
Cross-device Access Control with Trusted Capsules

by

Puneet Mehrotra

B. Engineering, Birla Institue of Technology and Science, 2013

M. Science, Birla Institute of Technology and Science, 2013

A THESIS SUBMITTED IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR THE DEGREE OF

Master of Science

in

THE FACULTY OF GRADUATE AND POSTDOCTORAL

STUDIES

(Computer Science)

The University of British Columbia

(Vancouver)

October 2019

c© Puneet Mehrotra, 2019

The following individuals certify that they have read, and recommend to the Fac-
ulty of Graduate and Postdoctoral Studies for acceptance, the thesis entitled:

Cross-device Access Control with Trusted Capsules

submitted by Puneet Mehrotra in partial fulfillment of the requirements for the
degree of Master of Science
in Computer Science.

Examining Committee:

Ivan Beschastnikh, Computer Science
Supervisor

Margo Seltzer, Computer Science
Supervisory Committee Member

ii

Abstract

Users desire control over their data even as they share them across device

boundaries. At the moment, they rely on ad-hoc solutions such as sending self-

destructible data with ephemeral messaging apps such as SnapChat. We present

Trusted Capsules, a general cross-device access control abstraction for files. It

bundles sensitive files with the policies that govern their accesses into units we call

capsules. Capsules appear as regular files in the system. When an app opens one,

its policy is executed in ARM TrustZone, a hardware-based trusted execution envi-

ronment, to determine if access should be allowed or denied. As Trusted Capsules

is based on a pragmatic threat model, it works with unmodified apps that users have

come to rely on, unlike existing work. We show that policies in Trusted Capsules

are expressible and that the slowdowns in our approach are limited to the opening

and closing of capsules. Once an app opens a capsule, its read throughput of the

file is identical to regular non-capsule files.

iii

Lay Summary

People are increasingly using mobile devices to share digital content with each

other. While this is convenient and easy to do, they must trust in good faith that

the recipient to handle the data as per their wishes. This is not always the case

and there are many data leaks that point to this. There is a need to let the users

control access to their data even after they have shared it with someone they have

no influence over.

We present TrustedCapsules, a system that enables users to define an access

policy for their data that is guaranteed to be followed on the recipients device.

Our contribution here is this cross-device access control abstraction that works

with unmodified applications. We design this system around hardware enabled

security guarantees, and evaluate our prototype to show that it imposes a reasonable

slowdown when compared to regular file access.

iv

Preface

All work presented henceforth was conducted in the Networks, Systems and

Security (NSS) lab in the Department of Computer Science at the University of

British Columbia, Vancouver Campus. This thesis is an original, unpublished work

by Puneet Mehrotra, written under the supervision of Ivan Beschastnikh. It builds

on previous prototypes developed by Peter Feifan Chen and Amanda Levin.

v

Table of Contents

Abstract . iii

Lay Summary . iv

Preface . v

Table of Contents . vi

List of Tables . viii

List of Figures . ix

Acknowledgments . xii

1 Introduction . 1

2 TrustZone & OP-TEE Overview . 4
2.1 TrustZone . 4

2.2 Linaro OP-TEE . 7

2.2.1 ARM Trusted Firmware 8

2.2.2 OP-TEE OS . 8

2.2.3 OP-TEE Supplicant . 9

3 Threat Model . 11
3.1 Contextual Theat Model . 11

3.2 Discussion . 12

vi

4 Trusted Capsules . 15
4.1 Capsules . 15

4.2 Policy API . 18

4.3 Data monitor . 19

4.4 Security analysis . 22

5 Device Registration and Key Distribution 24
5.1 Registering a Capsule Recipient 24

5.2 Capsule Generation and Key Distribution 26

6 Use case examples . 29

7 Prototype . 34
7.0.1 Prototype Evolution . 34

8 Evaluation . 36
8.1 Policy language . 36

8.2 System call microbenchmarks 37

8.3 Policy Performance Evaluation 39

9 Limitations . 41
9.1 Design Limitations . 41

9.2 Prototype Limitations: . 42

10 Securing Applications . 44
10.1 Modifying Applications to Use a TEE 44

10.2 Securing Unmodifed Applications 48

11 Related Work . 50

12 Conclusion . 54

Bibliography . 55

vii

List of Tables

Table 2.1 The privilege levels at which the various components of the

TrustZone based system run. The Secure Monitor runs at the

highest privilege. 7

Table 3.1 An enumeration of the possible system state and adversary type

combinations. The! and# symbols indicate whether or not

Trusted Capsules prevents data exfiltration in the correspond-

ing scenario. Note that the adversary here is not authorized to

directly open a capsule on the device. 13

Table 4.1 The Lua-based API that policies in Trusted Capsules may use . 17

Table 8.1 LOC for example policies from Section 6. 37

viii

List of Figures

Figure 1.1 (a) Today, a data creator has no control over their data on re-

mote devices: devices enforce local policies on data they re-

ceive. We propose (b) cross-platform policies that move with

data and are enforced uniformly across devices. 2

Figure 2.1 The Physical CPU maps to two virtual CPUs - one running the

TEE (secure world) and the other running the rich OS (normal

world). The context transitions between these are handled by

the smc instruction that gets serviced by the monitor mode

software, which runs at the highest level of privilege. 5

Figure 2.2 ARM TrustZone Boot Sequence. 8

Figure 2.3 OP-TEE API calls to open A TA session 10

Figure 3.1 A finite-state machine view of Trusted Capsule’s threat model.

Each capsule on a device begins in the pessimistic state. A

successful transition from the pessimistic to optimistic state

means an app on the device tried to open the capsule and the

capsule’s policy authorized the access. Only that app process

is allowed to access that file in the optimistic state. When the

the process closes the file, the system transitions back to the

pessimistic state. 12

Figure 4.1 Trusted capsule layout. 16

ix

Figure 4.2 Trusted capsule data monitor design. Application system calls

to the filesystem for accessing trusted capsules are intercepted

and forwarded to the trusted capsule application through the

FUSE filesystem and OP-TEE Linux Driver. The secure world

trusted capsule applications access peripheral I/O through RPC

calls to the OP-TEE Supplicant via the OP-TEE Linux Driver. 20

Figure 4.3 Trusted capsule monitor operation (shaded region operates in

the secure world). A. Application open system call is inter-

cepted. B, C. FUSE identifies if a file is a capsule, and if so,

invokes an RPC into the secure world to decrypt the capsule.

D. The trusted capsule application (TA) evaluates the open pol-

icy. E. FUSE writes the decrypted contents to a shadow file F.
The application is returned a filehandle to the shadow file, and

all subsequent I/O requests are directed to the shadow file. . . 20

Figure 5.1 Registration as Recipient - intiating the registration process . . 25

Figure 5.2 Registration as Recipient - validation of the request 26

Figure 5.3 Capsule Generation and Key Registration 27

Figure 5.4 Capsule Decrypt as Recipient 28

Figure 6.1 Simple location based access policy 31

Figure 6.2 Location based redaction policy 32

Figure 6.3 Policy to allow content pre-distribution 33

Figure 8.1 Average system call latency 38

Figure 8.2 Throughput of Read and Write operations to a capsule 38

Figure 8.3 Normalized latency of servicing an open for different policies

with respect to the latency to service a null-policy capsule open

request. 39

Figure 10.1 An application can be split into two parts - one that resides in

the untrusted operating system and has the interfaces to secure

functionality that resides in the trusted environment. 45

x

Figure 10.2 Virtual Ghost uses LLVM to create an intermediate layer the

OS and the processor to protect the application from the unfet-

tered access otherwise enjoyed by a kernel 46

xi

Acknowledgments

This work was supported by the NSA National Information Assurance Lab and

by the Institute of Computing, Information and Cognitive Systems (ICICS) at the

University of British Columbia, Vancouver Campus.

I would like to thank Dr. Ivan Beschastnikh for all his help and guidance

throughout the entirety of this project and giving me the courage and inspiration to

persevere even when I was ready to hang up my boots. I would also like to thank

Prof. Margo Seltzer for giving me valuable feedback and agreeing to be my second

reader. More than that, I am eternally grateful to Prof. Seltzer for being the beacon

of hope during my time at UBC, and for all her advise, kindness, and warmth.

This work would not have been possible had it not been for Dr. Ali Razeen.

The time and energy he spent on this project and in guiding me through the maze

of academic publishing has made me develop a deeper understanding and appreci-

ation towards the process. His optimism perfectly balances his scepticism (which

a security researcher has oodles of) and gave me the much needed confidence to

keep calm and carry on. I would also like to thank Eric Semeniuc - undergraduate

extraordinaire - for sticking through with the project and executing to perfection

the many things I asked. I could not have asked for a better partner.

I would also like to thank all the members of NSS lab who were with me along

this journey through graduate school: Amanda Levin (née Carbonari), Clement

Fung, Fabian Ruffy, Adam Geller, Vaastav Anand, Surbhi Palande, Nodir Kodirov,

and Anthony Mason. I am eternally grateful for all the support and making my

time at UBC incredibly fun.

In addition to my friends mentioned above, I would also like to thank all my

friends at UBC: Hayley Guillou, Anna Scholtz, Giovanni Viviani, Nico Ritschel,

xii

Aarti Kashyap, Syed Mubashir Iqbal, and many others who deserve to be listed.

You have kept me sane and going when my research was not, and helped me keep

some form of work-life balance.

Lastly, I must thank my family and friends. Three different time-zones and the

great physical distance between us never came in the way of your unconditional

and complete support of this path I have embarked upon. I am extremely grateful

and blessed to have you all on my side.

xiii

Chapter 1

Introduction

Modern mobile devices are highly capable and have enabled users to create and

share rich content such as videos, pictures, and documents. However, users often

have little control over their shared data. As illustrated in Figure 1.1, a user has

full control over her file as long as it stays on her device. She loses this control

the moment the file leaves her device boundaries. For example, files backed up

to iCloud or Dropbox are vulnerable to the security of those platforms and files

shared with other users are vulnerable to their benevolence and their device security

policies.

Users today rely on ad-hoc solutions. For example, they might use Cryptomator

[3] to encrypt their files before backing them up to the cloud or SnapChat to send

self-destructing images that are viewable only for a limited period of time [11].

These apps address particular use-cases with coarse controls and do not provide

any general-purpose data protection mechanisms.

Existing work has proposed several solutions to let users retain control over

their data as it crosses device boundaries. A current state of the art approach is to

use a hardware-based trusted execution environment (TEE) to control accesses to

sensitive files. The focus is to ensure that users retain full control over their shared

data. DroidVault [43], for example, does not allow regular apps running outside

the TEE to access the data. Instead, it requires data owners to explicitly write and

whitelist the code that is allowed to process sensitive data, and it executes this code

within the TEE. We believe that such restrictions make the corresponding systems

1

F.docx

F.docx F.docx

Policy B Policy C

(b) Cross-device
data-centric access control

(a) Device-centric
access control

email dropbox

Policy A
F.docx

F.docx F.docx

Policy B Policy C

Policy A

Policy APolicy A

email dropbox

Figure 1.1: (a) Today, a data creator has no control over their data on remote
devices: devices enforce local policies on data they receive. We pro-
pose (b) cross-platform policies that move with data and are enforced
uniformly across devices.

impractical. Users already trust and rely on a variety of apps to create and share

content. It is unlikely that users would use a system that does not support their

apps.

We present a platform-level file protection mechanism that does not restrict

users into using certain apps. To achieve this, we rely on a pragmatic pessimistic-

optimistic threat model. In the pessimistic state, we consider the device and apps

completely untrusted and rely on a TEE to perform safety checks. When it is

considered safe, the system transitions into the optimistic state where we also trust

the OS kernel and the app accessing sensitive data. Finally, when the app no longer

uses the data, the system switches back into the pessimistic state. We leave a further

discussion of our threat model to Section 3.

