
Attacking Transaction Relay in MimbleWimble
Blockchains

by

Seyed Ali Tabatabaee

Bachelor of Science, Sharif University of Technology, 2019

A THESIS SUBMITTED IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR THE DEGREE OF

Master of Science

in

THE FACULTY OF GRADUATE AND POSTDOCTORAL

STUDIES

(Computer Science)

The University of British Columbia

(Vancouver)

August 2021

© Seyed Ali Tabatabaee, 2021

The following individuals certify that they have read, and recommend to the Fac-
ulty of Graduate and Postdoctoral Studies for acceptance, the thesis entitled:

Attacking Transaction Relay in MimbleWimble Blockchains

submitted by Seyed Ali Tabatabaee in partial fulfillment of the requirements for
the degree of Master of Science in Computer Science.

Examining Committee:

Ivan Beschastnikh, Computer Science
Co-supervisor

Chen Feng, Engineering (Okanagan Campus)
Co-supervisor

ii

Abstract

Blockchain-based networks are often concerned with privacy. Two common types

of privacy in blockchain networks are (1) transaction source privacy, and (2) trans-

action content privacy. Research has shown that Bitcoin, the most prominent cryp-

tocurrency, cannot easily provide these privacy types. Hence, new protocols have

been proposed. For example, Dandelion++ is a solution to the source privacy vul-

nerability in Bitcoin. Practical systems, however, need to provide multiple privacy

guarantees at the same time. To the best of our knowledge, source privacy and

content privacy have not been considered simultaneously in the literature. We con-

jecture that cryptocurrencies that use Dandelion++ for transaction relay could be

susceptible to attacks against both types of privacy and also to performance at-

tacks. Our focus in this project is on the implementations of the MimbleWimble

cryptocurrency protocol such as Beam. We have designed and implemented three

different attacks against these existing privacy-focused protocols. In the first at-

tack, the adversary uses information obtained from the content of an incoming

transaction for improved detection of the transaction source. In the second attack,

to increase the latency of an incoming transaction, the adversary adds an excessive

delay before forwarding the transaction. In the third attack, the adversary exploits

the aggregation protocol in MimbleWimble to launch a denial of service attack on

an incoming transaction. We have validated our proposed attacks in a private test

network of Beam nodes and a network simulator.

iii

Lay Summary

Blockchain systems have been used for a variety of applications, such as decen-

tralized digital currencies. Similar to other financial systems, blockchain-based

digital currencies are concerned with privacy. There are different types of privacy

guarantees that users of blockchain-based digital currencies care about and that

blockchain networks must provide. Two common types of privacy in blockchain

networks are transaction source privacy and transaction content privacy. Research

has shown that the most prominent blockchain-based digital currencies such as Bit-

coin cannot easily provide these privacy types. Therefore, several privacy-focused

cryptocurrencies such as MimbleWimble have been proposed. In this project,

we have proposed and implemented different attacks against the implementations

of MimbleWimble. Our proposed attacks exploit some of the privacy-enhancing

mechanisms used in these cryptocurrency protocols to compromise the source pri-

vacy of transactions and the performance of the protocols. We have evaluated the

attacks in a private test network and a network simulator.

iv

Preface

The entire work presented in this thesis is original, unpublished, independent re-

search conducted by the author, Seyed Ali Tabatabaee, in collaboration with the

partner organization, Aquanow, the Beam developer community, and Charlene

Nicer under the supervision of Dr. Ivan Beschastnikh and Dr. Chen Feng. Aquanow

passed on their experience regarding the maintenance of blockchain network nodes.

The Beam developer community and Charlene assisted with the implementation of

the private test network and extraction of information from the network nodes.

v

Contents

Abstract . iii

Lay Summary . iv

Preface . v

Contents . vi

List of Tables . viii

List of Figures . ix

Acknowledgments . xi

1 Introduction . 1

2 Background . 5
2.1 Bitcoin . 5

2.2 Dandelion++ . 6

2.3 MimbleWimble . 7

3 Beam Analysis . 11
3.1 Transaction Relay Protocol . 11

3.2 Main Network Statistics . 17

4 Threat Model . 19

vi

5 Approach . 21
5.1 Improved Transaction Source Detection 21

5.2 Delaying Transaction Relay . 22

5.3 Transaction Denial of Service with Aggregations 23

6 Implementation . 25

7 Evaluation . 28

8 Discussion . 36
8.1 Improved Transaction Source Detection 36

8.2 Delaying Transaction Relay . 37

8.3 Transaction Denial of Service with Aggregations 37

9 Conclusion . 40

Bibliography . 41

vii

List of Tables

Table 3.1 The Beam network parameters. 12

Table 3.2 The number of incoming transactions per hour for different nodes. 18

Table 7.1 The default values for the parameters of the network simulator. 29

viii

List of Figures

Figure 2.1 The two phases of transaction relay in Dandelion++. A trans-

action originated in node Source is first relayed through a stem

path. Then, the fluff phase begins and each node that receives

the transaction sends it to all of its neighbors except the one

that initially sent the transaction. 7

Figure 2.2 Aggregation of two valid transactions. 9

Figure 2.3 Deletion of spent outputs and their corresponding inputs from

the blockchain. 10

Figure 3.1 The number of connections at different times for a Beam main

network node and a Beam test network node deployed on UBC

servers. 17

Figure 5.1 The proposed attacks on the transaction relay protocol in Beam.

Node Attacker is an adversarial node that receives a stem trans-

action TA that was originated in node Source. The adversary

can (1) use the information about the number of kernels in TA

and the address of node Neighbor, the sender of the transac-

tion, for improved detection of the transaction source, (2) in-

crease the latency of TA by adding an excessive delay before

forwarding it, or (3) generate a new transaction TB and fluff

both TA +TB and TB to perform a denial of service attack on TA. 22

ix

Figure 7.1 The percentage of stem paths that the adversary will be inci-

dent on, also referred to as infected paths, with (a) varying

percentages of malicious nodes, (b) varying probabilities of

transitioning to the fluff phase in each step of the stem phase,

(c) varying numbers of nodes, (d) varying expected degrees of

nodes, and (e) varying numbers of bootstrapping nodes. 30

Figure 7.2 (a) The expected number of hops between the source of a stem

transaction and the first adversarial node that receives the trans-

action with varying percentages of malicious nodes; (b) the

precision of the first node detection attack on stem transactions

with varying percentages of malicious nodes. 32

Figure 7.3 Comparison of the single-kernel transactions and aggregated

transactions in the number of hops between their sources and

our rogue node. 33

Figure 7.4 Comparison of the normally relayed transactions and exces-

sively delayed transactions (through our second proposed at-

tack, delaying transaction relay) in their latency. 34

Figure 7.5 The latency for the transactions that the adversary generated to

perform the denial of service attack with aggregations. 35

x

Acknowledgments

First, I would like to thank my supervisors, Dr. Ivan Beschastnikh and Dr. Chen

Feng for their invaluable support and guidance throughout the project.

I would also like to thank all members of Blockchain@UBC, especially the

lead of the cluster, Dr. Victoria Lemieux. Blockchain@UBC provided me with

many opportunities to engage in research and education in the area of blockchains.

Moreover, I want to thank our partner organization, Aquanow, the Beam developer

community, and Charlene Nicer for their contributions to the project. I am also

thankful to Gleb Naumenko and Fangyu Gai for sharing with me their knowledge

in the area of blockchains.

My research was supported by the Department of Computer Science at the

University of British Columbia, Blockchain@UBC research cluster, the Natural

Sciences and Engineering Research Council of Canada (NSERC), Mitacs, and

Aquanow. Many thanks to all of them.

Last but not the least, I would like to thank my family and friends. They were

there for me through all the ups and downs and I am forever grateful for having

them in my life.

xi

Chapter 1

Introduction

Blockchain systems, first introduced in Bitcoin [27], have been used for a variety of

applications, such as decentralized digital currencies. Bitcoin, introduced in 2008

by Satoshi Nakamoto, is the first cryptocurrency that incorporates a Proof of Work

(PoW) algorithm to achieve a decentralized consensus on transactions. Bitcoin has

gained huge popularity over the years, with a market capitalization of over 1 trillion

USD as of April 2021 [3].

Several challenges of blockchain systems including incentive compatibility, ap-

plicability, scalability, efficiency, and privacy have been subjects of extensive re-

search. Many research papers have analyzed incentive structures in Bitcoin [11,

13, 20, 35]. Using smart contracts, Ethereum [40] and some other blockchain pro-

tocols have provided a variety of applications beyond simple financial transactions.

Aiming to achieve scalability and efficiency, some blockchain protocols incorpo-

rate alternative consensus algorithms, for instance, Proof of Stake (PoS) [21] or

Byzantine Fault Tolerant (BFT) consensus [12]. Algorand [18] is an example of

such protocols which in fact combines the ideas of the two aforementioned consen-

sus algorithms. Some other distributed ledgers, instead of a chain, utilize different

data structures, for example, a tree [37] or a directed acyclic graph (DAG) [7, 38].

