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Abstract

This essay explores the challenges and solutions in automatic machine learning

(ML)-based configuration tuning of Big Data processing frameworks. The use of

Big Data processing systems has increased due to the availability of high perfor-

mance computing resources and the realization of the value of data in making busi-

ness decisions. However, configuring the parameters of these systems is difficult

due to the high diversity of workloads, rapid growth of data, changing software

and hardware infrastructures, and inter-dependency between the configurations.

The literature has extensively explored ML-based tuners to solve the auto-tuning

problem. In this essay we focus on answering four survey questions related to

model generalization, search-space pruning, workload characterization, and tun-

ing benchmarks. We follow a Systematic Literature Review (SLR) plan to answer

the survey questions. As part of our SLR plan, we finalized 47 research papers

and articles (published between 2012 and 2022) from different database sources.

Using these papers, we perform an extensive literature review and summarize our

findings.
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Lay Summary

Given the numerous configuration parameters significantly impacting performance,

manually tuning them can be challenging and error-prone. Therefore, machine

learning-based systems have become indispensable in automating this process,

constantly adapting to changing workload patterns and identifying the best con-

figurations. Moreover, the tuning systems analyze workload execution-related ob-

servational data generated by Big Data frameworks, enabling them to optimize the

performance. This, in turn, leads to improved performance, allowing organizations

to process and analyze massive amounts of data more efficiently, resulting in better

decision-making and insights. However, there are several challenges while using

Machine Learning algorithms to tune the configurations of Big Data processing

frameworks.

In this essay, we define four survey questions (as part of a systematic literature

review plan) based on the challenges of Big Data processing frameworks. Further,

we do an extensive literature review to answer the survey questions and summarize

our findings.
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Chapter 1

Introduction

The first Big Data processing framework, Apache Hadoop, was released in 2011

by the Apache Software Foundations [6]. Other Big Data processing frameworks

like Apache Spark [7], Storm [9], and Flink [4] were released soon after. Since

that time, many organizations have adopted Big Data processing systems. Differ-

ent sectors started this adoption because high-performance computing resources,

such as graphics processing units (GPUs) and cloud computing, made it easier to

process large datasets and train complex machine learning models. This has made

it possible to use more advanced algorithms and models that were previously in-

feasible. Additionally, organizations started realizing the value of data, which can

help inform various business decisions. Early data processing challenges were due

to high volume, velocity, variety, variability, and veracity. Big data processing sys-

tems, or frameworks, were designed to manage these 5 “Vs.” (Volume, Velocity,

Variety, Veracity, and Value) [29].

However, Big data processing frameworks expose hundreds of tunable param-

eters that must be optimized [27]. These configuration parameters control execu-

tion behavior. For example, in Apache Spark, spark.executor.memory controls the

amount of memory available for the underlying container that will process the data,

spark.serializer controls the type of Serializer to use (Java default or Kryo Serial-

izer), etc. Configuration tuning of a Big Data framework refers to optimizing the

configuration parameters for the framework to achieve optimal performance and

resource utilization across a cluster of machines. Configuring the parameters of
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these frameworks has continued to bedevil developers and administrators.

Configuration tuning of these systems is difficult for the following reasons:

1. The high diversity of the workloads [34, 55]: It is difficult for a human to

find the optimal configuration values for hundreds of configurations.

2. Rapid growth of data: As data size increases, these systems need to be re-

configured. The optimal configuration values for executing a workload that

processes a relatively smaller volume of data might not work for the same

workload when the data is larger [35].

3. Changing Software and Hardware infrastructures: When the underlying soft-

ware or hardware stack changes, the previously found optimal configuration

values might not work [43].

4. Inter-dependency between the configurations [24]: There are often depen-

dencies between configuration parameters. This dependency can be within

or across the software components. And this is often not clearly documented.