We contribute Trusted Capsules, a data-centric access control abstraction that

provides a mechanism to protect against this threat model. It enables users to

bundle sensitive files with flexible policies that govern their accesses into encrypted

units we call capsules. Each capsule appears in the system as a regular file. When

an app attempts to open a capsule, the platform evaluates the policy in a TEE. If the

the policy allows the access, the capsule’s contents are unsealed (decrypted) and

provided to the app and are resealed (re-encrypted) when the app later closes the

file. In our prototype, we use ARM TrustZone as the TEE and design policies as

2

stateful programs that can base access decisions on information such as location,

time, or the number of prior accesses and may, if necessary, modify the data itself

(e.g., for redaction).

Our contributions may be summarized as follows:

• A pragmatic access control abstraction for protecting sensitive files across

device boundaries that works with existing unmodified apps.

• Using our prototype, we show that our proposed approach imposes slow-

downs only when a capsule is being opened or closed (An overhead of 1.96x

and 1.67x, respectively, in the absence of any real security policy). Once

a capsule file is open, data can be read at a throughput identical to reading

regular files.

3

Chapter 2

TrustZone & OP-TEE Overview

Trusted capsules allow advisory policies to be enforced on remote devices that

the data owner does not control. To protect sensitive operations such as trusted

capsule policy evaluation from remote users who can run an arbitrarily software

stack, we require a Trusted Execution Environment (TEE) that is resistant to poten-

tial compromise of both applications and OS running on the remote device. We use

ARM TrustZone technology as our hardware-based Trusted Execution Environ-
ment and Linaro OP-TEE as the operating system that runs in our TEE. Within

this TEE, we handle sensitive cryptographic operations, perform policy evaluation,

securely store policy state, and establish a secure channel to the remote policy co-

ordinator server.

In the following, we provide a brief overview of the properties of TrustZone

and OP-TEE.

2.1 TrustZone
ARM TrustZone [13] is widely available on current commodity ARM pro-

cessors. A TrustZone enabled processor maps to two virtual processors that that

execute in a time-sliced fashion, context switching between each other through a

special core mode called the “monitor mode”. We call a virtual processor that is

running in the TEE to be running in Secure World. A virtual processor that runs

the regular operating system is said to be running in Normal World. The monitor

4

mode software acts as a robust gatekeeper to manage the physical processor’s con-

text switch between these virtual processor modes by means of interrupt handling.

These modes of operation of a physical processor and the transitions between them

are visualized in Figure 2.1.

vCPU running
TEE

vCPU running
REE

Monitor Mode
Software

SMC SMC

Secure World Normal World

Figure 2.1: The Physical CPU maps to two virtual CPUs - one running the
TEE (secure world) and the other running the rich OS (normal world).
The context transitions between these are handled by the smc instruc-
tion that gets serviced by the monitor mode software, which runs at the
highest level of privilege.

One way in which world switch can be triggered by the software is by executing

a dedicated instruction, the Secure Monitor Call (SMC) instruction. The software

that runs in the monitor mode is defined by the implementation of the chipset, but

it generally saves the state of the current world and restores the state of the world

being switched to. Once the restoration is complete, the monitor performs a return-

from-exception call to restart the processing in the restored world.

A TrustZone enabled processor implements three sets of interrupt vectors -

one for each world, and one for the monitor mode. The locations of these tables

are programmable and can be modified by changing the appropriate Vector Base

5

Address Register (VBAR). This can be used to control where the smc instruction

will trap to. VBARs are only accessible in privileged modes. The secure copy of

the VBAR holds the vector base address for the Secure State and the non-secure

copy of the VBAR holds the vector base address for the Non-secure state.

The ARM TrustZone security model provides the following hardware-based

guarantee: the normal world cannot access the registers, memory or peripher-
als assigned to the secure world; but the secure world can access normal world
registers and memory.1

This security guarantee for register access is maintained by tracking the exe-

cution mode of a processor. The monitor mode software executes in secure world.

The world in which a processor is currently executing is indicated by the NS-bit in

the Secure Configuration Register (SCR) in the system control coprocessor (CP15).

When in monitor mode the processor is running in Secure World, regardless of the

value of the NS-bit, but operations on the banked CP-15 registers will access the

Normal World copies if the SCR NS-bit is set to 1.

For memory, the secure world provides such a guarantee by either taking exclu-

sive control of on-chip memory such as secure SRAM [6] or by mapping a section

of the general off-chip memory and hiding it from the MMU of the normal world.

For peripherals, secure and normal world access are partitioned by interrupt

modes. ARM processors contain two interrupt modes – FIQ (Fast Interrupt Re-

quest) and IRQ (Interrupt Request). Each interrupt mode can be individually as-

signed to trap to code in the normal or secure world. Therefore, a peripheral can

be assigned to a specific world by assigning it to the corresponding interrupt mode.

The usual set-up assigns FIQ to the secure world and IRQ to the normal world, as

most existing normal world drivers currently operate using the IRQ mode.

For additional hardware protection for off-chip memory and device protection,

additional hardware, such as TrustZone Protection Controller (TZPC) and Trust-

Zone Address Space Controller (TZASC), can be added to extend the dual-world

abstraction to the AXI-bus, memory controllers and interrupt controllers. This is

done by propagating the NS-bit over the system bus.

1TEEs cross-world ability to manipulate the memory and registers are grounds for Spectre[36]
and Meltdown[45] type bugs. This has been acknowledged by Linaro and ARM and they have
published page table isolation patches to fix these[32].

6

Exception Level Secure World Normal World
EL0 Trusted Application Application
EL1 Secure OS Normal OS
EL2 - Hypervisor
EL3 Secure Monitor

Table 2.1: The privilege levels at which the various components of the Trust-
Zone based system run. The Secure Monitor runs at the highest privilege.

The secure monitor operates at Exception Level(EL) 3 - a higher privilege level

than both the application (trusted or regular) and the operating system (secure or

normal). The Secure OS and the Normal OS operate at EL1, while the Applications

- both in secure and normal world - run at EL0. This is shown in Table 2.1.

2.2 Linaro OP-TEE
Linaro OP-TEE is an open-source operating system that has been designed for

ARM TrustZone. Linaro is part of the industry consortium called Global Platform,

which leads efforts in standardizing APIs exposed by different TEE OS vendors.

OP-TEE is the OS and related firmware that incorporates this standardized API and

is ported across several hardware vendors.

OP-TEE is the secure OS for executing trusted applications and is composed

of:

1. A low-level secure monitor for world-switching (ARM Trusted Firmware).

This is where the SMC implementation resides.

2. A TrustZone driver (OP-TEE Linux driver) which is used to access the TEE

services from the normal world, and

3. OP-TEE Supplicant which runs in normal world user space as a single threaded

application and is responsible for accessing services expected by the TEE-

OS.

The remaining discussion in this section is based arouind the HiKey system-

on-chip (SoC) with Debian Linux as the normal world OS. This is configuration

7

BL1

Boot ROM

Trusted
boot boardRESET

BL2

Trusted Boot
Firmware

Trusted
boot board

BL32

Secure EL1
Payload

Trusted
OS Kernel

BL33

Non Trusted
Firmware to load
Non Secure OS
(U-Boot, EDK2)

BL31

EL3 Runtime
Firmware

World Switch and SMC

To Hypervisor/
Linux Kernel

Normal
World

Secure
World

Figure 2.2: ARM TrustZone Boot Sequence.

we used for this project.

2.2.1 ARM Trusted Firmware

ARM Trusted Firmware (ATF) [2] provides a reference implementation of

the Secure Monitor and the varoius Arm interface standards around system control

and management, secure boot conventions, and interrupt management interface. It

is the critical piece in booting the secure environment, a process which is outlined

in Figure 2.2. There are three bootloaders involved in the process, and each is

responsible for initializing the image for the next level in the process. BL2 loads

all images in the third level of initialization. A root-of-trust can be built by having

each stage attest the image of the next.

2.2.2 OP-TEE OS

OP-TEE OS is a small operating system that has been designed to run in the

TrustZone backed TEE. It supports multi-threading and memory management, and

8

some peripheral control over GPIO pins. Despite being a multi-threaded multi-core

operating system, OP-TEE does not have a scheduler. OP-TEE does not differen-

tiate between single core and multicore hardware - which core it runs on depends

on which core was in use in the normal world user-space when the SMC call was

initiated. On receiving the SMC call, the first trap occurs to the cpu on handler()

call on a fixed core (usually core 0), and it finishes with the SMC switching back

to ARM-TF (EL3) and then the dispatcher does the world change to another core.

Communication between the normal world and secure world occurs over buffers

that are allocated by the normal world but are managed by the secure world. These

buffers are used to pass information to and from the secure world for tasks such

as TEE function invocation and Normal world filesystem access from within the

TEE.

OP-TEE OS provides APIs that can be used to construct user space trusted

applications running in secure world (EL0 in secure world). OP-TEE OS applica-

tions conform to the GlobalPlatform Internal API [5] where each trusted applica-

tion must implement a set of well-defined functions as entry-points. These trusted

applications run in the secure world user space (Secure EL0 in Table 2.1). Trusted

applications can have a single-instance running in the secure world. Trusted Appli-

cations can, however, have multiple sessions active with the normal world. Client

applications in the normal world invoke these trusted applications through a similar

set of GlobalPlatform Client APIs. The flow of one such API call - to load a trusted

application and establish a session with the trusted application is shown in Figure

2.3.

2.2.3 OP-TEE Supplicant

OP-TEE Supplicant takes RPC invocations from OP-TEE Linux Driver and

executes the equivalent system calls through the normal world OS to access the

relevant peripheral devices. These peripheral devices can include file system block

devices and network cards for I/O. Linux dmabuf and mmap are used to pass data

between the user space OP-TEE supplicant and kernel space OP-TEE Linux Driver.

Only a single instance of the OP-TEE supplicant can run at any given time and this

is enforced by the Linux TEE driver.

9

User Calling Application
(Normal World)

TEE Application
(Normal World)

OP-TEE Core
(Secure World)

Start to open
TA

Session

TEEC_OpenSession
(TA UUID) Tee_ta_open_session

Look for TA in
Secure Memory

Load Signed and
encrypted TA from

NW filesystem
RPC SMC

Allocate shard
memory and copy TA

to shared memory

Copy TA from shared
memory to OP-TEE

core

SMC

Authenticate and
load TA to TA

memory

TA anti-rollback
check

Finish open
TA Session

Figure 2.3: OP-TEE API calls to open A TA session

10

Chapter 3

Threat Model

3.1 Contextual Theat Model
Trusted Capsules use a threat model that changes based on the context in which

the application is executing. As illustrated in Figure 3.1, this model has two states,

pessimistic and optimistic, and there is a transition between the two states depend-

ing on the context. We assume that device owners have full control over the soft-

ware stack running in the normal world but may not modify the stack running

within TrustZone.

The system begins in the pessimistic state when the user first receives a capsule,

which is encrypted data bundled with a policy that governs its access. In this state,

the TCB consists solely of ARM TrustZone and the secure monitor; the OP-TEE

OS running in TrustZone; the Trusted Capsules data monitor that runs in OP-TEE

OS. All code running outside of TrustZone (i.e., the normal world kernel and apps)

are considered untrusted. In this state, we guarantee that the capsule’s decrypted

contents are not available and that it is safe from attempts to either exfiltrate or

modify its data or policies. When the user opens the capsule with an app (which

will use the open() syscall), the policy embedded in the capsule is executed by

the Trusted Capsules data monitor. If the policy denies access to the file, the system

remains in the pessimistic state (and the app’s call to open() will fail).

If access is allowed, the system transitions to the optimistic state where the

decrypted capsule data is given to the app. The TCB in this state expands to in-

11

Optimistic
State

Pessimistic
State

Successful

close()

Failed open() read(),write()

open()

Figure 3.1: A finite-state machine view of Trusted Capsule’s threat model.
Each capsule on a device begins in the pessimistic state. A successful
transition from the pessimistic to optimistic state means an app on the
device tried to open the capsule and the capsule’s policy authorized the
access. Only that app process is allowed to access that file in the opti-
mistic state. When the the process closes the file, the system transitions
back to the pessimistic state.

clude the normal world kernel and the app that opened the file. Only that app is

authorized to access the file and we rely on the process isolation mechanisms in

the normal world kernel to prevent other unauthorized apps from accessing the de-

crypted data. When the app closes the file (with the close() syscall), the capsule

is re-sealed and the system transitions back to the pessimistic state. If the app mod-

ifies the file before closing it, the changes are saved only if allowed by the capsule

policy. Otherwise, they are discarded and the capsule is resealed with the original

capsule data. Any session data in TrustZone is also discarded.