Last but not least, similar to other financial systems, blockchain-based dig-

ital currencies are concerned with privacy [5]. Protocols such as Monero [29],

Zcash [19], and MimbleWimble [32] have introduced various techniques to en-

hance the privacy of users and transactions. There are different types of privacy

1

guarantees that users of blockchain-based networks, particularly public blockchains,

care about and that these networks provide. One type of privacy is transaction

source privacy. This privacy aims to hide the source of the transaction in the sys-

tem. Another type of privacy is transaction content privacy. This privacy may

be achieved with encryption techniques, as well as aggregation approaches that

combine several transactions into a single transaction and make it difficult to pre-

cisely reconstruct the set of transactions. Different research papers have proposed

techniques to improve the source [33] and content [26] privacy of transactions in

blockchain networks.

In Bitcoin, similar to many other blockchain networks, transactions and other

messages are relayed over a peer-to-peer network of TCP links. Flooding [31]

which is the typical approach to broadcast transactions has been shown to poten-

tially reveal the source IP address of the transactions to the adversarial nodes [8].

Hence, Bitcoin Core [2] which is the most popular implementation of Bitcoin in-

corporates a relay protocol called diffusion. Diffusion adds independent exponen-

tial delays before broadcasting the transactions from each node in order to make de-

anonymization attacks more difficult. However, this protocol has also been shown

to offer insufficient transaction source privacy [14]. Furthermore, the Bitcoin pro-

tocol is also susceptible to attacks against content privacy [25].

In order to improve the source privacy of transactions in Bitcoin, protocols such

as Dandelion [9] and Dandelion++ [15] constrain the number of neighbors that a

node will send a transaction to during some stage of transaction relay. Particularly

in these two protocols, transactions are first relayed through stem paths, where each

node passes the transaction only to one of its neighbors. This way, only one node

in the network will receive the transaction directly from the transaction source and

most of the nodes will receive the transaction when it has already passed through

multiple nodes, improving source privacy.

MimbleWimble [32], the privacy-focused blockchain protocol that we are go-

ing to analyze in this work, uses confidential transactions [24] to encrypt the amounts

of transactions. Moreover, somewhat similar to CoinJoin [23], MimbleWimble al-

lows for the aggregation of several transactions into one transaction to enhance the

content privacy of transactions. Grin [4] and Beam [1] are the two major imple-

mentations of MimbleWimble. Both of these cryptocurrency protocols use Dan-

2

delion++ for transaction relay to improve the transaction source privacy in Mim-

bleWimble.

In this work, we analyze the transaction relay protocol in MimbleWimble. We

implement and validate three different attacks to understand their impact on Mim-

bleWimble and its implementation in Beam. The attacks are briefly described as

follows:

1. Improved transaction source detection: The aggregation in MimbleWim-

ble leaks some information. If a transaction is aggregated, then it must have

passed through an aggregating node after it was generated. If the transaction

is not aggregated, then it has not passed through such an aggregating node.

We can use this information to increase the precision of the first node detec-

tion attack [22] which outputs the first honest node to forward a transaction

to an adversarial node as the source of that transaction.

2. Delaying transaction relay: To improve the source privacy of transactions,

protocols such as the ones based on Dandelion++, at some stages of the

transaction relay, constrain the number of neighbors that a node will send a

transaction. Such constraints improve privacy, but they also leave the proto-

col vulnerable to attacks on transaction latency, specifically at the bottleneck

locations along the relay paths.

3. Transaction denial of service with aggregations: By aggregating different

incoming transactions with a newly generated transaction that has not been

mined into a block, the attacker with the cost of one transaction fee can pre-

vent all of the aggregations from ending up in a block. This denial of service

attack will negatively impact the transaction throughput of the network.

This thesis is structured as follows. Chapter 2 provides background informa-

tion on Bitcoin, Dandelion++, and MimbleWimble. Chapter 3 offers an in-depth

look into Beam. Chapter 4 describes our threat model. Chapter 5 provides a com-

prehensive description of each of the three proposed attacks. Chapter 6 provides

details on our simulation of the Beam protocol, the implementation of our pro-

posed attacks, and the Beam private network that we created for testing. Chapter 7

presents the results of our simulations and the evaluation of our proposed attacks.

3

Chapter 8 provides a further discussion on the results of our proposed attacks and

suggests mitigations to those attacks. Finally, Chapter 9 concludes the results pre-

sented in this thesis.

4

Chapter 2

Background

Before we proceed to the description and analysis of our proposed attacks on Mim-

bleWimble and its implementations, here we provide important background infor-

mation on Bitcoin (Section 2.1), Dandelion++ (Section 2.2), and MimbleWimble

(Section 2.3).

2.1 Bitcoin
Bitcoin [27] is the most prominent decentralized digital currency. In Bitcoin, trans-

actions are verified and maintained by the Bitcoin network nodes in a distributed

fashion. The Bitcoin blockchain grows as new blocks, containing transactions al-

ready sent to the peer-to-peer network of Bitcoin, are added every ten minutes on

average by the Bitcoin miners. Bitcoin uses a Proof of Work (PoW) algorithm to

achieve a decentralized consensus on transactions. Since the security of the proto-

col depends on the total mining power and mining is expensive, Bitcoin miners are

compensated through block rewards and transaction fees.

A Bitcoin transaction contains a list of inputs and a list of outputs. Each input

has a reference to an output from some preceding transaction. It also includes the

public key and signature of the owner of the input. A normal output contains a

value and a Bitcoin address. Therefore, the amounts and addresses of inputs and

outputs in transactions are publicly visible. This would suggest the susceptibility

of Bitcoin transactions to attacks against content privacy. In fact, previous research

5

has shown that a lot of information can be extracted from the transaction graph

of Bitcoin, and different transactions of the same user can be linked together [25,

30, 34]. Consequently, several blockchain protocols that offer enhanced content

privacy, such as Monero [29], Zcash [19], and MimbleWimble [32], have been

proposed.

In Bitcoin, transactions are relayed over a peer-to-peer network of TCP links.

Each node in the network is identified by its IP address and port, and each honest

node has a specified upper bound on the number of connections it can have in the

network. Bitcoin Core [2] uses a relay protocol called diffusion. With diffusion,

each node adds an independent exponential delay before advertising an incoming

transaction to all of its peers except the one that previously sent the transaction

or the ones that sent an advertisement for the transaction. Several alternatives

to this relay protocol have been proposed, such as Erlay [28] which reduces the

bandwidth consumption, thereby improving the security, and Dandelion [9] and

Dandelion++ [15] which enhance the transaction source privacy.

2.2 Dandelion++
Dandelion++ is a transaction relay protocol based on a preceding proposal called

Dandelion. The two protocols have similar goals but subtle differences in imple-

mentation choices. To improve the source privacy of transactions, Dandelion++

constrains the number of neighbors that a node will send a transaction to at the

beginning of the transaction relay. With Dandelion++, transactions are relayed

in two phases. First, in the stem phase, each node when receives a transaction,

passes the transaction only to one other node. Then, in the fluff phase, each node

sends an incoming transaction to all of its neighbors except the one that initially

sent the transaction. Figure 2.1 illustrates the two phases of transaction relay in

Dandelion++.

Compared to diffusion, with Dandelion++, adversarial nodes have less chance

of receiving a transaction directly from its source and it is more difficult for the

adversary to localize the source of the transaction. The probability of transitioning

to the fluff phase in each step of the stem phase is a parameter of the protocol. The

lower this probability is, the longer the average length of stem paths will be. Long

6

Source
Fluff
Begins

Figure 2.1: The two phases of transaction relay in Dandelion++. A transac-
tion originated in node Source is first relayed through a stem path. Then,
the fluff phase begins and each node that receives the transaction sends
it to all of its neighbors except the one that initially sent the transaction.

stem paths lead to high protection of the transaction source privacy. To mitigate

black-hole attacks where the adversarial nodes decide not to forward the incoming

stem transactions, Dandelion++ incorporates a fail-safe mechanism. Each node in

the stem path of a transaction would fluff the transaction itself if it does not receive

the fluff version by the expiration of the independent random timer it sets for the

stem transaction.

2.3 MimbleWimble
MimbleWimble is a cryptocurrency protocol that uses encryption and aggregation

to enhance the content privacy of transactions. Compared to other cryptocurrency

protocols such as Bitcoin, MimbleWimble has the following important advantages:

• Amounts of inputs and outputs in transactions are encrypted.

• Aggregation of transactions makes it difficult to link the inputs and outputs.

• The size of the blockchain is substantially reduced through the deletion of

spent outputs.