When these frameworks are misconfigured, the systems usually continue ex-

ecuting correctly but with degraded performance. Under-provisioned cluster se-

tups have shown degraded execution times of 12x [15], and misconfigurations

on Apache Spark can lead to a slowdown of 89x [73]. Hadoop was found to be

slower than parallel database systems for multiple data-intensive analytical work-

loads [59]. However, Hadoop can perform well when its configuration is tuned.

Auto-tuning of systems improves the efficiency of these systems and can tune the

configuration per workload without much human intervention. Out of the different

types of tuners, Machine Learning (ML)-based tuners have been explored exten-

sively in the literature to solve the auto-tuning problem.

In this MSc essay, we perform a literature survey of ML-based tuners for Big

Data frameworks. There is a class of ML-based tuners known for their ability to

reuse information (knowledge transfer) gained from tuning a system that executes

a specific workload to tune the same system that executes a similar workload [34,

68]. Cloud-based service providers, which provision thousands of instances of Big

Data processing framework, can easily use the knowledge transfer capability [34,
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75] of ML-based tuners as they can generate observational data (to train the ML-

based tuners) from different tuner deployments (a tuner deployment is responsible

for tuning one or more Big Data processing frameworks).

Other tuners [43], like cost-modeling- or simulation-based tuners, need a pro-

found understanding of the frameworks to tune. Rule-based tuners use rules and

cannot guarantee an optimal solution [43]. Experiment-based tuners [? ] repeat-

edly run an application or a workload on a cluster using various configurations until

it reaches a suitable set of settings. This class of tuners cannot perform knowledge

transfer. By contrast, ML-based tuners do not need a deep understanding of the

system and can find the optimal configurations in the least number [35, 50] of ex-

periments or tuning iterations.

Another motivation for us to survey ML-based tuners is the extensive list of

recent publications focusing on using ML for tuning configurations. Hence, our

survey focuses on studying the automatic ML-based tuners that treat the underlying

system as a black box with little understanding of its internals.
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Chapter 2

Systematic Literature Review
Plan

With the proliferation of Big Data applications in recent years, the need for efficient

and effective management of large-scale data processing has become increasingly

important. One of the key challenges in this area is tuning the configuration param-

eters of Big Data frameworks to achieve optimal performance. Machine learning-

based tuning techniques have emerged as a promising approach to automate the

tuning process and improve the overall efficiency of Big Data frameworks. This

chapter defines the specific research questions related to ML-based tuning frame-

works we want to explore as part of our survey.

2.1 Introduction
Any ML-based tuner shares certain characteristics, irrespective of the underlying

framework it aims to tune. Such a tuner typically has a core tuning engine with a

search space explorer and a performance prediction model (also shown in Fig. 3.1).

Other optional components, such as search-space pruning [45], trim down the non-

influential search space; and a workload classifier, classifies a given workload to

a similar workload seen in the past. We summarize the main components of ML-

based tuners as follows:
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• Core Tuning Engine: This component is responsible for sampling optimal

configurations from the search space using a trained performance prediction

model. After every observation, the tuner re-trains the performance predic-

tion models as the tuner starts its exploration.

• Search Space Pruning: This component aims to reduce the total search

space for effective training of the tuning engine. This saves a lot of time the

tuner would have spent exploring the non-influential regions.

• Workload Classifier: The workload classifier classifies a given execution

profile (or workload execution data) to a class of execution profiles that it has

already seen in the past. Using the classification result, the tuner will reuse

the previously trained model or train a new one using the past workload’s

observational data. This helps in generalizing the tuner to reuse tunings it

has previously learned.

Based on the above components of the tuning framework, we describe the chal-

lenges, and based on these challenges, we define our survey/research questions.

A tuning framework is always expected to generalize [77] because it should

be able to tune various workloads within a small number of iterations. Typically,

tuning frameworks use knowledge transfer to leverage past tuning experiences to

achieve better tuning. Each type of tuner performs knowledge transfer differently.