We consider side-channel and analog attacks out-of-scope. We can not con-

trol the application from transmitting the capsule’s decrypted contents during the

optimistic state of operation.

3.2 Discussion
Table 3.1 summarizes the protections Trusted Capsules offers depending on the

adversary’s capabilities and the state of the system. Consider the scenario when

Alvin sends a capsule with a photo to Barbara’s smartphone with a policy that

requires Barbara to authenticate herself before she can view the photo. In the worst

12

Adversary
State

Pessimistic Optimistic

Weak ! !

Strong ! #

Table 3.1: An enumeration of the possible system state and adversary type
combinations. The ! and # symbols indicate whether or not Trusted
Capsules prevents data exfiltration in the corresponding scenario. Note
that the adversary here is not authorized to directly open a capsule on the
device.

case, Barbara herself is an adversary interested in leaking the photo. There are no

mechanisms in Trusted Capsules preventing Barbara from doing so; the best that

can be done is for Alvin to be sure he trusts Barbara before he authorizes her to

view the photo.

Consider instead the situation where Barbara is trustworthy but her smartphone

is sometimes accessible by Charlie, an adversary who is secretly interested in view-

ing Alvin’s photo. Charlie aims to modify the state of the smartphone so that

when Barbara subsequently regains control of her phone and opens Alvin’s cap-

sule, Charlie surreptitiously receives a copy of the photo.

If the system is in the pessimistic state, there is no way for Charlie to view

the photo because the capsule is sealed and encrypted. In the optimistic state,

whether Charlie can exfiltrate the photo depends on whether he is a weak or a strong

adversary. A weak adversary is one who is not technically inclined and hence may

not do much more than install new apps from the smartphone app store. In this

event, when Barbara opens the capsule and the system switches to the optimistic

state, Trusted Capsules relies on the kernel’s app isolation mechanisms to prevent

other unauthorized apps Charlie might have installed from accessing the decrypted

capsule data.

On the other hand, if Charlie is a strong adversary, then he may use a variety

of techniques such as kernel modifications to access the photo in the optimistic

state. While Trusted Capsules does not protect against this scenario at the moment,

it may be mitigated by having the policy reason about the normal world software

stack before opening the capsule. We leave an investigation of this strategy to

13

future work. Finally, note that regardless of the system state and adversary type, an

adversary may not alter the policy embedded in a capsule and it never leaves the

TrustZone environment.

14

Chapter 4

Trusted Capsules

In this section, we describe the components of our system in more detail and

describe how they work together. A capsule (Section 4.1) is the data encrypted

together with its access policy. This access policy is written in Lua and uses Trusted

Application’s functionality defined by the Policy API (Section 4.2). The handover

of the data from the normal world to the secure world is handled by a FUSE based

data monitor (Section 4.3).

4.1 Capsules
A capsule consists of data and an access policy for the data, both encapsulated

into a single encrypted file. Figure 4.1 illustrates the format of a capsule. A capsule

has an unencrypted header segment (Shown in blue in Figure 4.1) followed by an

encrypted data block (Shown in pink in Figure 4.1). The header identifies the file

as a capsule and contains integrity metadata used by the data monitor:

1. Trusted Capsule Identifier: This is used to identify that the file being ac-

cessed is a capsule. This identifier spells “TRUSTEDCAP” in plaintext.

2. Capsule UUID: This is a unique identifier that gets assigned to the capsule

at the time of creation. This is used to find the decryption keys in TrustZone.

3. Capsule Size: This field stores the size of the capsule in bytes. This is used

to create communication buffers to pass the contents to the secure world.

15

Trusted Capsule Identifier

Capsule UUID

Capsule Size

Hash

Data Policy

Data Text

Capsule Metadata

Capsule Access Log

Capsule
Header

Capsule
Data

Hello World

Allow open if GPS
coordinates in range

Created: Hogsmeade
2018-08-15 16:20:36

Last Open: Hogsmeade
2018-08-26 02:27:57

2a2ae2dbcce4

486 Bytes

Creator: Jane Doe
Last User: John Smith

6201b4d7e6

TRUSTEDCAP

Figure 4.1: Trusted capsule layout.

4. Hash: This field stores the hash of the data block of the capsule.

The data block contains the following:

1. Data Policy: This Lua Policy script that is run by the Policy Engine in TEE.

This is written in accordance with the Policy API.

2. Data Text: These are the exact contents of the file being encrypted.

3. Capsule Metadata: This section is to hold any Key:Value based metadata

that the Policy Engine might need to evaluate the policy.

4. Capsule Access Log: This section holds the latest accesses to the capsule.

Every time a capsule is accessed, an entry gets appended here.

The cryptographic keys required to decrypt capsules are securely loaded into a

16

Description
Open-Only
redact(start, end, replaceBytes) Replace byte range [start, end]

of trusted capsule data with
bytes replaceBytes.

Close-Only
readNewCapsuleData(offset, length) Return length bytes from offset

of new trusted capsule data.
newCapsuleLength() Return the length of new trusted

capsule data.
Shared
getState(key, where) Get state mapped to key from

where.
setState(key, val, where) Set state mapped to key to val in

where.
getLocation(where) Get location of device from

where.
getTime(where) Get current time from where.
readOriginalCapsuleData(offset,
length)

Return length bytes from offset
of original trusted capsule data.

originalCapsuleLength() Return the length of original
trusted capsule data.

deleteCapsule() Delete the trusted capsule.
updatePolicy() Check for policy update with

trusted capsule server.
appendToBlacklist(key, where) Append key to blacklist of where

- used by log to prune states in
where.

removeFromBlacklist(key, where) Remove key from blacklist of
where.

Table 4.1: The Lua-based API that policies in Trusted Capsules may use

secure storage area accessible only by the TEE. The protocol to securely load keys

into the TEE is described in Chapter 5.

17

4.2 Policy API
In Trusted Capsules, policies are written in the Lua programming language and

have one simple requirement: they must implement an evaluate policy(op)

function that is called when the capsule is being opened or closed; the op argument

distinguishes between the two. There is a basic sanity check in the trusted appli-

cation to ensure that the operation is valid - for example, the calling application

cannot request a close() on a capsule that was never opened. In either case,

the function has to return a boolean value that is interpreted differently depending

on the operation. If it returns true on a capsule open, the data is decrypted and

given to the normal world app. Otherwise, access is denied. On a capsule close, re-

turning true means file modifications by the normal world app will be kept while

false means they will be discarded. Policies may also use the Trusted Capsules

API listed in Table 4.1 to easily perform common operations:

Storing state: Policies may store and retrieve arbitrary state using the state-

oriented APIs such as getState and setState. When using such methods,

the policy must specify where the state is to be kept. A policy may securely store

state in the metadata space within its capsule, in external secure storage, or at a

remote server. If a policy communicates with a remote server, the networking

stack in the normal world kernel is used to initiate the connection. However, as

the OP-TEE OS includes the mbed TLS library [8], it is possible to safely make an

HTTPS connection from the secure world without trusting the normal world.

Ensuring data integrity: Our Lua policy provides APIs to retrieve the original

trusted capsule data at file open (read) and the new trusted capsule data at file close

(write). Using these APIs, data owners can express policies that, for example,

protect specific data regions from being overwritten.

Redaction: Selective policy-based disclosure of trusted capsule contents is

a key feature of trusted capsules. Using our byte-oriented redaction API, data

owners can express arbitrary data transformations on regions of the data based on

the environment and the state of the device prior to disclosing information to the

normal world. Examples of data transformations include removing sensitive texts

or blurring images.

Revocation: A policy can specify revocation in two ways. First, we provide

18

APIs to allow policies to self-delete a trusted capsule. When the deleteCapsule

API is called, we overwrite the trusted capsule file with zeros1. We then make an

RPC call into the normal world to delete the file and destroy the trusted capsule

application session. Such a revocation is permanent. Second, we allow retroactive

policy changes via the remote capsule server. In this scenario, the policy specifies

a condition under which updatePolicy is called. If a new policy exists at the trusted

capsule server, it is downloaded by the trusted world and replaces the prior policy.

Policy changes are temporary as the owner could always change the policy back.

Logging: We extended the Lua language with the ability to report information

to the remote capsule server. To enable logging on open and close, log open and

log close flags must be set to true, respectively. By default, the Lua sandbox will

report the location, identity, time, and the operation. Additional local or capsule

state information is also logged, unless otherwise specified by the APIs append-

ToBlacklist and removeFromBlacklist. The logs are written into the LOG section

of the trusted capsule. If the section runs out of space, the logs are flushed to the

remote server and then overwritten.

4.3 Data monitor
In Figure 4.2, we illustrate the different components of the data monitor in our

system and in Figure 4.3, we show a detailed data flow between them when an

application opens a capsule. These components may be broadly classified into (1)

framework code that runs in the normal world OS, and (2) a policy execution engine

in the secure world. Next, we discuss each component in detail while referring to

the data flow in Figure 4.3.

Normal world framework: We implemented a passthrough FUSE filesystem

in the normal world and expose it as a separate mount point. When an application

opens files located on this mount point, our framework will interpose on the ap-

plication’s open syscall. It will check the header of the file to identify if it is a

capsule. If it is a regular file, it will just load the raw file from the underlying file

system and return it to the app.

1This is because the Linux OS does not delete the file until the file’s reference count becomes
zero

19

Application
OP-TEE

SupplicantFUSE FS

Virtual
Filesystem

FUSE
Kernel
Object

GPS & I/O

OP-TEE
Linux Driver

U
se

rs
p

ac
e

OP-TEE
OS

O
S

S
ec

u
re

M
o

n
it

o
r

ARM Trusted
Firmware

Secure WorldNormal World

Trusted
Capsule
Application Policy

Engine
Data Cache

Network

Figure 4.2: Trusted capsule data monitor design. Application system calls
to the filesystem for accessing trusted capsules are intercepted and for-
warded to the trusted capsule application through the FUSE filesystem
and OP-TEE Linux Driver. The secure world trusted capsule applica-
tions access peripheral I/O through RPC calls to the OP-TEE Supplicant
via the OP-TEE Linux Driver.

Direct subsequent I/O
to Shadow File

Invoke TA Command
(e.g. CAPSULE_OPEN)

Return from invoked
TA command

I/O operations

FUSEApplication Trusted
Application

A

B

Normal World
TEE driver

OP-TEE
OS

Native FS

C

Invoke TA Command

Return decrypted data
Return to normal world

Read encrypted capsule

Return encrypted capsule
contents

Open()

E

Data
Cache

Create shadow file

F

Secure Monitor Call
Entry into OP-TEE OS

D
Evaluate

Policy

Lua
Sandbox

Return shadow file
handle to App

Figure 4.3: Trusted capsule monitor operation (shaded region operates in the
secure world). A. Application open system call is intercepted. B, C.
FUSE identifies if a file is a capsule, and if so, invokes an RPC into the
secure world to decrypt the capsule. D. The trusted capsule application
(TA) evaluates the open policy. E. FUSE writes the decrypted contents
to a shadow file F. The application is returned a filehandle to the shadow
file, and all subsequent I/O requests are directed to the shadow file.

20

If it is a capsule, the file contents are copied into a memory buffer. FUSE

then shares this buffer with the policy execution engine running inside the secure

world and invokes the engine’s decrypt function (A-C in Figure 4.3). If the policy

authorizes the access, the policy engine will return the decrypted contents of the

capsule and FUSE will save them into a shadow file (E). It will subsequently return

a handle to this shadow file to the application (F). Hence, all reads and writes to

the capsule by the application will be transparently redirected to the shadow file.