MimbleWimble uses confidential transactions to encrypt the amounts. Instead

7

of obvious amounts, the commitments of inputs and outputs are put into transac-

tions and kept on the blockchain. Each commitment is in the form of

C = r ·G+ v ·H

where C is a Pedersen commitment, v is the amount, r is a secret random blinding

key which should be known only to the owner, and G and H are fixed Elliptic Curve

Cryptography (ECC) group generators known to all. A range-proof is attached to

each output commitment which proves that its amount is valid. The r value in

commitments with explicit amounts, such as transaction fees and block rewards,

is zero. The owner of a set of outputs is who knows the sum of their r values.

Knowing the sum of r values for a set of outputs, one can create a valid transaction

that spends those outputs. For a transaction to be valid, the commitments in that

transaction should sum to zero and the range-proofs for the output commitments

should be valid.

To prevent the sender of inputs in a transaction from spending the outputs, the

sum of r values for the outputs should differ from the sum of r values for the inputs.

Therefore, the commitments of inputs and outputs in each transaction should sum

to a non-zero value k ·G (kernel) where k is chosen by the recipient. A kernel is

a non-spendable commitment with zero amount. A transaction is allowed to have

more than one kernel. Hence, the sum of commitments in a transaction is

∑
Ci∈inputs

Ci + ∑
Co∈out puts

Co + ∑
Ck∈kernels

Ck = 0.

Aggregation of transactions makes it difficult to link the inputs and outputs.

Since the sum of commitments in each valid transaction is zero, the total sum of

commitments for multiple transactions is still zero. Therefore, the aggregation

of multiple valid transactions is a valid transaction (Figure 2.2). Because each

block consists of some valid transactions, a block can be interpreted as a single

aggregated transaction.

The sum of all commitments in each block is zero. Hence, the sum of all

commitments in the blockchain is also zero. An output of a transaction can be

spent in the succeeding blocks and appear as an input of another transaction. The

8

Transaction 2:

Transaction 1:

Input B

Input C

Input E

Input A

Input D

Output Y

Output W

Output Z

Output X

Kernel 1

Kernel 2

Aggregated Transaction:

Input A

Input B

Input C

Output X

Kernel 1

Input D

Input E
Output Z

Output Y

Output W

Kernel 2

Aggregation

Figure 2.2: Aggregation of two valid transactions.

sum of commitments for this pair of input and output is zero. Consequently, if both

commitments are removed from the blockchain, the sum of all commitments in the

blockchain remains zero. Therefore, it is possible to safely remove a spent output

and its corresponding input from the blockchain (Figure 2.3). Using this technique,

the size of the blockchain can be substantially reduced. The only elements that

remain in the blockchain are the explicit amounts for block rewards, kernels for all

transactions, and unspent outputs along with their range-proofs and Merkle proofs.

Although the original proposal did not specify a transaction relay protocol for

MimbleWimble, the two major implementations of this protocol, Grin [4] and

Beam [1], have incorporated Dandelion++, where transactions are aggregated in

the stem phase. Using this approach, not only do these cryptocurrencies attempt to

improve the transaction source privacy, but also they try to make it difficult to link

the inputs and outputs of transactions by first relaying them through stem paths and

reducing the number of network nodes that observe them before aggregation. Be-

sides, Bulletproofs [10] which are short proofs for confidential transactions have

been proposed to improve on the original range-proofs. Bulletproofs have been

adopted by both Grin and Beam. Other research projects have provided a provable-

security analysis for MimbleWimble [16] and stepped toward a formalization of

the MimbleWimble cryptocurrency protocol and the verification of its implemen-

tations [6, 36]. In this project, we focus on the vulnerabilities of transaction relay

9

Block 2:

Block 1:

Block Reward Output A

Kernel 1

Input A Output C

Block Reward Output B

Kernel 2

Block 3:

Input C Output E

Block Reward Output D

Kernel 3

Block 4:

Input B Output G

Block Reward Output F

Kernel 4

Input E Output H

Kernel 5

Block 2:

Block 1:

Block Reward

Kernel 1

Block Reward

Kernel 2

Block 3:

Block Reward Output D

Kernel 3

Block 4:

Output G

Block Reward Output F

Kernel 4

Output H

Kernel 5

Deletion

Figure 2.3: Deletion of spent outputs and their corresponding inputs from the
blockchain.

in the implementations of MimbleWimble.

10

Chapter 3

Beam Analysis

Since we use the implementation of MimbleWimble in Beam for the purpose of

validating our proposed attacks, it is important to have an in-depth understanding of

Beam. Hence, in this chapter, we describe the implementation of transaction relay

in Beam (Section 3.1) and provide details on the Beam main network (Section 3.2).

3.1 Transaction Relay Protocol
In this section, we describe Beam’s transaction relay protocol. We provide an

overview of the life cycle of a transaction from when it is received by a node to

when it is forwarded to the peers of the node. For that purpose, we use pseudocode

that we have written based on the source code of Beam. All the pseudocode pre-

sented in this section have been obtained from the node/node.cpp file in the ”main-

net” branch of Beam’s GitHub repository as of February 2021 1.

There are six important functions that every Beam node uses to manage and

forward incoming transactions. We describe all of these functions in this section.

These are also the functions that we need to modify in the source code to imple-

ment our proposed attacks. Table 3.1 presents the values for the Beam network

parameters that are used in the functions that we describe.

1https://github.com/BeamMW/beam/commit/77c3aa5a60fad3a6affdee3953dbb41208ffdc41

11

https://github.com/BeamMW/beam/commit/77c3aa5a60fad3a6affdee3953dbb41208ffdc41

Name Value
FluffProbability 0.1

TimeoutMin 20s
TimeoutMax 50s

AggregationTime 10s
OutputsMin 5
OutputsMax 40

Table 3.1: The Beam network parameters.

When a new transaction is received, the function OnTransaction will be called.

The pseudocode for this function is presented in Algorithm 1. This function calls

either OnTransactionStem (Algorithm 2) or OnTransactionFluff (Algorithm 5) based

on the type of the incoming transaction.

Algorithm 1 OnTransaction
1: function ONTRANSACTION(Transaction tx)
2: if tx is stem then
3: OnTransactionStem(tx)
4: else
5: OnTransactionFluff(tx)

If the incoming transaction is a stem transaction, then the function OnTrans-

actionStem will be called. The pseudocode for this function is available in Algo-

rithm 2. This function compares the new stem transaction to transactions in the

node’s stempool (data structure containing valid stem transactions that have not

been fluffed) and checks the validity of the new transaction. If the new stem trans-

action is accepted, then the stempool will be updated and the new transaction will

also be added to it. Eventually, if the number of outputs in the transaction is greater

than or equal to OutputsMax, then the transaction does not need to be aggregated

any further; hence, the function OnTransactionAggregated (Algorithm 3) will be

called. Otherwise, PerformAggregation (Algorithm 4) will be called.

Given a stem transaction, OnTransactionAggregated (Algorithm 3) sends the

stem transaction to a randomly chosen peer with a probability of 0.9 or fluffs the

transaction by calling OnTransactionFluff (Algorithm 5) with a probability of 0.1.

12

Algorithm 2 OnTransactionStem
1: function ONTRANSACTIONSTEM(Transaction tx)
2: for each Kernel k in tx do . at most one Tx in stempool has k
3: Find Transaction q in stempool that contains k . if it exists
4: // continue to the next iteration if such q does not exist
5: if tx does not cover q then . tx covers q if it has all Kernels of q
6: Drop tx
7: return . error code will be returned to sender
8: if q covers tx then . it means tx and q are the same
9: if q is still aggregating then . should not normally happen

10: Drop tx
11: return . with ’accept’ error code
12: else
13: break
14: // if tx covers q but q does not cover tx
15: Validate(tx) . if not done before
16: Drop q from stempool
17: Validate(tx) . if not done before
18: // by this point, the given stem-tx is accepted
19: Add tx to stempool . also add dummy inputs to tx if necessary
20: if NoNeedForAggregation(tx) then . tx has at least OutputsMax outputs
21: OnTransactionAggregated(tx)
22: else
23: PerformAggregation(tx)

Algorithm 3 OnTransactionAggregated

1: function ONTRANSACTIONAGGREGATED(Transaction tx)
2: if RandInt(1,10) 6= 10 then
3: Select a random Peer p
4: Send (stem) tx to p
5: Set timer (uniformly selected between TimeoutMin and TimeoutMax)

on tx to later check if it is fluffed or not
6: else . FluffProbability = 0.1
7: OnTransactionFluff(tx)

13

PerformAggregation, presented in Algorithm 4, tries to merge a given stem

transaction with other transactions in the stempool. In the end, if the number of

outputs in the transaction is at least OutputsMin (the transaction does not neces-

sarily need more aggregation), OnTransactionAggregated (Algorithm 3) will be

called to forward the transaction. If the transaction still needs to be aggregated, the

function will set a timer (10s) on the transaction to bound the time that it remains

in the stempool without being forwarded.