For example, the Bayesian Optimization (BO) style tuners can easily adapt to a

similar pattern as described in RGPE [36, 77] (ranking-weighted Gaussian pro-

cess ensemble). RGPE combines Gaussian process models learned from past tasks

with different weights computed through relative ranking loss, allowing for gener-

alization across diverse workloads and hardware configurations. Leveraging past

tuning experiences is important for any tuning framework as it would help to amor-

tize the tuning costs. Previous surveys [27, 43, 45] do not specifically talk about the

challenges and effectiveness of transfer learning. Hence, in this survey, we sum-
marize the tuning frameworks based on the performance prediction model
and study the challenges related to the knowledge transfer of different tuning
frameworks (R1). However, the discussion on the challenges of knowledge trans-

fer is motivated by a similar discussion in the survey on database tuners conducted

by Zhang et al. [77].
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In the literature, various techniques have been proposed to find the most opti-

mal set of parameters for search-space pruning that can have a significant impact

on the execution time of a job. Pruning the non-influential parameters is important

because, for most workloads, only a handful of parameters impact the execution

time [34, 43]. The pruning techniques mainly include - manual approach [63],

search-space division based on parameter independence [57], incremental (step-

wise) pruning [51], sensitivity analysis [46] and recursive feature elimination with

approximation-based approaches [35]. Prior surveys [27, 43, 45] do not discuss

the trade-offs (like the cost of finding the significant configuration parameters vs.

tuning cost amortization). Hence, in this survey, we categorize the different
pruning techniques based on the trade-offs and the features used for pruning
(R2). The discussion on the challenges of pruning techniques is motivated by a

similar discussion in the survey on database tuners conducted by Zhang et al. [77].

Multiple definitions exist of a big data workload [34, 37, 47, 72]. And ev-

ery definition relies on the granularity of metrics/features being used, hardware

and software stacks used to find the statistical differences/variations. Also, with

every new definition of a Big Data workload, a new workload characterization

or classification technique is required [34, 37, 47, 72]. The surveys done in the

past [27, 43, 45] on performance optimization of big data frameworks using pa-

rameter tuning do not systematically categorize the big data workload classifica-

tion techniques, the level of granularity, and features used for classification. In

the previous surveys [43], [27], the works have implicitly just mentioned the name

of the techniques used to characterize the workloads. Hence, in this work, we
systematically categorize the workload classification techniques used, the set
of features used, the definitions & granularity at which these techniques have
been proposed (R3). The discussion on the workload classification techniques is

motivated by a similar discussion in the survey on database tuners conducted by

Zhang et al. [77].

The surveys done in the past on parameter tuning [27, 43, 45] on performance

optimization of big data processing frameworks have not discussed the evaluation

and benchmarking of the tuning frameworks. The evaluation metrics used for eval-

uating the tuners help explain a tuner’s goal. Further, the benchmarks used help

us understand the kind of scenarios that the tuner is designed to manage the best.
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For example, the tuner evaluation benchmarks might not execute a production-like

workload. This will help us understand the effective scope of the tuner in tuning the

big data processing frameworks. Hence, in this work, we survey the metrics cho-
sen for evaluating the tuning frameworks and the different benchmarks they
use (R4). Costa et al. [27] discuss the benchmarking of the Big Data frameworks

instead of benchmarking the tuning frameworks.

We summarize the research questions from above in the next section.

2.2 Survey questions
Based on the above discussion and prior surveys done in the area of using ML for

parameter tuning of the big data frameworks, we defined the following four survey

questions for our study:

• (R1) What are the different performance prediction models based on the tun-

ing frameworks, and the challenges related to the generalization of different

tuning frameworks?

• (R2) What are the different search-space pruning techniques, their pros &

cons, and what kind of trade-offs do these techniques expect the users to

take care of?

• (R3) What are the techniques and features used to classify/characterize the

workloads?

• (R4) Which benchmarks and metrics have been used in the literature to eval-

uate tuner performance?