When the application closes the capsule, FUSE copies the shadow file back

into a shared buffer, sends it to the policy execution engine, and invokes the encrypt

operation. This returns the reconstructed capsule, with the updated policy metadata

and data contents (as authorized by the policy), which is then written in place of

the original capsule file.

Our framework prevents multiple applications from concurrently opening the

same capsule. This simplifies the design of our data monitor as we do not have to

reason about multiple-reader/multiple-writer type problems when saving a capsule.

An application may, however, have multiple capsules open.

Policy execution engine: We implemented a Trusted Application (TA) that

runs in the secure world. It contains a Lua interpreter, to execute a capsule’s poli-

cies, and it is responsible for maintaining the runtime session state associated with

a capsule (e.g., cryptographic keys) and updating the capsule metadata.

When a decrypt operation is received from the normal world (because a normal

world application used the open syscall on a capsule), a new instance of the trusted

application is started. It (1) loads the capsule, (2) loads the cryptographic keys for

the capsule, (3) executes the policy, and (4) returns the decrypted capsule data

if authorized by the policy. During policy evaluation, it may communicate to a

remote server directly from the secure world.

On an encrypt operation (which is initiated because a normal world application

used the close syscall to close a capsule), the TA evaluates the policy and pro-

vides it the opportunity to allow or deny modifications to the capsule data. Next, it

updates the metadata, produces a new capsule file with updated contents in the data

block, and updates the integrity metadata in the header. Finally, the reconstructed

capsule is given to the normal world for storage and subsequent use.

We use OP-TEE OS native secure storage capability to store our cryptographic

21

keys and persistent trusted capsule states. The cryptographic information is stored

in serialized binary while trusted capsule states are stored in key-value format. All

trusted capsule encryption keys are stored in a single secure key file. We allow the

key file to be accessible by multiple trusted capsule applications at a time so that

multiple sessions can be instantiated simultaneously to handle different capsules.

In contrast, each capsule gets its own secure state file. State files can only be

opened by a single trusted capsule application at a time. This is enforced through

the OP-TEE OS. In this way, we enforce a single trusted capsule instance at a time

per capsule.

4.4 Security analysis
We consider two important security aspects of the Trusted Capsules data mon-

itor.

Trusted Capsules: Operations on the trusted capsule are performed by the

trusted application in the secure world. We isolate each trusted capsule by having

separate instances of the trusted application handle each capsule and by relying

on OP-TEE OS to isolate each trusted application instance. Our system stores

persistent state associated with capsules (such as cryptographic keys) in the secure

storage functionality available in OP-TEE.

Given our use of TrustZone, the confidentiality and integrity of the capsule

data is protected against compromises of the normal world OS, particularly in the

pessimistic state. A compromised normal world OS may corrupt a capsule, but that

corruption will be detected during decryption. In the worst case, a compromised

OS may leak the data of capsules that are open during the compromise.

Policy Evaluation: To account for malicious policies, we made several changes

to the Lua interpreter to make it a sandbox. We disabled any Lua library that al-

lows the interpreter to interact with external systems (e.g., I/O, packages, debug,

and OS). We also extended the interpreter to prevent policies from (1) interacting

with any files other than the capsule, (2) from accessing keys associated with other

capsules, and (3) reading unauthorized device peripherals. A malicious policy may

attempt denial-of-service attacks such as infinite loops. However, these may be ad-

dressed even by the normal world, by canceling an encrypt or decrypt commands

22

that do not complete after some time.

23

Chapter 5

Device Registration and Key
Distribution

There is also a need to register the devices on which the capsule can be accessed

and created and simultaneously make known the users who are using these de-

vices. This <user,device RSA pubkey, approved capsules > re-

lationship is maintained on the remote server, and is queried when a user requests

decryption of a capsule for which she does not have the decryption key.

This access control relationship is developed over two steps - a user needs to

register his/her device and the capsule creator needs to create a list of users who

are approved to receive the decryption keys. We take a look at both of these steps

and then inspect the protocol followed to resolve a decryption request.

5.1 Registering a Capsule Recipient
The process to register a user as a capsule recipient is outlined in figure 5.1.

The user initiates a register call to the secure world with the email address

they use to receive the capsule. The secure world at this point, looks up the secure

storage to identify if it has a RSA public/private key pair saved. If it does not, the

RSA key pair is generated.On receipt of the register request, the secure world

handler initiates a TCP request to the remote server and passes the email address

and the RSA public key it fetched (or generated).

24

Normal World Secure World Server Database Gmail

register(email)

register(email, pubkey)

insert(email, pubkey, nonce)

email(nonce’)

ok

ok

ok
email(nonce’)

nw register device(email)nw register device(email) ok

Figure 5.1: Registration as Recipient - intiating the registration process

On the receipt of this request, the remote server generates a nonce for this re-

quest and inserts the <email, device RSA pubkey, nonce> tuple into

it’s database. Using the received RSA public key, the remote server encypts the

generated nonce and sends an email to the users email address. This marks the first

step of the registration process.

When the user receives the email with the encrypted nonce, the second part of

the registration process can commence. This part of the process is used to vali-

date that it was indeed the user who sent the registration request and establishes

the <email,device RSA pubkey> relationship. This process is detailed in

figure 5.2.

To begin the validation request, the user passes the received encrypted nonce

and the email address to the secure world using the verify request. The se-

cure world decrypts the nonce using the private RSA key that is held in the secure

storage. Once the nonce has been decrypted, the secure world initiates a TCP con-

nection to the remote server and passes the nonce, email address, and the device

RSA public key for verifcation.

25

Normal World Secure World Server Database

verify(nonce’, email)

decrypt(nonce’, private key)

nonce
verify(nonce, email, pubkey)

verify(nonce, email, pubkey)

ok

ok

ok

nw verify device(nonce’, email)nw verify device(nonce’, email)

Figure 5.2: Registration as Recipient - validation of the request

The remote server verifies that the email id and the nonce it had saved in the

database while creating the verification request. If the nonce, email, and the public

key all match, the tuple is persisted and an OK status is returned to the user.

At the end of this process, the identity of the user is tied to the email address

and the device pair. This process can be repeated on any other devices a user owns.

The <user,device RSA pubkey> relation is a unique key that is used to

resolve all queries related to distributing a capsules keys.

5.2 Capsule Generation and Key Distribution
The capsule generation process is outlined in figure 5.3. To create the capsule,

the data owner transmits to the remote trusted server the data file, the policy (writ-

ten in the policy API), and a list containing email addresses of people approved

to receive the decryption keys. On receiving the request, the remote server creates

an 128 bit AES key and a randomly generated UUID. This UUID is added to the

capsule header.The header, the data file and the policy are merged and encrypted

26

User A User B Server Database

gen cap(file, policy, emails)

gen aes()

aeskey
gen uuid()

uuid
cgen(aeskey, uuid, file, policy)

ok
insert(emails, aeskey, uuid)

ok
(ok, capsule)

gen cap(file, policy, emails)gen cap(file, policy, emails)

Figure 5.3: Capsule Generation and Key Registration

using the AES key that was generated.

Once the encryption step is complete, the <UUID, AES key, approved

email list > tuple is persisted to the database. At the end of this process, the

capsule thus created is returned to the user.

Once the capsule creation step is complete, the data creator can send the cap-

sule to the designated recipients. When a capsule recipient wishes to open the

capsule, a decryption process is triggered as illustrated in figure 5.4. The open

call to the capsule file is mediated through the FUSE filesystem, which initiates

a capsule open call to the secure world. On receiving the capsule open

request, the Trusted Application searches secure storage for the AES key corre-

sponding to the UUID found in the capsule header.

If no AES key is found, the secure world initiates a lookup request to the remote

server by sending a get key request with the caspule’s UUID and the secure

worlds RSA public key. The remote server looks at the registered capsules and

27

User A NW User B NW User B SW Server Database

capsule

open(capsule)

capsule open(capsule)

get key(uuid, pubkey)

verify uuid(uuid, pubkey)

uuid
is auth(uuid, pubkey)

aeskey, ok

aeskey signed, ok

decrypt(aeskey signed, pvtkey)

aeskey
decrypt(aeskey, encrypted data)

data

data

open(capsule)open(capsule)

Figure 5.4: Capsule Decrypt as Recipient

verifies that the RSA public key belongs to an approved user. If it does, it returns

the AES key encrypted with the RSA public key received by the server in the

get key request. On receiving the encrypted AES key from the remote server,

the secure world uses it’s private RSA key to decrypt the capsules AES key. This

AES key is used to decrypt the capsule and return the data to the normal world.

28

Chapter 6

Use case examples

In this section, we discuss several use cases to highlight the capabilities of

Trusted Capsules.

Access control based on time or location: Enterprises may wish to restrict

employees from opening company files outside the office or a user may require

his family members to view shared pictures only at their homes. Alternatively,

the data owner may wish to allow access to sensitive content only within a pre-

determined time period. Such requirements are straightforward to express in our

system. When a capsule policy’s evaluate policy() function is evaluated

at the time of open(), it can access the device location and time 1 to decide if

the access should be allowed or denied. Alternatively, instead of simply denying

access to a capsule, policies may use the redact() API in Table 4.1 to allow

access but with sensitive content redacted.

For example, Figure 6.1 illustrates a policy that denies access to the capsule if

the location from which it is being accessed is outside the specified location range.

Requiring permissions in real time: In some cases, users may wish to have

real-time control over their data. For example, Alvin may wish to be asked each

time Barbara opens his capsule whether or not to allow her access. It is straight-

forward to support this scenario in Trusted Capsules as policies can communicate

1Information such as device location can only be trusted if the device driver is located within
TrustZone and the peripheral bus allows exclusive access to the sensors. There has been prior work
that achieves this. The Trusted Capsules prototype does not do this, and relies on the Normal World
OS to provide this information. We leave this as future work.

29

with remote servers over the Internet.

We implemented this scenario in our prototype using Twitter. When a user

opens a capsule, the policy uses the getState() API method to communicate

with a custom server and passes the Twitter handle of the capsule owner. The

server then sends a direct Twitter message to the owner of the capsule with an

access request and asks him to respond with a “yes” or “no” to approve or decline

the access, respectively. The server returns the owner’s decision to the policy and

the appropriate action is taken. At the moment, the Twitter message to the owner

does not identify the user trying to open the capsule but this can be implemented

by mapping unique device identifiers to Twitter handles.

Progressive trust: The APIs in Table 4.1 may be composed to support other

useful scenarios. Suppose Bob wants to share sensitive data with someone but does

not yet completely trust that person. He can use a policy that contacts a remote

server to log access attempts and to identify what data should be returned to the

app. Initially, Bob may choose to provide a heavily redacted version of the data

(e.g., an image with blurred-out faces or a document with key sections removed).

As his trust towards the person grows, he can progressively share more sensitive

content by recording his decisions on the server.

As an example of a policy with progressive trust, considers Figure 6.3 which

consider content pre-distribution: a capsule creator writes this policy to pre-distribute

their content while ensuring that the content cannot be viewed until a pre-set re-

lease date. For this use case, we rely on a trusted remote server for getting the time.

Capsule metadata is first inspected using getState() to check if the content has

already been approved for access by the policy. If this is indeed the first access

to the capsule, using the getTime() API, the remote server is contacted to get

the epoch value and it is compared to the epoch value in the policy. If the remote

epoch stamp is greater than the time encoded in the policy, the access is approved,

and the metadata is updated using setState() to reflect this. Any subsequent

accesses to the capsule do not involve querying the remote server for getting the

time.

Location based redaction: The policy as specified is fairly restrictive and

blocks all access to the data contents outside a geographical range. There can be

a scenario where the data owners wish to allow the partial revelation of the data in

30

1 l o n g i t u d e = 1250
2 l a t i t u d e = 200
3 r a n g e = 10
4
5 f u n c t i o n e v a l u a t e p o l i c y (op)
6 i f op == POLICY OP OPEN or op == POLICY OP CLOSE then
7 long , l a t , e r r = g e t L o c a t i o n (POLICY LOCAL DEVICE)
8 i f e r r ˜= POLICY NIL then
9 comment = ” F a i l e d t o g e t L o c a t i o n ”

10 re turn f a l s e
11 end
12 i f math.abs (l ong − l o n g i t u d e) <= r a n g e
13 and math.abs (l a t − l a t i t u d e) <= r a n g e then
14 comment = ”GPS c o o r d i n a t e s i n r a n g e ”
15 re turn true
16 e l s e
17 comment = ”GPS c o o r d i n a t e s a r e n o t i n r a n g e ”
18 re turn f a l s e
19 end
20 end
21 end

Figure 6.1: Simple location based access policy

locations that are not trusted. To fulfill this requirement, the policy in Figure 6.1

can be tweaked to allow redaction of data that is marked confidential by the creator.