Algorithm 4 PerformAggregation

1: function PERFORMAGGREGATION(Transaction tx)
2: for each Transaction q in stempool that needs to be aggregated, starting

from the one with the closest profitability to tx, until !NeedsAggregation(tx)
do . in Beam, Transaction profitability is defined as Transaction f ee

Transaction size
3: TryMerge(tx,q) . merges q into tx if the result is valid
4:

5: if tx has at least OutputsMin outputs then
6: OnTransactionAggregated(tx)
7: else
8: Set timer (AggregationTime) on tx . to later add dummy outputs and

stem if not aggregated enough by then

The function OnTransactionFluff (Algorithm 5), after making sure that a given

transaction is valid, updates the stempool. Subsequently, the function updates the

fluffpool (data structure containing valid fluff transactions) and sends the given

transaction to all of its peers except the one that initially sent the fluff transaction.

Finally, we explain OnTimedOut, presented in Algorithm 6. If a stem trans-

action is still waiting for aggregation by the expiration of the timer that was set

for it in the PerformAggregation function (Algorithm 4), then dummy outputs will

be added to the transaction (to ensure that the transaction has at least OutputsMin

outputs and therefore it is sufficiently difficult to link its inputs and outputs) and

OnTransactionAggregated (Algorithm 3) will be called to forward the transaction.

Moreover, if the fluff version of a forwarded stem transaction is not received by

the expiration of its independent random timer, then OnTransactionFluff (Algo-

rithm 5) will be called to fluff the transaction.

14

Algorithm 5 OnTransactionFluff
1: function ONTRANSACTIONFLUFF(Transaction tx)
2: if tx is in stempool then
3: Drop tx from stempool
4: else
5: for each Kernel k in tx do
6: Find Transaction q in stempool that contains k . if it exists
7: // continue to the next iteration if such q does not exist
8: Drop q from stempool
9: if tx is already in fluffpool then . we already received the fluff tx

10: Drop tx
11: return . with ’accept’ error code
12: Validate(tx) . BUG - validation should be done earlier!
13: while fluffpool does not have enough capacity for tx do
14: Find q, the least profitable Transaction in fluffpool
15: if q is less profitable than tx then
16: Drop q from fluffpool
17: else
18: Drop tx
19: return . with ’accept’ error code
20: Add tx to fluffpool
21: Send tx to all Peers of the node . except the Peer that sent tx

Algorithm 6 OnTimedOut
1: function ONTIMEDOUT(Transaction tx)
2: if tx is still aggregating then
3: Add dummy outputs to tx so that it has at least OutputsMin outputs
4: OnTransactionAggregated(tx)
5: else . fluff timed-out, emergency fluff
6: OnTransactionFluff(tx)

During the process of studying the source code of Beam, we noticed that in

the function OnTransactionFluff (Algorithm 5), transactions were validated too

late. This would allow an attacker to change the state of the stempool in an hon-

est node by sending invalid transactions. To be more specific, the attacker could

send an invalid fluff transaction containing kernels that were already sent to the

honest node within valid stem transactions and cause those valid transactions to

15

be removed from the stempool (Line 8 in Algorithm 5). The function OnTransac-

tionFluff would check the validity of the malicious transaction only after the ac-

complishment of the attack (Line 12 in Algorithm 5). We communicated with the

Beam developer community about this issue and they modified the source code so

that the function OnTransactionFluff would validate transactions earlier 2. As has

been previously demonstrated, we believe that independent code review is there-

fore critical to the security and robustness of blockchain networks.

2https://github.com/BeamMW/beam/commit/ade19e1f8b1a702ad81d81092ba6a8f6561513ed

16

https://github.com/BeamMW/beam/commit/ade19e1f8b1a702ad81d81092ba6a8f6561513ed

3.2 Main Network Statistics
As of April 2021, with more than 1 million mined blocks and over 86 million coins

in circulation 3, Beam has a market capitalization of over 133 million USD [3]. The

Beam main network includes multiple bootstrapping nodes in different geograph-

ical locations 4. When a new node joins the Beam network, it usually connects

to bootstrapping nodes at the beginning. Hence, it is expected that bootstrapping

nodes have more connections than normal nodes.

We have deployed a Beam main network node and a Beam test network node

on UBC servers. We have recorded the number of connections for these two nodes

every six hours from April 21, 2021, to April 23, 2021. Figure 3.1 shows these

numbers. We observe that all the recorded numbers for the main network node are

between 11 and 14. For the test network node, all the numbers are between 9 and

11.

04
-2

1
03

:0
0

04
-2

1
09

:0
0

04
-2

1
15

:0
0

04
-2

1
21

:0
0

04
-2

2
03

:0
0

04
-2

2
09

:0
0

04
-2

2
15

:0
0

04
-2

2
21

:0
0

04
-2

3
03

:0
0

04
-2

3
09

:0
0

04
-2

3
15

:0
0

04
-2

3
21

:0
0

Time

0

5

10

15

20

N
um

be
r

of
 C

on
ne

ct
io

ns

Main Network Node
Test Network Node

Figure 3.1: The number of connections at different times for a Beam main
network node and a Beam test network node deployed on UBC servers.

In addition, we have obtained the number of incoming transactions for boot-

strapping nodes located in Europe-Frankfurt (eu-nodes.mainnet.beam.mw), USA-

California (us-nodes.mainnet.beam.mw), Hong Kong (ap-hk-nodes.mainnet.beam.mw),

3https://explorer.beam.mw/
4https://beam.mw/downloads/mainnet-mac

17

https://explorer.beam.mw/
https://beam.mw/downloads/mainnet-mac

Node
of

Fluff-Txs
per Hour

of 1-Kernel
Fluff-Txs
per Hour

of
Stem-Txs
per Hour

of 1-Kernel
Stem-Txs
per Hour

eu-node01 139.0 99.0 8.6 6.0
eu-node02 139.2 105.3 9.3 6.0
eu-node03 139.3 107.1 9.1 6.7
eu-node04 139.6 105.5 8.8 6.5
us-node01 139.7 106.3 15.8 13.9
us-node02 139.7 106.9 15.1 13.2
us-node03 140.2 105.5 17.4 15.4
us-node04 139.4 104.6 15.7 13.6

ap-hk-node01 139.3 104.0 9.1 7.1
ap-hk-node02 139.3 105.9 9.3 7.0
ap-hk-node03 139.4 113.4 10.2 7.5
ap-hk-node04 139.8 105.9 9.4 7.0

ap-node01 139.3 107.4 8.1 6.0
ap-node02 139.4 105.8 9.5 6.5
ap-node03 139.3 107.1 9.1 6.7
ap-node04 139.2 106.7 7.8 6.1
ubc-node 113.0 93.1 1.0 0.8

Table 3.2: The number of incoming transactions per hour for different nodes.

and Singapore (ap-nodes.mainnet.beam.mw) from the Beam developer commu-

nity. We have estimated the number of incoming transactions per hour for each

bootstrapping node and also for the UBC main network node using the data of

the log files with a start time between April 21, 2021, and April 23, 2021. For

each aforementioned node, Table 3.2 shows the number of incoming fluff transac-

tions per hour, the number of incoming single-kernel fluff transactions per hour,

the number of incoming stem transactions per hour, and the number of incoming

single-kernel stem transactions per hour. We observe that the bootstrapping nodes

receive more transactions compared to the normal node deployed on UBC servers.

Furthermore, the majority of incoming transactions have only one kernel which

means that they are not aggregated.

18

Chapter 4

Threat Model

The adversary in our model can create nodes and connect to other nodes in the

peer-to-peer network. The adversarial nodes can connect to as many nodes as they

want. The adversary needs to know the addresses of other nodes before connecting

to them. Nevertheless, the adversary cannot impose a connection on any other node

if the other node does not want to connect. By increasing the number of adversarial

nodes in the network or the number of connections from adversarial nodes to honest

nodes, the adversary will be incident on more relay paths and therefore can attack

the transaction relay network more effectively.

We assume that all pairs of adversarial nodes are directly connected by instant

links through which they can send each other transactions and other messages of

any size. Adversarial nodes can store all information that they receive about the

transactions and the network. They can analyze the stored information and adjust

their decisions. Generally, the adversary is unaware of the exact topology of the

network and the connections between pairs of honest nodes. However, the adver-

sarial nodes can obtain partial information about the network through the analysis

of their stored data. We assume that the adversary cannot decrypt commitments in

transactions to learn their amounts or secret blinding keys. Furthermore, the adver-

sary cannot spend the outputs that are owned by others or trick honest nodes into

accepting invalid transactions.

