 mtype |-> RequestVoteResponse,

62 mterm |-> currentTerm[i],

63 mvoteGranted |-> grant,

64 msource |-> i,
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65 mdest |-> j

66 ]);

67 };

68 } else if (m.mtype = RequestVoteResponse) {

69 \* HandleRequestVoteResponse

70 } else if (m.mtype = AppendEntriesRequest) {

71 \* HandleAppendEntriesRequest

72 } else if (m.mtype = AppendEntriesResponse) {

73 \* HandleAppendEntriesResponse

74 } else if (

75 \/ m.mtype = ClientPutRequest

76 \/ m.mtype = ClientGetRequest

77 ) {

78 \* HandleClientRequest

79 };

80 };

81 }

82

83 archetype AServerAppendEntries(...) {

84 serverAppendEntriesLoop:

85 while (appendEntriesCh[srvId]) {

86 await state[srvId] = Leader;

87 idx := 1;

88 appendEntriesLoop:

89 \* AppendEntries

90 while (

91 /\ state[srvId] = Leader

92 /\ idx <= NumServers

93 ) {

94 if (idx /= srvId) {

95 with (

96 prevLogIndex = nextIndex[srvId][idx] - 1,

97 prevLogTerm = IF prevLogIndex > 0

98 THEN log[srvId][prevLogIndex].term

99 ELSE 0,

100 entries = SubSeq(log[srvId], nextIndex[srvId][idx],

101 Len(log[srvId]))

102 ) {

103 \* Leader server sending new entries to follower servers

104 Send(net, idx, fd, [
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105 mtype |-> AppendEntriesRequest,

106 mterm |-> currentTerm[srvId],

107 mprevLogIndex |-> prevLogIndex,

108 mprevLogTerm |-> prevLogTerm,

109 mentries |-> entries,

110 mcommitIndex |-> commitIndex[srvId],

111 msource |-> srvId,

112 mdest |-> idx

113 ]);

114 };

115 };

116 idx := idx + 1;

117 };

118 };

119 }

120

121 archetype AClient(...) {

122 clientLoop:

123 while (TRUE) {

124 req := reqCh;

125 sndReq:

126 if (leader = Nil) {

127 with (srv \in ServerSet) {

128 leader := srv;

129 };

130 };

131 Send(net, leader, fd, [

132 mtype |-> ClientPutRequest,

133 mcmd |-> [

134 idx |-> reqIdx,

135 type |-> Put,

136 key |-> req.key,

137 value |-> req.value

138 ],

139 msource |-> self,

140 mdest |-> leader

141 ]);

142 rcvResp:

143 either {

144 resp := net[self];
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145 leader := resp.mleaderHint;

146 if (\lnot resp.msuccess) {

147 goto sndReq;

148 } else {

149 respCh := resp;

150 };

151 } or {

152 await \/ /\ fd[leader]

153 /\ netLen[self] = 0 \* no unread message

154 \/ timeout; \* timeout injection

155 leader := Nil;

156 goto sndReq;

157 };

158 };

159 }
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