The data creator can encapsulate sensitive information in the data within some

policy defined secrecy tags (for example: <secret> , </secret> can be

used). The redact() API can be used in the policy to look for these tags and

replace the text contained therein with a replacement string. This policy is shown

in Figure 6.2.

31

1 r e p l a c e V a r = ”REDACTED”
2 l o n g i t u d e = 1250
3 l a t i t u d e = 200
4 r a n g e = 10
5 s t a r t T a g = ”<s e c r e t >”
6 endTag = ”</ s e c r e t >”
7 f u n c t i o n e v a l u a t e p o l i c y (op)
8 i f op == POLICY OP OPEN or op == POLICY OP CLOSE then
9 long , l a t , e r r = g e t L o c a t i o n (POLICY LOCAL DEVICE)

10 i f e r r ˜= POLICY NIL then
11 p o l i c y r e s u l t = POLICY NOT ALLOW
12 comment = ” F a i l e d t o g e t L o c a t i o n ”
13 re turn
14 end
15 i f math.abs (l ong − l o n g i t u d e) <= r a n g e
16 and math.abs (l a t − l a t i t u d e) <= r a n g e then
17 comment = ”GPS c o o r d i n a t e s i n r a n g e ”
18 p o l i c y r e s u l t = POLICY ALLOW
19 re turn
20 e l s e
21 comment = ”GPS c o o r d i n a t e s a r e n o t i n r a n g e . R e d a c t i n g d a t a . ”
22 p o l i c y r e s u l t = POLICY NOT ALLOW
23 end
24 whi le s ˜= n i l and e ˜= n i l do
25 s = s t r i n g . f i n d (da t a , s t a r t T a g , s)
26 i f s ˜= n i l then
27 e = s t r i n g . f i n d (da t a , endTag , s +1)
28 i f e ˜= n i l then
29 e r r = r e d a c t (s , e , ” r e p l a c e V a r ”)
30 i f e r r ˜= POLICY NIL then
31 p o l i c y r e s u l t = e r r
32 re turn
33 end
34 end
35 end
36 end

Figure 6.2: Location based redaction policy

32

1 −− remote s e r v e r i n f o r m a t i o n
2 r e m o t e s e r v e r = ” 198 . 1 6 2 . 5 2 . 1 2 7 :3490 ”
3 −− r e t u r n keywords
4 p o l i c y r e s u l t = POLICY NOT ALLOW
5 comment = ” ”
6
7 −− p o l i c y−s p e c i f i c keywords
8 o p e n t i m e = 1523338041
9 opened = ” opened ”

10
11 f u n c t i o n e v a l u a t e p o l i c y (op)
12 i f op == POLICY OP OPEN then
13 r , e r r = g e t S t a t e (opened , POLICY CAPSULE META)
14 i f r == ” t r u e ” then
15 re turn true
16 e l s e
17 c u r r t i m e , e r r = getTime (POLICY REMOTE SERVER)
18 end
19 i f e r r ˜= POLICY NIL then
20 p o l i c y r e s u l t = e r r
21 comment = ” F a i l e d t o g e t t ime from remote s e r v e r ”
22 re turn f a l s e
23 end
24 i f c u r r t i m e > o p e n t i m e then
25 e r r = s e t S t a t e (opened , ” t r u e ” , POLICY CAPSULE META)
26 i f e r r ˜= POLICY NIL then
27 p o l i c y r e s u l t = e r r
28 comment = ” F a i l e d t o u p d a t e c a p s u l e m e t a d a t a ”
29 re turn f a l s e
30 end
31 re turn true
32 end
33 end
34 end

Figure 6.3: Policy to allow content pre-distribution

33

Chapter 7

Prototype

We prototyped Trusted Capsules on a LeMaker HiKey development board [6].

It has an octa-core ARM Cortex-A53 processor, 2 GB of RAM, 8 GB of flash

storage. and it comes with TrustZone unlocked, thereby allowing us to control

what OS runs on the TEE. We use Linaro OP-TEE OS (version 3.3) in TrustZone

and a HiKey Debian OS (based on Linux 4.4.15) in the normal world. We modified

the OP-TEE OS to implement several missing libc functions (such as atoi and

strcmp). As the HiKey board does not have a GPS receiver, we mocked a GPS

device that returns predefined longitude and latitude values.

Capsules are encrypted with 128-bit AES. We consider the distribution of keys

required to decrypt capsules outside the scope of this paper.

Our data monitor is written in C and consists of about 6.2K SLOC: the policy

execution engine, which runs within the TEE, has about 4.2K SLOC while the

normal world framework has 2K.

7.0.1 Prototype Evolution

The system design and the prototype evaluated in this paper has evolved from

a previous design of the system. This prior system (“version-0”) had the ambitious

goal of evaluating a Lua-based policy in TEE on all intercepted file I/O system calls

on a capsule file: open, close, read, write, and lseek. As well, Version-0

revealed chunks of the file to normal world applications, rather than decrypting and

revealing the entire file contents on open. Version-0 was not based on FUSE, but

34

it used a custom system call interceptor in the normal world OS. This interceptor

worked in a manner similar to the FUSE filesystem in our current design

Version-0 prototype was mature and stable, but had to be abandoned because

of unacceptable application slowdown. This was due to the invasive nature of the

system call handler that slowed down the behaviour of most applications that open

and close many files at start-up.

More concretely, the time to open a small document under a no-op policy with

FUSE on our hardware is 24ms, while the latency in Version-0 was 1.2s. This is a

speed-up of 50x over Version-0.

The latency and throughput gap dramatically increased for large and complex

file types, such as PDF JPEG. This can be observed in the raw video footage for

several use-cases in Version-0 of the system: https://goo.gl/SiBEJB.

We note that while overhead in Version-0 was significantly better at the ap-

plication layer as compared to the system call layer, nevertheless, the cost was

prohibitive and was tightly connected to the policy being used. For example, our

MP4 video played smoothly with a null policy in VLC (which did not interact with

the trusted capsule server), but degraded to extreme jitter once we added a policy

that reported actions to a policy coordinator and accessed secure storage for every

read operation. This effect was particularly acute for the PDF reader, which re-

peatedly read the data in small chunks frequently and even when the user was idle.

Each read by the PDF incurred the cost of a single round-trip to the trusted capsule

server, requiring on average 5ms each.

Our experiences with Version-0 of the Trusted Capsules prototype have been

our guiding principle in making our current system perform better. Our bench-

marking results (presented in the next Section) indicate which the current Trusted

Capsules design, that evaluates policy exclusively on open and close calls,

strikes a better trade-off between security and performance.

35

https://goo.gl/SiBEJB

Chapter 8

Evaluation

We evaluated four aspects of our system: (1) the utility and simplicity of the

policy language, (2) latency at the system call layer, and (3) the overhead associated

with different policies. All performance evaluations were performed on our HiKey

development board.

8.1 Policy language
In our policy language evaluation we aimed to answer two questions: is the

policy language adequate for expressing useful policies? And, are these policies

easy to express?

We answered our first question by writing trusted capsule policies for the ex-

ample use-cases from Section 6. For our second question, we measured the LOC

for each policy that we wrote and show the result in Table 8.1.

The ability to easily express complex policies tersely is important both as a

proxy of simplicity and to bound the memory overhead of the Lua interpreter in

the secure world. We found that with a few lines of code we were able to ex-

press complex time and location based policies1 for usecases such as redaction and

revocation.
1Refer Chapter 9 for a discussion about extending the Policy API.

36

Policy LOC
Location Based Access (Fig 6.1) 30
Location Based Redaction (Fig 6.2) 36
Content Distribution (Fig 6.3) 28

Table 8.1: LOC for example policies from Section 6.

8.2 System call microbenchmarks
In considering system call level microbenchmarks, we focus on three questions.

Are operations on regular files affected? We measured the latency of filesys-

tem operations for a regular file and a capsule. Since our system is based on FUSE,

we evaluate the performance of the Trusted Capsule system by comparing against

system call latencies for a regular file on the same mountpoint.

We found that the performance of system calls on regular data is only affected

on open syscall. This is due to the overhead of checking whether the target file is a

trusted capsule.

What is the latency and throughput of the system calls we intercept for op-
erations on trusted capsules? We measured the latency and throughput of syscall

operations on trusted capsules. For latency measurements, we measured the end-to-

end time for a syscall and averaged over 1000 runs. For throughput measurements,

we randomly read and wrote 4KB of data to a trusted capsule for 10 seconds. To

get an estimate of performance on the first use, we repeat the experiment with a

cold cache achieved by dropping the page cache. For each test trusted capsule, we

attached an empty null policy that always evaluated to true. We present our results

in Figure 8.1 and 8.2.

The latency for open and close operations for a capsule present a prominent

spike when compared to the operations on regular files. This is expected since our

current prototype interposes on only these operations. An open operation on a

null-policy capsule (warm cache) completes in 23 milliseconds compared to the

11.7 milliseconds for a regular file. The close operation on a capsule completes in

37

10

20

30 Capsule: caching
Capulse: no caching

Regular file: caching
Regular file: no caching

open close read write lseek
0.00

0.25

0.50

La
te

nc
ie

s (
m

s)

Figure 8.1: Average system call latency

read write
8

10

12

14

16

18

20

Th
ro

ug
hp

ut
 (M

B/
se

c)

Capsule: caching
Capsule: no caching

Regular file: caching
Regular file: no caching

Figure 8.2: Throughput of Read and Write operations to a capsule

144 microseconds as compared to 86 microseconds for a regular file.

The observed latency spike is more pronounced for open than for close. We

understand this to be a direct result of the greater number of steps that have to

happen in TrustZone to initialize the Trusted Application, which do not need to be

done while servicing close call on a capsule.

38

We were able to achieve 17.59MB/s throughput for reading and 11.52MB/s through-

put for writing to a no-op capsule on a warm cache. This is comparable to the read

(17.6 MB/s) and write throughput (11.1 MB/s) achieved for a regular file when ac-

cessed in the same experimental setup. When the same experiments were repeated

for a cold cache, the throughput drops marginally.

The read and write throughputs for a capsule, as compared to a normal file, were

expected to be nearly identical. This is expected in our system since all reads and

writes to a capsule gets directed to a shadow file, which is treated like a regular file

in FUSE.

8.3 Policy Performance Evaluation
In this section we present our findings on the impact that policies of varying

complexity have on the performance of the system. To measure the overhead as-

sociated with the policy execution, we compare the latency microbenchmarks for

open operations for a policy containing capsule, normalized with respect to the la-

tency for opening a null-policy capsule. These results are presented in Figure 8.3.

There is a sharp increase in the latency when there is a non-null policy being eval-

uated, and this latency increases with the complexity of the policy.

Redaction Time based redaction
0

5

10

15

No
rm

al
ize

d
Ov

er
he

ad

Figure 8.3: Normalized latency of servicing an open for different policies
with respect to the latency to service a null-policy capsule open request.

39

Figure 8.3 compares two policies: a redaction policy that redacts sensitive tags

without performing other checks and a local time based redaction policy, which

performs redaction based on the epoch value obtained from the device. The redac-

tion policy uses the redact() API from Table 4.1, while the Time based redact

policy uses the redact()API as well as well as the getTime()API. This extra

work to service an open request is evident from Figure 8.3.

We believe that such performance degradation can be mitigated with more effi-

cient policy code, for example policies that run at coarser granularity or use caching

to mitigate expensive checks.