We assume that instead of targeting specific nodes or users, the adversary is

interested in mass attacks on the honest portion of the network. Nonetheless, se-

19

lective attacking could help to hide the position of the adversary in the network.

The adversary can recognize the address of a node that forwards a transaction to an

adversarial node and acquire partial information about the content of the transac-

tion, such as the number of kernels it has. Also, the adversary can deviate from the

relay policy of the network and disregard the relay phase of transactions. More-

over, the adversarial nodes can generate new valid transactions and aggregate them

with other valid transactions that they previously received.

20

Chapter 5

Approach

In this chapter, we describe our approach for each of the three proposed attacks on

the implementation of MimbleWimble in Beam. In Section 5.1, we explain the im-

proved transaction source detection. Then, in Section 5.2, we present our approach

for delaying transaction relay. Finally, in Section 5.3, we describe transaction de-

nial of service with aggregations. Figure 5.1 illustrates the proposed attacks.

5.1 Improved Transaction Source Detection
In this attack, we use the information leaked by the aggregation in MimbleWimble

to improve the first node detection attack. In the original first node detection at-

tack [22], for each incoming transaction, the adversary outputs the first honest node

to forward that transaction to an adversarial node as the source of the transaction.

Each time a transaction arrives at a new node in the stem phase, it might get

aggregated with other transactions. As a transaction passes more nodes in the stem

phase, the probability of it being aggregated with other transactions increases. We

surmise that the first node detection attack would lead to an increased precision

for transaction source detection by announcing the sender of a transaction as the

source if the transaction is not aggregated. Nodes can find whether a transaction is

aggregated by counting the number of kernels in it. If a transaction has one kernel,

it is not aggregated; otherwise, it is aggregated.

In our attack, a rogue node predicts the origins of single-kernel transactions

21

Source

Neighbor

Attacker

TA

TA

TA

TA

TB

TA

Figure 5.1: The proposed attacks on the transaction relay protocol in Beam.
Node Attacker is an adversarial node that receives a stem transaction
TA that was originated in node Source. The adversary can (1) use the
information about the number of kernels in TA and the address of node
Neighbor, the sender of the transaction, for improved detection of the
transaction source, (2) increase the latency of TA by adding an excessive
delay before forwarding it, or (3) generate a new transaction TB and fluff
both TA +TB and TB to perform a denial of service attack on TA.

and announces the senders of those transactions as their sources (Figure 5.1). We

will then evaluate the precision of this attack to show that our proposed attack has

higher precision compared to the normal first node detection attack.

5.2 Delaying Transaction Relay
Privacy-focused transaction relay protocols such as Dandelion++, at some stages

of the relay, constrain the number of neighbors that a node will send a transaction.

22

While such approaches improve the source privacy of transactions, they also make

the performance of the protocol dependent on the behavior of the nodes at the

bottleneck locations along the relay paths.

Particularly in Dandelion++, each node passes an incoming stem transaction

only to one of its neighbors. Although Dandelion++ incorporates a fail-safe mech-

anism to mitigate black-hole attacks, it is still vulnerable to attacks on transac-

tion latency. An adversarial node in the stem path of a transaction can increase

the latency of the transaction by adding an excessive delay before forwarding the

transaction or not forwarding the transaction at all. This attack will increase the

latency even if another node in the stem path fluffs the transaction itself due to the

expiration of its timer.

In our attack, a rogue node will follow the protocol for the relay of a portion

of incoming transactions and add a major delay in the relay of some others (Fig-

ure 5.1). We will calculate the average time that it takes for the transactions of each

group to be broadcasted through the network. We will then compare the results to

verify that the attack can considerably delay the transactions.

5.3 Transaction Denial of Service with Aggregations
To improve content privacy, MimbleWimble allows for the aggregation of transac-

tions. However, the adversary can exploit this feature to launch a denial of service

attack. Among different aggregations that have a transaction in common, at most

one can end up in the blockchain. Therefore, by aggregating different incoming

transactions with a newly generated transaction, the adversary can perform a de-

nial of service attack on the incoming transactions.

Let TA be a new stem transaction received by an adversarial node. To execute

the attack, instead of normally aggregating and relaying the stem transaction, the

adversarial node generates a new transaction TB. Then, the adversarial node aggre-

gates the two transactions into TA +TB and fluffs both TA +TB and TB. Since TA is

fluffed as a part of an aggregated transaction, the other nodes in the stem path of

TA will not separately fluff TA. Nevertheless, only one transaction between TA +TB

and TB can end up in the blockchain. Hence, if the adversarial node creates TB in

a way that miners prioritize it over TA +TB (for this to happen, the profitability for

23

TB should be higher than the profitability for TA +TB), then TA will not end up in

the blockchain. In this case, the wallet that initially created TA needs to resend TA

to the network. The cost of this denial of service attack for the adversary is the

transaction fee of TB.

In our attack, a rogue node will aggregate the incoming stem transactions with

new transactions that have not been mined into any block and fluff the resulting

aggregations and the newly generated transactions (Figure 5.1). We will then com-

pare the block mining time for the transactions that were aggregated in this way

by the adversary and for the normally relayed transactions. Subsequently, we can

validate the feasibility of this attack.

24

Chapter 6

Implementation

In this chapter, we explain our implementation of the Beam network simulator, the

three proposed attacks, and the Beam private test network.

We have provided a simulation of the Beam network to estimate the percent-

age of stem paths that the adversary will be incident on, the expected number of

hops between the source of a stem transaction and the first adversarial node that

receives the transaction, and the precision of the first node detection attack on stem

transactions. The inputs of this simulation are parameters such as the number of

nodes, the percentage of malicious nodes, the expected degree of each node, and

the probability of transitioning to the fluff phase in each step of the stem phase.

Based on these parameters, the program creates a pseudorandom graph represent-

ing the network. The connections of each node are uniformly selected among all

other nodes without replacement. The program then tests 1 million pseudorandom

stem paths for the estimation. Each tested stem path starts from a source uniformly

selected from the set of all nodes and each node in the stem path selects the next

node uniformly from the set of its neighbors to forward the stem transaction. We

implemented this network simulator in approximately 200 lines of code using the

C++ programming language.

To implement each of our proposed attacks, we modified the source code of

Beam in the ”testnet” branch 1. Most of the changes were applied to the files in

the ”node” directory and especially the functions described in Section 3.1. We

1https://github.com/BeamMW/beam/tree/testnet

25

https://github.com/BeamMW/beam/tree/testnet

modified approximately 600 lines of C++ code in total for the implementation of

our three proposed attacks.

To validate our proposed attacks, we have implemented a private test network.

The network consists of some normal Beam nodes and some malicious nodes that

are the modified versions of normal nodes. The properties of the private network

are described as follows:

1. Number of nodes: After consulting with the Beam developer community,

considering the requirements of our evaluations, and also taking into account

the resources available, we decided to have 100 nodes in our private network.

2. Number of bootstrapping nodes: There are 10 bootstrapping nodes in our

private network, out of a total of 100 nodes. When normal nodes join the net-

work, they first connect to the bootstrapping nodes. Therefore, it is expected

that bootstrapping nodes have more connections than normal nodes.

3. Number of adversarial nodes: This is a configurable parameter of our pri-

vate test network. For different attacks, we might need different numbers of

adversarial nodes.

4. Versions of nodes: For the honest nodes, we use the latest stable version of

the ”testnet” branch 2. For the adversarial nodes, we modify this source code

to implement each of our proposed attacks.

5. Number of connections for each node: We do not change the algorithm for

finding new connections and we maintain the policy of nodes in the Beam

main network and test network.

6. Probability of transitioning to the fluff phase: Similar to the policy of the

Beam main network and test network, we set the probability of transitioning

to the fluff phase in each step of the stem phase in our private network to 0.1.

7. Mining: In our private test network, similar to the Beam main network and

test network, a new block is added to the blockchain every minute, on aver-

age. The Beam main network uses a Proof of Work (PoW) scheme to grow

2https://github.com/BeamMW/beam/commit/cfe091468fbcfcd2092352c22a18099bf9d017f0

26

https://github.com/BeamMW/beam/commit/cfe091468fbcfcd2092352c22a18099bf9d017f0

the blockchain. Instead, in our private test network, we use a fake mining

scheme to avoid wasting our resources on the expensive process of PoW

mining. In the fake mining scheme, nodes do not compete with each other

over mining new blocks. Fake mining is adequate for the private test network

because our proposed attacks focus on transaction relay and do not include

byzantine behavior in miners.

8. Transaction generation rate: This is a configurable parameter of our pri-

vate network. For most of our experiments, we want to set the transaction

generation rate in a way that the frequency of stem transactions received in

the private network nodes would reflect this frequency in the Beam main

network nodes. Nevertheless, we also want to be able to vary the transaction

generation rate to observe its effect on aggregations.