40

Chapter 9

Limitations

Now we turn to discuss the design limitations of Trusted Capsules. In this

section, we cover the limitations imposed by our design choices and the limitations

imposed by the specific choice of software and hardware. Then later on, in Chapter

10, we take a gander at why Trusted Capsules remains a rather naive attempt at

solving the problem of retrofitting existing applications with security extensions.

9.1 Design Limitations
1. Inability to limit trust in optimistic state: In the optimistic state, we trust

the normal world kernel, the app, and the user, to not leak capsule data

to unauthorized apps. Such trust may not be warranted even in a non-

adversarial setting. For example, an app might create temporary copies of

the files it has opened into a world-readable directory or the user might copy

the data into the system clipboard. While we may use techniques such as in-

formation flow control to detect such data leaks, doing so would dramatically

reduce performance.

2. Lack of app semantics: Since we interpose only on the open() and close()

syscalls to execute policies, a policy may not reason about why an app is

opening a file. For example, when a user opens a document in a vim, vim

opens the document, creates a swap file, copies the contents of the docu-

ment to the swap file, and then closes the document. All subsequent reads

41

and writes are done to the swap file thereafter. On close, the original file

is opened again, the contents of the swap file are copied back to the main

document, and the main file is closed and the swap file deleted.

Hence, while from a user’s perspective, the capsule was opened once and

closed once, the policy would observe multiple capsule access attempts.

This makes it difficult to identify the legitimate accesses from the application

quirks. The data monitor handles Policies that rely on access logs have to be

aware of this disconnect.

3. Abusive policies: Although we run capsule policies in a sandbox, we do

not completely prevent all damage a malicious policy can inflict. It can,

for example, access a user’s GPS data and send them to a server to track

her whereabouts. To handle this limitation, we either need some systematic

way of vetting the data a policy sends to a remote server or prevent it from

sending device data altogether.

4. Trusting actions from untrusted OS: In our design, the signal (open()

and close()) to the TEE to decrypt a capsule originates in the untrusted

part of the system. The TEE cannot differentiate between genuine access

and similar access requested by a malicious application.

Trusting the actions originating in the normal world dilutes the guarantees we

make about the transition from the pessimistic state to the optimistic state of

our threat model. Moreover, trusting the normal world invalidates the need

to use a TEE for secure processing of a Trusted Capsule.

9.2 Prototype Limitations:
In this section, we list the limitations that bound the current prototype from

realizing the full vision of the Trusted Capsule model of data protection. Here we

note some design and implementation limitations.

1. FUSE can be used interpose on only the file I/O system calls that are directed

to a FUSE serviced mount point. This poses some challenges in making

Trusted Capsules work seamlessly with an unmodified application.

42

There is no way for the FUSE filesystem code to identify when a process that

had been issuing IO to the mount point dies. The implication of this fact for

the prototype is that there is no good and atomic way to delete the shadow

file on the termination of the process. The prototype handles this by setting

up a background process that monitors if the process that had accessed the

mount point has terminated.

2. The stock configuration for the TrustZone memory partitions makes the Se-

cure World a very memory-constrained environment. The memory that is

available in the secure world is only 10 MB, and that needs to host the Se-

cure OS as well as any trusted application code that must run in Trustzone.

Linaro OP-TEE recently included dynamic shared memory in their Secure

OS, but to access those features, one has to have a higher kernel version

than what gets shipped with the stock Debian OS rootfs image. More recent

Linux kernel versions have known problems with the HDMI drivers, which

causes the Linux kernel to panic when a monitor is plugged in.

This limitation hits our prototype particularly badly. In the current prototype,

we send a copy of the entire file to TrustZone to decrypt. Since there are

severe restrictions on the amount of memory available in TrustZone, we are

unwittingly bounded on the maximum file size that can be processed as a

capsule.

3. The implementation has a limitation that it needs to create copies of the

data buffers to process each part of the capsule. This creates more memory

pressure in an already resource-constrained environment.

4. The Policy API is currently limited to policies that require access to local

time and the GPS coordinates (ideally, the GPS driver should run in the TEE

OS). To support policies that rely on other signals and/or sensors will re-

quire adding the device driver, writing the interfacing code in the trusted

application, and updating the Lua-to-C bindings. This is a well-defined al-

beit convoluted workflow that makes it harder to make the policy language

more flexible.

43

Chapter 10

Securing Applications

TrustZone was first announced in the year 2004 [13], and has since been used

for a diverse range of applications as can be seen in section 11. Some of these appli-

cations target new use-cases that can benefit from the guarantees a TEE provides,

while in other cases, pre-existing applications are re-structured and re-factored to

make use of a TEE. How these projects structure their secure applications differ

based on the information being protected and the threat model around which the

application has been designed. We first investigate the patterns in prior work, and

then analyse why these are not the right fit for Trusted Capsules.

10.1 Modifying Applications to Use a TEE
We begin by inspecting how prior research in the space of TEE-enabled secu-

rity have structured their applications. We have identified four distinct patterns that

prior research has taken in trying to structure their secure applications, and these

evolve based on the threat model that the application is being designed to protect

against.

1. Manually Split the Application into Trusted and Untrusted Parts: This

is the most commonly used methodology designing applications with the

view to use a TEE to safeguard some aspect of the program state [14, 46, 59,

62].

The basic idea is that there is some easily identifiable functionality that can

44

Application
A

Untrusted
Application

A'

Secure
Application

A"

TEEUntrusted OS

Invoke Secure Func

Figure 10.1: An application can be split into two parts - one that resides in
the untrusted operating system and has the interfaces to secure func-
tionality that resides in the trusted environment.

be plucked out of the monolithic application and can be offloaded to the

TEE. The rest of the application that remains on the untrusted OS only has

interfaces to the secure functions in the TEE. This is shown in Figure 10.1.

The TEE in this scenario could either be a trusted operating system that is

hosted as a virtual machine or it could be a more conventional hardware-

based TEE like Intel’s SGX or ARM’s TrustZone.

This application splitting paradigm is promising in scenarios where the crit-

ical functionality that needs protection is small, well defined, and can be ex-

tracted out into a TEE-resident service. Prime examples of this are biometric

verification, cryptographic functions, payment processing, and verifying the

user’s action and intent. An implicit assumption with this strategy is that the

partitioning of the application is a deliberate decision that is made at the time

of designing the application and therefore can not be used for an unmodified

45

Applications

Virtual Ghost VM
Native Instruction Set

Untrusted OS
Kernel

Processor

Virtual Instruction Set

Applications

Untrusted OS Kernel

Processor

Figure 10.2: Virtual Ghost uses LLVM to create an intermediate layer the OS
and the processor to protect the application from the unfettered access
otherwise enjoyed by a kernel

application.

2. Compiler Supported Application Sequestering: There has been work in

securing application using compiler wizardry. VirtualGhost [19] defines a

compiler-based instrumentation of the kernel and the application to protect

the applications data confidentiality and integrity. The OS is compiled to a

virtual instruction set which is handled by the Virtual Ghost VM as shown in

Figure 10.2. This “virtual machine” is used to limit the accesses the kernel

has into the state of the application. This is an interesting work that provides

strong guarantees about the application’s integrity and data confidentiality

without using a hardware-based TEE.

There has been work in automatically identifying which parts of the appli-

cation need to be protected and splitting the application using the TEE API

[44, 56]. This approach involves using static analysis and dataflow analy-

sis along with optional annotations in the program to automatically identify

the partitioning scheme, and then refactoring the application into two parts

that are bridged using the TEE API. Programming language theory can be

used to demonstrate equivalence between the split halves and the original

application.

These approaches might be an efficient way to retroactively make an unmod-

ified application ready for a TEE.

3. Complete Isolation of the Application Inside the Secure World This ap-

proach is, in theory, the path of least resistance to use a TEE. There have been

46

some projects that try to contain an entire application in the TEE - Graphene

[63, 64] and TrustShadow [27], for example. These systems rely on the

TEE to make available all services that the application might require - most

importantly the I/O and peripheral access and the system call interface. This

approach, while promising, is fraught with its own set of problems. TEE’s

are a restrictive execution environments - Intel SGX, for example, does not

provide access to a system call interface. No application running in SGX

is allowed to make a system call. Similarly, in TrustZone and specifically

OP-TEE, because the TEE OS is minimalist, it is difficult to support a full-

fledged application.

Graphene [64] provides good insight into the TEE software design space.

While designing any secure application, the developer has to decide between

- pulling too much functionality into the TEE vs keeping the Trusted Com-

pute Base minimal and simplifying the application to require lesser of the

runtime vs making a rich run time; application changes to make it more

amenable to the TEE runtime. These are challenging choices to make and

rely not on the application but the baseline runtime he/she is working with.

4. System Call Interception If the complete isolation of an application is

not possible, and it is necessary to maintain some part of the application in

the untrusted OS, the most enticing option available to the security engineer

is to use system call interception in the normal world OS and handle the

“sensitive” accesses to data and the network in the TEE. This approach can

go awry if there is not a strict control on the number and type of system

calls that are handled in the TEE - the more elaborate the handler in the

TEE, the higher will be the slowdown, and less usable will be the system.

TrustedCapsule’s first prototype was overly ambitious in the amount of work

that was being done on every single system call to a capsule file, causing in

some cases a 300x slowdown on simple tasks such as opening a capsule.

47

10.2 Securing Unmodifed Applications
While the TEE OS can be extended to include all the services that a rich ap-

plication would provide, it defies the rationale behind having a small trusted com-

puting base. This limits the range of applications that are a good fit for running

in the TEE. Applications that are computation heavy and need little or no I/O

are good fits for this - Machine Learning tasks [52] and Cryptography and key

management[4, 12].

For applications that have to run I/O to be useful - which is a lot of user-

centric applications such as word-processing systems, image viewers and other

such interactive applications. These interactive applications have their utility in

revealing information to the user and allowing the user interact with the data on

demand. When the user interaction is an indispensable part of the application and

its utility, none of the application structuring schemes lead to completely satisfying

outcomes. This problem is exacerbated when the TEE usage is provided as an

overlay scheme atop an existing application to provide backward compatibility and

ease of deployment1.

These secure overlay schemes do not align with any application structuring

methodologies that researchers have come up with. Supporting a full-fledged ap-

plication is difficult because there are a lot of quirks that need to addressed and at

the same time, the technique needs to be generic enough to support a wide range of

applications. The goal of keeping the interface generic and the application unmod-

ified limits the security guarantees that can be made. For example, in the case of

TrustedCapsules, because the application still receives all the decrypted data back

from TrustZone, there can be no further guarantees made after the first file access

from the normal world. Moreover, the policy engine in the secure world needs to

reason about the state of the normal world, which is problematic because such in-

formation is gleaned from the normal world. A malicious normal world user could

fake these state values (for example, the GPS coordinates) while requesting the

decryption, and because the policy engine relies on the veracity of these signals, it

could be tricked into incorrect policy evaluation.

1The FUSE-based interception scheme is an overlay on top of regular file access that unmodified
applications perform. Using such an overlay scheme has an advantage that it doesn’t require a special
file viewer for a capsule file and provides a better user experience.

48

If we place trust in the normal world, we don’t need a TEE. If we don’t im-

plicitly trust the normal world, then the data should never be revealed back to the

normal world. This cyclical conundrum can only be resolved by refactoring the

application in a way that uses the TEE by following the design patterns mentioned

earlier in section 10.1.

49

Chapter 11

Related Work

Securing data with policies: The concept of associating policies to data with

authenticate accesses to that data is not new. An early expression of this is XACL,

which specifies access control policies within XML documents [28]. Karjoth et

al. proposed using sticky policies to provide enterprises better oversight over the

customer data they collect [34]. These policies capture customer-specified require-

ments (e.g.: “delete my data after 30 days”) and are associated with the collected

data. They are then enforced cooperatively within the enterprise as the data is used.

Subsequent work strengthened this scheme by encrypting the data bundled with the

policy using IBE (identifier-based encryption) and decrypting it only if its policies

are satisfied [50, 53]. Encrypting the data reduces the need for cooperation and

allows sharing data across enterprise boundaries

Maniatis et al. outlined a vision that allows all users to protect their data before

they share them across machine boundaries [48]. Their conceptual architecture

uses the sticky policy approach to package data in units known as data capsules.

When an application needs to use a capsule and satisfies the capsule’s policies,

an abstract secure execution environment decrypts the capsule and executes the

application. An implementation of this architecture was left as an open question.

More recent works use trusted computing features on mobile devices to pro-

tect data with the sticky policy approach. Li et al. proposed DroidVault to allow

employees in an enterprise to securely store and process sensitive company data

on their untrusted Android devices [43]. Its architecture only allows trusted code

50

signed by the enterprise to operate on the data and executes it in ARM TrustZone.

To display data and receive user inputs, it relies on secure I/O between the periph-

erals (display, keypad, etc.) and TrustZone. This architecture ensures unencrypted

versions of the sensitive data do not leave the TrustZone environment. Lazouski

et al. proposed using TPMs (Trusted Platform Modules) to ensure only vetted ver-

sions of the OS and applications are loaded before accessing sensitive data and

executing their policies [39]. In principle, this approach allows policy execution

and data access in the normal world (outside TrustZone) while guaranteeing the

absence of malicious applications.

Other related works in this area include Excalibur, which enables a cloud

provider to protect data stored in its cloud from being exfiltrated by its admin-

istrators who have access to the cloud management interface [58]; PCD (policy-

carrying data), which lets an end-user attach terms of service to his data before

sharing it cloud service providers and thereby disincentivizing them from misus-

ing the data [60]; Ryoan, which enables users to submit their sensitive data to a

cloud service provider for processing without requiring either the user to disclose

the data or for the provider to release their proprietary code [31]; and P3, a private

photo-sharing service that protects images shared by users from untrusted service

providers [54].

Trusted Capsules differs from these in its aim and scope: it uses the sticky pol-

icy technique to allow end-users to protect their data as they share it with other end

users and unlike P3, it is data type agnostic. While Trusted Capsules uses ARM

TrustZone to securely execute the policies, it allows unvetted normal world pro-

cesses to access unencrypted sensitive data in the optimistic state (unlike Droid-

Vault and the work by Lazouski et al.). Our approach is motivated by usability

concerns as we want authorized users to be able to use their desired third-party

apps to process sensitive data.

There are now startups that have emerged as players in the domain of providing

data security systems. A startup called Sandstorm [9] abstracts data as a grain –

a package of all the apps, libraries, and configuration files needed to operate on a

single piece of data locally within a container. Sandstorm then creates an enclosure

around the container and interposes on all operations to enforce the grain’s access

policies. Unlike trusted capsules, which operates at the granularity of a piece of

51

data, Sandstorm operate at the granularity of an entire software ecosystem for the

data.

Information Flow Control based mechanisms: There has also been a vast

body of research that studies providing data confidentiality through label-based

solutions such as Distributed Information Flow Control [18, 21, 38, 51, 55, 66, 67].

They use labels to specify access control, capabilities, and authority. These labels

are used to track the flow of information at various levels of the software stack.

By not allowing data to move to processes that do not have the right labels,

DIFC prevents sensitive data from being exfiltrated.

In DIFC, labels create a natural ecosystem for composition that allows a pro-

cess to access multiple pieces of data. Trusted capsules are less composable. If two

trusted capsules have contradictory policies, they cannot be accessed by a process

at the same time. On the other hand, trusted capsules are backward compatible and

do not require constructing a complex security lattice as in DIFC.

Another popular approach is tainting [23, 24, 30, 68]. It tracks information

flow by interposing on the system operations at the instruction-level. These solu-

tions can track the flow of information at an extremely fine granularity. resource-

intensive, both in memory and CPU.

Policy Based Isolation Mechanisms: Traditional isolation-based solutions re-

main one of the most widely used practical solutions currently to provide data

protection. These solutions, such as VPN, VMWare Ace [1], Secure Spaces [10]

and Hypori [7], attempt to prevent sensitive data from leaving in the first place by

enforcing policy at the network boundary between external and internal systems.

In these cases, policies that restrict the movement of sensitive data can still be

defeated by transformations, such as encryption and compression. Also, some of

these solutions incur substantial network cost as they do not support offline opera-

tions.

Finally, other work has sought to ensure data confidentiality by enforcing ap-

plication structures [29, 40], limiting data lifetimes [20, 33] and providing recourse

actions such as backtracing intrusions [25, 35].

Other TEE work: The research community has used TEEs such as ARM

TrustZone and Intel SGX for a variety of purposes - to provide a secure environ-

ment for running VMs, secure partitions or executing parts of third-party applica-

52

tions and to store their data [22, 37, 59], to provide a root-of-trust for performing

runtime measurements [15–17, 61] and to secure peripherals [47]. In general,

these are orthogonal to Trusted Capsules.

VButton uses TrustZone to attest whether the UI inputs on the smartphone

were initiated by the user [42]; SeCloak provides direct control (on/off) over de-

vice peripherals even when the normal world OS is compromised [41]; Truz-Droid

enables users to securely input and send secrets e.g., login credentials, to autho-

rized servers without executing third-party code in TrustZone [65]; TrustShadow

protects applications from untrusted OSes by executing them with a runtime in

TrustZone [26]; and SchrodinText allows the untrusted normal world OS to render

sensitive text in the display received from an application backend server without

revealing the contents of the text [57]; DelegaTEE, which uses Intel SGX to en-

able users to share their access to online service providers without revealing their

credentials [49].

53

Chapter 12

Conclusion

Data security on remote devices that the data owner cannot control represents

a unique challenge in our data promiscuous world. Systems exchange data indis-

criminately and do not offer the data owner any ability to control access policy on

remote devices. At best, data is encrypted to prevent declassification.

We introduced graduated access control and realized it using a trusted capsule

abstraction and a data monitor that runs inside ARM’s TrustZone trusted execution

environment. Our solution builds on the file abstraction and does not require any

modification to applications, is gradually deployable, and can be ported to other

kinds of trusted execution environments.

54

Bibliography

[1] About VMware ACE.
https://www.vmware.com/support/ace/doc/whatsnew ace.html. Accessed:
2016-11-26. → page 52

[2] Arm trusted firmware.
https://github.com/ARM-software/arm-trusted-firmware. Accessed:
2019-02-15. → page 8

[3] Cryptomator - free cloud encryption. =https://cryptomator.org/. → page 1

[4] Security solutions based on runtime encryption R© platform.
=https://fortanix.com/solutions/. → page 48

[5] Global platform api specifications. http://www.globalplatform.org/.
Accessed: 2019-02-15. → page 9

[6] LeMaker HiKey. http://www.lemaker.org/product-hikey-index.html. →
pages 6, 34

[7] Hypori. http://www.hypori.com/. Accessed: 2019-02-15. → page 52

[8] ARM mbed TLS. https://tls.mbed.org. → page 18

[9] Sandstorm. https://sandstorm.io/. Accessed: 2019-02-15. → page 51

[10] Secure spaces. https://www.spacesmobile.com/. Accessed: 2019-02-15. →
page 52

[11] When does snapchat delete snaps and chats?
=https://support.snapchat.com/en-GB/article/when-are-snaps-chats-deleted.
→ page 1

[12] Web cryptography api. =https://www.w3.org/TR/WebCryptoAPI/. → page
48

55

https://www.vmware.com/support/ace/doc/whatsnew_ace.html
=
=
https://tls.mbed.org
=
=

[13] T. Alves and D. Felton. Trustzone: Integrated hardware and software
security. ARM white paper, 3(4):18–24, 2004. → pages 4, 44

[14] A. Amiri Sani. Schrodintext: Strong protection of sensitive textual content
of mobile applications. In Proceedings of the 15th Annual International
Conference on Mobile Systems, Applications, and Services, MobiSys ’17,
pages 197–210, New York, NY, USA, 2017. ACM. ISBN
978-1-4503-4928-4. doi:10.1145/3081333.3081346. URL
http://doi.acm.org/10.1145/3081333.3081346. → page 44

[15] A. M. Azab, P. Ning, J. Shah, Q. Chen, R. Bhutkar, G. Ganesh, J. Ma, and
W. Shen. Hypervision across worlds: Real-time kernel protection from the
arm trustzone secure world. In Proceedings of the 2014 ACM SIGSAC
Conference on Computer and Communications Security, pages 90–102.
ACM, 2014. → page 53

[16] A. M. Azab, K. Swidowski, J. M. Bhutkar, W. Shen, R. Wang, and P. Ning.
Skee: A lightweight secure kernel-level execution environment for arm.
2016.

[17] F. Brasser, D. Kim, C. Liebchen, V. Ganapathy, L. Iftode, and A.-R. Sadeghi.
Regulating arm trustzone devices in restricted spaces. In Proceedings of the
14th Annual International Conference on Mobile Systems, Applications, and
Services, pages 413–425. ACM, 2016. → page 53

[18] W. Cheng, D. R. Ports, D. Schultz, V. Popic, A. Blankstein, J. Cowling,
D. Curtis, L. Shrira, and B. Liskov. Abstractions for usable information flow
control in aeolus. In Presented as part of the 2012 USENIX Annual
Technical Conference (USENIX ATC 12), pages 139–151, 2012. → page 52

[19] J. Criswell, N. Dautenhahn, and V. Adve. Virtual ghost: Protecting
applications from hostile operating systems. In ACM SIGPLAN Notices,
volume 49, pages 81–96. ACM, 2014. → page 46

[20] A. M. Dunn, M. Z. Lee, S. Jana, S. Kim, M. Silberstein, Y. Xu,
V. Shmatikov, and E. Witchel. Eternal sunshine of the spotless machine:
Protecting privacy with ephemeral channels. In Presented as part of the 10th
USENIX Symposium on Operating Systems Design and Implementation
(OSDI 12), pages 61–75, 2012. → page 52

[21] P. Efstathopoulos, M. Krohn, S. VanDeBogart, C. Frey, D. Ziegler,
E. Kohler, D. Mazieres, F. Kaashoek, and R. Morris. Labels and event

56

http://dx.doi.org/10.1145/3081333.3081346
http://doi.acm.org/10.1145/3081333.3081346

processes in the asbestos operating system. In ACM SIGOPS Operating
Systems Review, volume 39, pages 17–30. ACM, 2005. → page 52

[22] J.-E. Ekberg, N. Asokan, K. Kostiainen, and A. Rantala. Scheduling
execution of credentials in constrained secure environments. In Proceedings
of the 3rd ACM workshop on Scalable trusted computing, pages 61–70.
ACM, 2008. → page 53

[23] W. Enck, P. Gilbert, S. Han, V. Tendulkar, B.-G. Chun, L. P. Cox, J. Jung,
P. McDaniel, and A. N. Sheth. Taintdroid: an information-flow tracking
system for realtime privacy monitoring on smartphones. ACM Transactions
on Computer Systems (TOCS), 32(2):5, 2014. → page 52

[24] A. Ermolinskiy, S. Katti, S. Shenker, L. Fowler, and M. McCauley. Towards
practical taint tracking. EECS Department, University of California,
Berkeley, Tech. Rep. UCB/EECS-2010-92, 2010. → page 52

[25] A. Goel, K. Po, K. Farhadi, Z. Li, and E. De Lara. The taser intrusion
recovery system. In ACM SIGOPS Operating Systems Review, volume 39,
pages 163–176. ACM, 2005. → page 52

[26] L. Guan, P. Liu, X. Xing, X. Ge, S. Zhang, M. Yu, and T. Jaeger.
TrustShadow: Secure Execution of Unmodified Applications with ARM
TrustZone. In Proceedings of MobiSys ’17, June 2017. → page 53

[27] L. Guan, P. Liu, X. Xing, X. Ge, S. Zhang, M. Yu, and T. Jaeger.
Trustshadow: Secure execution of unmodified applications with arm
trustzone. arXiv preprint arXiv:1704.05600, 2017. → page 47

[28] S. Hada and M. Kudo. XML Access Control Language: Provisional
Authorization for XML Documents.
http://xml.coverpages.org/xacl-spec200102.html. → page 50