9. Number of wallets assigned to each node: We assign one wallet to each

node of the network because we want newly generated transactions to be

relayed from each node.

To deploy our private test network, we have used Azure virtual machines (Ubuntu

Server 18.04 LTS - Gen 1). We have launched 100 virtual nodes in two geograph-

ically separated servers located in the Eastern United States and South East Asia

with each server containing 50 virtual nodes. The latency between the virtual nodes

in our setup is simulated by adding a pseudorandom delay from a normal distribu-

tion with a mean of 100ms and a standard deviation of 20ms to each message using

a network emulator called NetEm. The topology of the network is controlled by the

peer parameter in the command line interface of the Beam node. The transaction

emulation is done using the Beam wallet application programming interface (API)

along with a Node.js script.

27

Chapter 7

Evaluation

In this chapter, we evaluate our proposed attacks on the implementation of Mim-

bleWimble in Beam. In particular, we focus on the following questions:

1. How does using the information about the number of kernels in a transaction

improve the localization of the source in the first node detection attack?

2. How does delaying the relay of a transaction increase the total latency of that

transaction?

3. How does maliciously aggregating a transaction with other transactions in-

crease the transaction processing time from the user’s perspective?

To answer the questions above, we need to determine the proportion of transac-

tions attacked by the adversarial nodes and the impact of each proposed attack on

a targeted transaction. We use our network simulator to estimate the proportion of

transactions that the adversary can attack, given the percentage of adversarial nodes

and other network parameters. To determine the impact of each of our proposed

attacks on a targeted transaction, we run a rogue node in our private test network

to perform the attack.

In each of our three proposed attacks, the adversary can perform the attack on a

transaction if and only if an adversarial node is on the stem path of that transaction.

Therefore, to estimate the proportion of transactions that the adversary can attack,

we have conducted several experiments with our network simulator to estimate the

28

Name Value
Percentage of Malicious Nodes 10%

Probability of Transitioning to the Fluff Phase 0.1
Number of Nodes 1000

Expected Degree of Each Node 10
Number of Bootstrapping Nodes 0

Table 7.1: The default values for the parameters of the network simulator.

percentage of stem paths that the adversary will be incident on (also referred to as

infected stem paths), given the network parameters. Table 7.1 presents the default

values that we have used for the parameters of the network simulator. In each

experiment, we have varied the value of one network parameter while maintaining

the default values for other parameters. Hence, we have observed the effect of each

network parameter on the percentage of stem paths that pass through the adversary.

Figure 7.1 shows the results of our experiments with the network simulator.

We observe that by increasing the percentage of malicious nodes in the network,

the adversary will be incident on more stem paths and therefore can attack more

transactions (Figure 7.1a). We also observe that increasing the probability of tran-

sitioning to the fluff phase in each step of the stem phase (and consequently de-

creasing the average length of stem paths) decreases the percentage of stem paths

that pass through the adversary (Figure 7.1b). Nevertheless, varying the values

of other network parameters, such as the number of nodes (Figure 7.1c), the ex-

pected degree of each node (Figure 7.1d), and the number of bootstrapping nodes

(Figure 7.1e), does not particularly affect the percentage of stem paths that pass

through the adversary.

Let us consider the cases where the probability of transitioning to the fluff

phase in each step of the stem phase is set to 0.1 (similar to the Beam main net-

work). We note that if only 10% of the nodes are malicious, the adversary will be

incident on the stem paths of more than 45% of all transactions in the network and

hence can attack those transactions. Increasing the percentage of malicious nodes

to 30% increases the percentage of transactions that the adversary can attack to

more than 70%.

29

5 10 15 20 25 30 35 40 45 50
Percentage of Malicious Nodes

0

20

40

60

80

100

%
 o

f I
nf

ec
te

d
Pa

th
s

(a)

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50
Probability of Transitioning to the Fluff Phase

0

20

40

60

80

100

%
 o

f I
nf

ec
te

d
Pa

th
s

(b)

100 200 300 400 500 600 700 800 900 1000
Number of Nodes

0

20

40

60

80

100

%
 o

f I
nf

ec
te

d
Pa

th
s

(c)

10 20 30 40 50 60 70 80 90 100
Expected Degree of Each Node

0

20

40

60

80

100

%
 o

f I
nf

ec
te

d
Pa

th
s

(d)

10 20 30 40 50 60 70 80 90 100
Number of Bootstrapping Nodes

0

20

40

60

80

100

%
 o

f I
nf

ec
te

d
Pa

th
s

(e)

Figure 7.1: The percentage of stem paths that the adversary will be incident
on, also referred to as infected paths, with (a) varying percentages of
malicious nodes, (b) varying probabilities of transitioning to the fluff
phase in each step of the stem phase, (c) varying numbers of nodes, (d)
varying expected degrees of nodes, and (e) varying numbers of boot-
strapping nodes.

30

To measure the performance of the first node detection attack, with varying

percentages of malicious nodes, we have used our network simulator. In our simu-

lation, the malicious nodes worked collaboratively and the adversary was aware of

all transactions received by every malicious node. We tested 1 million stem trans-

actions to measure the performance of the attack. For each stem transaction that

was forwarded to an adversarial node, the adversary outputted the first honest node

to forward that transaction as the source of the transaction. For the parameters of

the network simulator other than the percentage of malicious nodes, we have used

the default values presented in Table 7.1.

Figure 7.2 shows the results of running the first node detection attack in our

network simulator. We observe that increasing the percentage of malicious nodes

in the network decreases the expected number of hops between the source of a stem

transaction and the first adversarial node that receives the transaction (Figure 7.2a).

Moreover, increasing the percentage of malicious nodes increases the precision of

the first node detection attack (Figure 7.2b). We note that if 10% of the network

nodes are malicious, the precision of the first node detection attack will be less than

20%. Therefore, to make the first node detection attack more effective, we need to

increase the percentage of malicious nodes.

To validate our conjecture that the adversary can increase the precision of the

first node detection attack by only predicting the sources of single-kernel transac-

tions, we have run a rogue node in our private test network. Our rogue node per-

formed the first node detection attack on 160 single-kernel stem transactions and

40 aggregated stem transactions. For each examined stem transaction, we recorded

the number of hops between the source of that transaction and our rogue node and

whether the sender of the transaction was its actual source.

Figure 7.3 shows the numbers of intervening hops in stem paths separately for

the two aforementioned groups of transactions. We observe that the average num-

ber of hops between the source of a single-kernel transaction and our rogue node

(6.15) is less than the average number of hops between the source of an aggregated

transaction and our rogue node (9.35). The precision of the first node detection

attack is 32% for the single-kernel transactions and 12% for the aggregated ones.

Hence, performing the first node detection attack only on single-kernel stem trans-

actions would lead to an improved transaction source detection.

31

5 10 15 20 25 30 35 40 45 50
Percentage of Malicious Nodes

0

2

4

6

8

10
Av

g.
 #

 o
f H

op
s

fr
om

 th
e

So
ur

ce

(a)

5 10 15 20 25 30 35 40 45 50
Percentage of Malicious Nodes

0

20

40

60

80

100

Pr
ec

is
io

n
of

 1
st

 N
od

e
D

et
ec

tio
n

(b)

Figure 7.2: (a) The expected number of hops between the source of a stem
transaction and the first adversarial node that receives the transaction
with varying percentages of malicious nodes; (b) the precision of the
first node detection attack on stem transactions with varying percentages
of malicious nodes.

32

0 5 10 15 20 25 30 35 40

of Hops from the Source

Aggregated

Single-kernel

Figure 7.3: Comparison of the single-kernel transactions and aggregated
transactions in the number of hops between their sources and our rogue
node.

To measure the additional transaction latency caused by our second proposed

attack, delaying transaction relay, we have run a rogue node in our private test

network. Our rogue node followed the protocol for the relay of 300 examined stem

transactions and delayed the relay of 300 other stem transactions. Some node in the

stem path of each delayed transaction fluffed the transaction after a while (the fail-

safe mechanism). We have measured the latency of each transaction by calculating

the difference between the time that our rogue node received that transaction in

the stem phase and the time that the transaction was recorded in the blockchain

(obtained from the block timestamp).

Figure 7.4 shows the latency for the normally relayed transactions and exces-

sively delayed ones. We observe that the delayed transactions are expected to have

more latency compared to the normally relayed ones. Indeed, the average latency

for the delayed transactions is 53s. For the normally relayed transactions, however,

the average latency is 31s. That means the expected latency for an attacked trans-

action is 71% higher than the expected latency for a normally relayed transaction.

We have previously observed through simulation that if 10% of the nodes are ma-

33

licious, the adversary can attack more than 45% of all transactions in the network.

Consequently, by controlling 10% of the nodes in the network, the adversary can

increase the expected transaction latency in the network by more than 31%.