[29] R. Herbster, S. DellaTorre, P. Druschel, and B. Bhattacharjee. Privacy
capsules: Preventing information leaks by mobile apps. In Proc. of MobiSys,
2016. → page 52

[30] A. Ho, M. Fetterman, C. Clark, A. Warfield, and S. Hand. Practical
taint-based protection using demand emulation. In ACM SIGOPS Operating
Systems Review, volume 40, pages 29–41. ACM, 2006. → page 52

[31] T. Hunt, Z. Zhu, Y. Xu, S. Peter, and E. Witchel. Ryoan: A Distributed
Sandbox for Untrusted Computation on Secret Data. In Proceedings of
OSDI ’16, November 2016. → page 51

57

http://xml.coverpages.org/xacl-spec200102.html

[32] M. B. D. T. Joakim Bech, Ard Biesheuvel. Implications of meltdown and
spectre : Part 2, Feb 2018. → page 6

[33] J. Kannan and B.-G. Chun. Making programs forget: Enforcing lifetime for
sensitive data. In HotOS, 2011. → page 52

[34] G. Karjoth, M. Schunter, and M. Waidner. Platform for Enterprise Privacy
Practices: Privacy-enabled Management of Customer Data. In Proceedings
of PET ’02, April 2002. → page 50

[35] S. T. King and P. M. Chen. Backtracking intrusions. ACM SIGOPS
Operating Systems Review, 37(5):223–236, 2003. → page 52

[36] P. Kocher, J. Horn, A. Fogh, , D. Genkin, D. Gruss, W. Haas, M. Hamburg,
M. Lipp, S. Mangard, T. Prescher, M. Schwarz, and Y. Yarom. Spectre
attacks: Exploiting speculative execution. In 40th IEEE Symposium on
Security and Privacy (S&P’19), 2019. → page 6

[37] K. Kostiainen, J.-E. Ekberg, N. Asokan, and A. Rantala. On-board
credentials with open provisioning. In Proceedings of the 4th International
Symposium on Information, Computer, and Communications Security, pages
104–115. ACM, 2009. → page 53

[38] M. Krohn, A. Yip, M. Brodsky, N. Cliffer, M. F. Kaashoek, E. Kohler, and
R. Morris. Information flow control for standard os abstractions. In ACM
SIGOPS Operating Systems Review, volume 41, pages 321–334. ACM,
2007. → page 52

[39] A. Lazouski, F. Martinelli, P. Mori, and A. Saracino. Stateful Usage Control
for Android Mobile Devices. In Proceedings of STM ’14, September 2014.
→ page 51

[40] S. Lee, D. Goel, E. L. Wong, A. Kadav, and M. Dahlin. Privacy preserving
collaboration in bring-your-own-apps. In Proceedings of the Seventh ACM
Symposium on Cloud Computing, SoCC ’16, pages 265–278, New York,
NY, USA, 2016. ACM. ISBN 978-1-4503-4525-5.
doi:10.1145/2987550.2987587. URL
http://doi.acm.org/10.1145/2987550.2987587. → page 52

[41] M. Lentz, R. Sen, P. Druschel, and B. Bhattacharjee. SeCloak: ARM
Trustzone-based Mobile Peripheral Control. In Proceedings of MobiSys ’18,
June 2018. → page 53

58

http://dx.doi.org/10.1145/2987550.2987587
http://doi.acm.org/10.1145/2987550.2987587

[42] W. Li, S. Luo, Z. Sun, Y. Xia, L. Lu, H. Chen, B. Zang, and H. Guan.
VButton: Practical Attestation of User-driven Operations in Mobile Apps.
In Proceedings of MobiSys ’18, June 2018. → page 53

[43] X. Li, H. Hu, G. Bai, Y. Jia, Z. Liang, and P. Saxena. DroidVault: A Trusted
Data Vault for Android Devices. In Proceedings of ICECCS ’14, August
2014. → pages 1, 50

[44] J. Lind, C. Priebe, D. Muthukumaran, D. O’Keeffe, P.-L. Aublin, F. Kelbert,
T. Reiher, D. Goltzsche, D. Eyers, R. Kapitza, et al. Glamdring: Automatic
application partitioning for intel {SGX}. In 2017 {USENIX} Annual
Technical Conference ({USENIX}{ATC} 17), pages 285–298, 2017. →
page 46

[45] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, A. Fogh, J. Horn,
S. Mangard, P. Kocher, D. Genkin, Y. Yarom, and M. Hamburg. Meltdown:
Reading kernel memory from user space. In 27th USENIX Security
Symposium (USENIX Security 18), 2018. → page 6

[46] D. Liu and L. P. Cox. Veriui: Attested login for mobile devices. In
Proceedings of the 15th Workshop on Mobile Computing Systems and
Applications, page 7. ACM, 2014. → page 44

[47] H. Liu, S. Saroiu, A. Wolman, and H. Raj. Software abstractions for trusted
sensors. In Proceedings of the 10th international conference on Mobile
systems, applications, and services, pages 365–378. ACM, 2012. → page 53

[48] P. Maniatis, D. Akhawe, K. Fall, E. Shi, and D. Song. Do You Know Where
Your Data Are? Secure Data Capsules for Deployable Data Protection. In
Proceedings of HotOS ’11, May 2011. → page 50

[49] S. Matetic, M. Schneider, A. Miller, A. Juels, and S. Capkun. DelegaTEE:
Brokered Delegation Using Trusted Execution Environments. In
Proceedings of USENIX Security ’18, August 2018. → page 53

[50] M. C. Mont, S. Pearson, and P. Bramhall. Towards Accountable
Management of Identity and Privacy: Sticky Policies and Enforceable
Tracing Services. In Proceedings of DEXA Workshop ’03, September 2003.
→ page 50

[51] A. C. Myers and B. Liskov. Protecting privacy using the decentralized label
model. ACM Transactions on Software Engineering and Methodology
(TOSEM), 9(4):410–442, 2000. → page 52

59

[52] O. Ohrimenko, F. Schuster, C. Fournet, A. Mehta, S. Nowozin, K. Vaswani,
and M. Costa. Oblivious multi-party machine learning on trusted processors.
In 25th {USENIX} Security Symposium ({USENIX} Security 16), pages
619–636, 2016. → page 48

[53] S. Pearson and M. C. Mont. Sticky Policies: An Approach for Managing
Privacy across Multiple Parties. IEEE Computer, 44(9):60–68, 2011.
doi:10.1109/MC.2011.225. URL https://doi.org/10.1109/MC.2011.225. →
page 50

[54] M.-R. Ra, R. Govindan, and A. Ortega. P3: Toward privacy-preserving
photo sharing. In Proceedings of NSDI ’13, April 2013. → page 51

[55] I. Roy, D. E. Porter, M. D. Bond, K. S. McKinley, and E. Witchel. Laminar:
practical fine-grained decentralized information flow control, volume 44.
ACM, 2009. → page 52

[56] K. Rubinov, L. Rosculete, T. Mitra, and A. Roychoudhury. Automated
partitioning of android applications for trusted execution environments. In
2016 IEEE/ACM 38th International Conference on Software Engineering
(ICSE), pages 923–934. IEEE, 2016. → page 46

[57] A. A. Sani. SchrodinText: Strong Protection of Sensitive Textual Content of
Mobile Applications. In Proceedings of MobiSys ’17, June 2017. → page 53

[58] N. Santos, R. Rodrigues, K. P. Gummadi, and S. Saroiu. Policy-Sealed Data:
A New Abstraction for Building Trusted Cloud Services. In Proceedings of
USENIX Security ’12, August 2012. → page 51

[59] N. Santos, H. Raj, S. Saroiu, and A. Wolman. Using arm trustzone to build a
trusted language runtime for mobile applications. In ACM SIGARCH
Computer Architecture News, volume 42, pages 67–80. ACM, 2014. →
pages 44, 53

[60] S. Saroiu, A. Wolman, and S. Agarwal. Policy-Carrying Data: A Privacy
Abstraction for Attaching Terms of Service to Mobile Data. In Proceedings
of HotMobile ’15, February 2015. → page 51

[61] A. Seshadri, M. Luk, N. Qu, and A. Perrig. Secvisor: A tiny hypervisor to
provide lifetime kernel code integrity for commodity oses. In ACM SIGOPS
Operating Systems Review, volume 41, pages 335–350. ACM, 2007. →
page 53

60

http://dx.doi.org/10.1109/MC.2011.225
https://doi.org/10.1109/MC.2011.225

[62] R. Ta-Min, L. Litty, and D. Lie. Splitting interfaces: Making trust between
applications and operating systems configurable. In Proceedings of the 7th
Symposium on Operating Systems Design and Implementation, OSDI ’06,
pages 279–292, Berkeley, CA, USA, 2006. USENIX Association. ISBN
1-931971-47-1. URL http://dl.acm.org/citation.cfm?id=1298455.1298482.
→ page 44

[63] C.-C. Tsai, K. S. Arora, N. Bandi, B. Jain, W. Jannen, J. John, H. A.
Kalodner, V. Kulkarni, D. Oliveira, and D. E. Porter. Cooperation and
security isolation of library oses for multi-process applications. In
Proceedings of the Ninth European Conference on Computer Systems,
EuroSys ’14, pages 9:1–9:14, New York, NY, USA, 2014. ACM. ISBN
978-1-4503-2704-6. doi:10.1145/2592798.2592812. URL
http://doi.acm.org/10.1145/2592798.2592812. → page 47

[64] C.-C. Tsai, D. E. Porter, and M. Vij. Graphene-sgx: A practical library
{OS} for unmodified applications on {SGX}. In 2017 {USENIX} Annual
Technical Conference ({USENIX}{ATC} 17), pages 645–658, 2017. →
page 47

[65] K. Ying, A. Ahlawat, B. Alsharifi, Y. Jiang, P. Thavai, and W. Du.
TruZ-Droid: Integrating TrustZone with Mobile Operating System. In
Proceedings of MobiSys ’18, June 2018. → page 53

[66] N. Zeldovich, S. Boyd-Wickizer, E. Kohler, and D. Mazières. Making
information flow explicit in histar. In Proceedings of the 7th symposium on
Operating systems design and implementation, pages 263–278. USENIX
Association, 2006. → page 52

[67] N. Zeldovich, S. Boyd-Wickizer, and D. Mazieres. Securing distributed
systems with information flow control. In NSDI, volume 8, pages 293–308,
2008. → page 52

[68] Q. Zhang, J. McCullough, J. Ma, N. Schear, M. Vrable, A. Vahdat, A. C.
Snoeren, G. M. Voelker, and S. Savage. Neon: system support for derived
data management, volume 45. ACM, 2010. → page 52

61

http://dl.acm.org/citation.cfm?id=1298455.1298482
http://dx.doi.org/10.1145/2592798.2592812
http://doi.acm.org/10.1145/2592798.2592812

	Abstract
	Lay Summary
	Preface
	Table of Contents
	List of Tables
	List of Figures
	Acknowledgments
	1 Introduction
	2 TrustZone & OP-TEE Overview
	2.1 TrustZone
	2.2 Linaro OP-TEE
	2.2.1 ARM Trusted Firmware
	2.2.2 OP-TEE OS
	2.2.3 OP-TEE Supplicant

	3 Threat Model
	3.1 Contextual Theat Model
	3.2 Discussion

	4 Trusted Capsules
	4.1 Capsules
	4.2 Policy API
	4.3 Data monitor
	4.4 Security analysis

	5 Device Registration and Key Distribution
	5.1 Registering a Capsule Recipient
	5.2 Capsule Generation and Key Distribution

	6 Use case examples
	7 Prototype
	7.0.1 Prototype Evolution

	8 Evaluation
	8.1 Policy language
	8.2 System call microbenchmarks
	8.3 Policy Performance Evaluation

	9 Limitations
	9.1 Design Limitations
	9.2 Prototype Limitations:

	10 Securing Applications
	10.1 Modifying Applications to Use a TEE
	10.2 Securing Unmodifed Applications

	11 Related Work
	12 Conclusion
	Bibliography