0 20 40 60 80 100

Transaction Latency (s)

Excessively
 Delayed

Normally
 Relayed

Figure 7.4: Comparison of the normally relayed transactions and excessively
delayed transactions (through our second proposed attack, delaying
transaction relay) in their latency.

To measure the impact of our third proposed attack, transaction denial of ser-

vice with aggregations, we have run a rogue node in our private test network. Our

rogue node performed the attack on 300 incoming stem transactions. For each at-

tacked transaction TA, our rogue node generated a new transaction TB with higher

profitability compared to TA and fluffed TA +TB and TB. For each attacked trans-

action TA and its corresponding adversarial transaction TB, we observed whether

TA +TB or TB ended up in the blockchain.

Our rogue node successfully prevented 100% of the attacked transactions from

ending up in the blockchain. In fact, for each attacked transaction TA and its cor-

responding adversarial transaction TB, TA +TB had lower profitability compared to

TB and hence TB ended up in the blockchain. Therefore, if 10% of the nodes are

malicious, the adversary can attack more than 45% of all transactions and prevent

34

them from ending up in the blockchain.

Figure 7.5 shows the latency for the transactions that the adversary generated

to perform the denial of service attack. We have measured the latency of each ad-

versarial transaction by determining the difference between the time that our rogue

node generated that transaction and the time that the transaction was recorded in

the blockchain. The average latency for the adversarial transactions in this attack

is 29s which is slightly lower than the average latency for normally relayed trans-

actions (31s). That is because the adversary immediately fluffs the transactions

generated to perform the denial of service attack.

0 10 20 30 40 50 60

Transaction Latency (s)

Newly
 Generated

 (Adversarial)

Figure 7.5: The latency for the transactions that the adversary generated to
perform the denial of service attack with aggregations.

35

Chapter 8

Discussion

8.1 Improved Transaction Source Detection
Our evaluation has demonstrated that by increasing the number of adversarial

nodes in the network, not only will the adversary be able to predict the source for

more transactions, but the adversary also can perform the first node detection attack

with better precision. Since the precision of the first node detection attack will be

less than 20% if 10% of the network nodes are malicious, we need to increase the

percentage of malicious nodes to make the attack more effective. Moreover, the

adversary can increase the precision of the first node detection attack by perform-

ing the attack merely on single-kernel transactions. That is because the precision

of the first node detection attack is 32% for the single-kernel transactions while

only 12% for the aggregated ones. The adversarial nodes performing this attack

cannot be detected by other nodes in the network because they seem identical to

the normal nodes in terms of their behavior perceived by the rest of the network.

The mitigation to this attack may lie within a better understanding of the po-

tential relationship between source privacy and content privacy. In this attack, the

rogue node is in fact compromising the source privacy of the incoming transactions

based on the information exploited from the means of providing content privacy,

particularly aggregations. To the best of our knowledge, the formalization of source

and content privacy has not been explored in the literature. Hence, an interesting

direction for future research is to formalize these two types of privacy to better

36

understand their relationship and to develop general-purpose mitigation strategies.

8.2 Delaying Transaction Relay
If 10% of the network nodes are adversarial, by delaying transaction relay, the

adversary can increase the expected transaction latency by more than 31%. This

attack is easy to implement and does not require the adversary to create any new

transaction or pay any transaction fee. Furthermore, this attack is not specific to the

implementations of MimbleWimble, and other blockchain systems that use Dande-

lion++ for transaction relay could also be susceptible to this attack. At the moment,

Beam does not incorporate any mechanism to detect the nodes that are performing

delay or black-hole attacks.

The mitigation to this attack can be investigated in approaches that have been

used in some routing protocols for ad hoc networks, such as Castor [17]. In these

protocols, each node keeps an estimate of reliability for each of its neighbors and

makes routing decisions based on those estimates. We conjecture that there is value

in adopting a similar idea to blockchain protocols concerned with source privacy.

One design is for each node in the blockchain network to maintain an internal

reliability score for each of its neighbors. The scores would be updated based

on the feedback that nodes receive regarding the propagation of the transactions

that they relayed to their neighbors. Using reliability scores, nodes can improve

their relaying decisions. Scoring schemes have also been incorporated in other

blockchain networks, such as Filecoin and Ethereum 2.0 [39].

Before integrating the aforementioned scheme into MimbleWimble blockchain

networks, the effects of the scheme on the network topology should be analyzed.

Taken to an extreme, the scoring scheme could result in further centralization of

the network (nodes with higher reliability would receive more transactions), which

is not a desirable feature for blockchain networks.

8.3 Transaction Denial of Service with Aggregations
If 10% of the network nodes are adversarial, by maliciously aggregating incom-

ing stem transactions with newly generated transactions, the adversary can prevent

more than 45% of all transactions from ending up in the blockchain. The cost of

37

this attack for the adversary is the transaction fees of newly generated transactions.

The adversary can reduce the cost for a newly generated transaction by reducing

its size while choosing a sufficient transaction fee so that the profitability (defined

as Transaction f ee
Transaction size) of the new transaction is higher than the profitability of the in-

coming stem transaction that it gets aggregated with. Moreover, if the adversary

modifies each of its nodes to aggregate multiple incoming stem transactions that

arrive within a short period of time with one new transaction, then the adversary

can reduce the number of newly generated transactions and hence the total cost of

the attack.

We note that this attack can be performed only on stem transactions and it does

not work on fluff transactions. Let us consider the case that an adversarial node

aggregates an incoming fluff transaction TA with a newly generated transaction TB

and fluffs both TA +TB and TB. The fact that TA was sent to the adversarial node in

the fluff phase means that some honest node(s) had TA as a fluff transaction. Since

honest nodes follow the protocol and relay the incoming fluff transactions without

aggregating them, TA will be broadcasted through the network. Hence, TA can still

end up in the blockchain, even if miners prioritize TB over TA +TB.

The mitigation to this attack can be achieved by modifying the wallet’s source

code to periodically resend the previously broadcasted transactions that have not

ended up in the blockchain. Increasing the number of retries for a transaction ex-

ponentially decreases the probability that the transaction does not appear in the

blockchain. Nonetheless, even if we modify the wallet’s source code as mentioned

earlier, the proposed attack can still significantly increase the latency of transac-

tions. It should also be noted that resending a transaction too frequently could cause

that transaction to appear in multiple aggregations and therefore prevent some other

transactions from ending up in a block.

Similar to the proposed mitigation scheme for the delay attack, we can modify

the network nodes to maintain internal reliability scores and make routing deci-

sions based on those scores. Using this scheme, adversarial nodes lose some re-

liability scores when they prevent transactions from ending up in the blockchain

by maliciously aggregating them with other transactions. However, as previously

mentioned, this scheme might lead to further centralization of the network.

We can also modify the protocol and disallow aggregation of transactions dur-

38

ing the relay phase. Therefore, we allow aggregation only when transactions are

being added to the blockchain. This approach mitigates the proposed denial of ser-

vice attack but compromises the content privacy of transactions as network nodes

can observe transactions before they get aggregated with other transactions during

the relay phase.

39

Chapter 9

Conclusion

Bitcoin has been shown to be susceptible to attacks against the source and content

privacy of transactions. These susceptibilities have been studied in the literature

and several privacy-focused protocols have been proposed. Dandelion++ is a trans-

action relay protocol that has been used as a solution to improve the source privacy

of transactions. Also, MimbleWimble has been proposed as a cryptocurrency pro-

tocol that would offer enhanced content privacy. The prominent implementations

of MimbleWimble, such as Beam, have adopted Dandelion++ for transaction relay.

In this thesis, we proposed three attacks on the implementation of MimbleWim-

ble in Beam: (1) improved transaction source detection, (2) delaying transaction

relay, and (3) transaction denial of service with aggregations. We implemented

these attacks in a private test network of 100 Beam nodes. We observed that the

precision of the first node detection attack is 32% for the single-kernel transactions

while only 12% for the aggregated ones. Therefore, performing the first node de-

tection attack only on single-kernel stem transactions would lead to an improved

transaction source detection. We demonstrated that if 10% of the network nodes are

adversarial, by delaying transaction relay, the adversary can increase the expected

transaction latency by more than 31%. Also, if 10% of the network nodes are adver-

sarial, by performing transaction denial of service with aggregations, the adversary

can prevent more than 45% of all transactions from ending up in the blockchain.

Furthermore, we discussed potential mitigations to the proposed attacks that could

be used to improve transaction relay in MimbleWimble-based protocols.

40

Bibliography

[1] Beam developers, Beam. https://beam.mw/. Accessed: 2021-04-23. →
pages 2, 9

[2] Bitcoin core developers, Bitcoin core. https://bitcoincore.org/. Accessed:
2021-04-23. → pages 2, 6

[3] Coinmarketcap. https://coinmarketcap.com/historical/20210418/. Accessed:
2021-04-23. → pages 1, 17

[4] Grin developers, Grin. https://grin-tech.org/. Accessed: 2021-04-23. →
pages 2, 9

[5] E. Androulaki, G. O. Karame, M. Roeschlin, T. Scherer, and S. Capkun.
Evaluating user privacy in bitcoin. In International Conference on Financial
Cryptography and Data Security, pages 34–51. Springer, 2013. → pages 1

[6] G. Betarte, M. Cristiá, C. Luna, A. Silveira, and D. Zanarini. Towards a
formally verified implementation of the mimblewimble cryptocurrency
protocol. In International Conference on Applied Cryptography and
Network Security, pages 3–23. Springer, 2020. → pages 9

[7] G. Birmpas, E. Koutsoupias, P. Lazos, and F. J. Marmolejo-Cossı́o. Fairness
and efficiency in dag-based cryptocurrencies. In International Conference
on Financial Cryptography and Data Security, pages 79–96. Springer, 2020.
→ pages 1

[8] A. Biryukov, D. Khovratovich, and I. Pustogarov. Deanonymisation of
clients in bitcoin p2p network. In Proceedings of the 2014 ACM SIGSAC
Conference on Computer and Communications Security, pages 15–29, 2014.
→ pages 2

[9] S. Bojja Venkatakrishnan, G. Fanti, and P. Viswanath. Dandelion:
Redesigning the bitcoin network for anonymity. Proceedings of the ACM on

41

https://beam.mw/
https://bitcoincore.org/
https://coinmarketcap.com/historical/20210418/
https://grin-tech.org/

Measurement and Analysis of Computing Systems, 1(1):1–34, 2017. →
pages 2, 6

[10] B. Bünz, J. Bootle, D. Boneh, A. Poelstra, P. Wuille, and G. Maxwell.
Bulletproofs: Short proofs for confidential transactions and more. In 2018
IEEE Symposium on Security and Privacy (SP), pages 315–334. IEEE,
2018. → pages 9

[11] M. Carlsten, H. Kalodner, S. M. Weinberg, and A. Narayanan. On the
instability of bitcoin without the block reward. In Proceedings of the 2016
ACM SIGSAC Conference on Computer and Communications Security,
pages 154–167, 2016. → pages 1

[12] M. Castro and B. Liskov. Practical byzantine fault tolerance and proactive
recovery. ACM Transactions on Computer Systems (TOCS), 20(4):398–461,
2002. → pages 1

[13] I. Eyal and E. G. Sirer. Majority is not enough: Bitcoin mining is vulnerable.
In International conference on financial cryptography and data security,
pages 436–454. Springer, 2014. → pages 1

[14] G. Fanti and P. Viswanath. Anonymity properties of the bitcoin p2p
network. arXiv preprint arXiv:1703.08761, 2017. → pages 2

[15] G. Fanti, S. B. Venkatakrishnan, S. Bakshi, B. Denby, S. Bhargava,
A. Miller, and P. Viswanath. Dandelion++ lightweight cryptocurrency
networking with formal anonymity guarantees. Proceedings of the ACM on
Measurement and Analysis of Computing Systems, 2(2):1–35, 2018. →
pages 2, 6

[16] G. Fuchsbauer, M. Orrù, and Y. Seurin. Aggregate cash systems: A
cryptographic investigation of mimblewimble. In Annual International
Conference on the Theory and Applications of Cryptographic Techniques,
pages 657–689. Springer, 2019. → pages 9

[17] W. Galuba, P. Papadimitratos, M. Poturalski, K. Aberer, Z. Despotovic, and
W. Kellerer. Castor: Scalable secure routing for ad hoc networks. In 2010
Proceedings IEEE INFOCOM, pages 1–9. IEEE, 2010. → pages 37

[18] Y. Gilad, R. Hemo, S. Micali, G. Vlachos, and N. Zeldovich. Algorand:
Scaling byzantine agreements for cryptocurrencies. In Proceedings of the
26th Symposium on Operating Systems Principles, pages 51–68, 2017. →
pages 1

42

[19] D. Hopwood, S. Bowe, T. Hornby, and N. Wilcox. Zcash protocol
specification. GitHub: San Francisco, CA, USA, 2016. → pages 1, 6

[20] A. Kiayias, E. Koutsoupias, M. Kyropoulou, and Y. Tselekounis.
Blockchain mining games. In Proceedings of the 2016 ACM Conference on
Economics and Computation, pages 365–382, 2016. → pages 1

[21] S. King and S. Nadal. Ppcoin: Peer-to-peer crypto-currency with
proof-of-stake. 2012. → pages 1

[22] P. Koshy, D. Koshy, and P. McDaniel. An analysis of anonymity in bitcoin
using p2p network traffic. In International Conference on Financial
Cryptography and Data Security, pages 469–485. Springer, 2014. → pages
3, 21

[23] G. Maxwell. Coinjoin: Bitcoin privacy for the real world. In Post on Bitcoin
forum, 2013. → pages 2

[24] G. Maxwell. Confidential transactions. 2016. → pages 2

[25] S. Meiklejohn, M. Pomarole, G. Jordan, K. Levchenko, D. McCoy, G. M.
Voelker, and S. Savage. A fistful of bitcoins: characterizing payments
among men with no names. In Proceedings of the 2013 conference on
Internet measurement conference, pages 127–140, 2013. → pages 2, 6

[26] T. Mitani and A. Otsuka. Anonymous probabilistic payment in payment hub.
2020. → pages 2

[27] S. Nakamoto. Bitcoin: A peer-to-peer electronic cash system. 2008. →
pages 1, 5

[28] G. Naumenko, G. Maxwell, P. Wuille, A. Fedorova, and I. Beschastnikh.
Erlay: Efficient transaction relay for bitcoin. In Proceedings of the 2019
ACM SIGSAC Conference on Computer and Communications Security,
pages 817–831, 2019. → pages 6

[29] S. Noether. Ring signature confidential transactions for Monero. Cryptology
ePrint Archive, Report 2015/1098, 2015. https://eprint.iacr.org/2015/1098.
→ pages 1, 6

[30] M. Ober, S. Katzenbeisser, and K. Hamacher. Structure and anonymity of
the bitcoin transaction graph. Future internet, 5(2):237–250, 2013. → pages
6

43

[31] L. L. Peterson and B. S. Davie. Computer networks: a systems approach.
Elsevier, 2007. → pages 2

[32] A. Poelstra. Mimblewimble. 2016. → pages 1, 2, 6

[33] E. Rohrer and F. Tschorsch. Counting down thunder: Timing attacks on
privacy in payment channel networks. In Proceedings of the 2nd ACM
Conference on Advances in Financial Technologies, pages 214–227, 2020.
→ pages 2

[34] D. Ron and A. Shamir. Quantitative analysis of the full bitcoin transaction
graph. In International Conference on Financial Cryptography and Data
Security, pages 6–24. Springer, 2013. → pages 6

[35] A. Sapirshtein, Y. Sompolinsky, and A. Zohar. Optimal selfish mining
strategies in bitcoin. In International Conference on Financial Cryptography
and Data Security, pages 515–532. Springer, 2016. → pages 1

[36] A. Silveira, G. Betarte, M. Cristiá, and C. Luna. A formal analysis of the
mimblewimble cryptocurrency protocol. arXiv preprint arXiv:2104.00822,
2021. → pages 9

[37] Y. Sompolinsky and A. Zohar. Secure high-rate transaction processing in
bitcoin. In International Conference on Financial Cryptography and Data
Security, pages 507–527. Springer, 2015. → pages 1

[38] Y. Sompolinsky, Y. Lewenberg, and A. Zohar. Spectre: A fast and scalable
cryptocurrency protocol. 2016. → pages 1

[39] D. Vyzovitis, Y. Napora, D. McCormick, D. Dias, and Y. Psaras. Gossipsub:
Attack-resilient message propagation in the filecoin and eth2. 0 networks.
arXiv preprint arXiv:2007.02754, 2020. → pages 37

[40] G. Wood. Ethereum: A secure decentralised generalised transaction ledger.
2014. → pages 1

44

	Abstract
	Lay Summary
	Preface
	Contents
	List of Tables
	List of Figures
	Acknowledgments
	1 Introduction
	2 Background
	2.1 Bitcoin
	2.2 Dandelion++
	2.3 MimbleWimble

	3 Beam Analysis
	3.1 Transaction Relay Protocol
	3.2 Main Network Statistics

	4 Threat Model
	5 Approach
	5.1 Improved Transaction Source Detection
	5.2 Delaying Transaction Relay
	5.3 Transaction Denial of Service with Aggregations

	6 Implementation
	7 Evaluation
	8 Discussion
	8.1 Improved Transaction Source Detection
	8.2 Delaying Transaction Relay
	8.3 Transaction Denial of Service with Aggregations

	9 Conclusion
	Bibliography