To study the above components in depth, we aim to do a taxonomy-based survey

covering meaningful categories and sub-categories for each sub-component. This

study will use the similar Systematic Literature Review (SLR) approach [76]. In

the first phase, we decide our scope of review, survey questions, list of conferences

and journals (data sources), inclusion, and exclusion criteria. Based on the defined

scope, we do the literature review in the second phase to answer the above survey

questions.
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In the next section, we define the criteria based on which we select or reject the

research papers or articles we would use for the literature review.

2.3 Inclusion and exclusion parameters
We decided to filter papers based on the publication year as the first criterion. We

pick those research papers which have a publication year later than 2011. The

rationale for choosing the parameter tuning papers after 2011 is that the big data

processing frameworks we surveyed were released after 2011. Apache Software

Foundation released the first version of Apache Hadoop in December 2011.

The second criterion to filter the paper would be based on the paper’s aim and

objective. We only select the articles aiming to tune the parameters of big data

processing frameworks. There are several papers/works which aim to improve

the performance of big data processing frameworks by optimizing the query plan,

partition size, selective caching, etc. However, as per the scope of this study, we

only consider the papers that try to tune the parameters of big data processing

frameworks in an automated fashion using machine learning.

The big data processing frameworks we consider in this survey are the same

as those considered in previous surveys [27, 43]. These include Apache Spark,

Apache Hadoop, Apache Yarn, Apache Flink, Apache Storm, and Heron. We are

focusing on these specific frameworks because of their success in the industry,

where these frameworks are ranked in the top 10 based on their usage and adop-

tion [11].

In the next section, we define the database sources from which we would search

the research papers or articles and then filter them based on the set of defined

criteria.

2.4 Academic database sources for the survey
Based on the big data frameworks that we consider to survey in this work, we use

the following keywords:

1. Performance optimization

2. Big data tuning

8



3. Big data parameter tuning

4. Spark parameter tuning

5. Hadoop parameter tuning

6. Yarn parameter tuning

7. Flink parameter tuning

8. Storm parameter tuning

Using the keyword above, we searched the following digital libraries to gather

the set of relevant papers:

1. IEEE Xplore

2. Science Direct (Elsevier)

3. Springer

4. ACM Digital Library

After searching the digital libraries and reading the survey papers, we compiled

the final list of papers. For articles published in conferences, we picked the con-

ferences with a minimum of B ranking per www.conferenceranks.com. As per the

search criteria we defined, we found 47 relevant papers (summarized in Table 2.1).

The rest of our survey will use these papers.

We defined the survey questions, inclusion and exclusion parameters, database

sources, and final research papers and articles in the previous sections. In the next

section, we conclude the chapter.

2.5 Conclusion
In this chapter, we have discussed the main components of ML-based tuners, which

include the core tuning engine, search space pruning, and workload classifier.

These components are essential in enabling the tuner to explore the search space

and learn optimal configurations efficiently. There are several challenges associ-

ated with each of these components, such as the high dimensionality of the search

9
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Table 2.1: Summarizing the selected research papers and venues

Publication Venue Type Papers Publication Year

SigMod Conference [59] 2009
ACM CGO Conference [57] 2012
ICCCN Conference [49, 60] 2012, 2018
ICAC Conference [51, 66] 2012, 2019
EDBT Conference [32] 2013
Euro-Par Conference [56] 2013
IEEE IISWC Conference [47] 2014
VLDB Conference [55, 63] 2014, 2020
Int. Congress on Big Data Conference [23] 2015
IEEE TPDS Journal [18, 42, 72] 2015, 2017, 2021
Int. Conference on (Big Data) Conference [16, 34, 37, 67, 74] 2015, 2018, 2019, 2020
HPCC Conference [38, 70] 2016
IEEE PACT Conference [48] 2016
IEEE TBD Journal [25, 53] 2016, 2019
IEEE TKDE Journal [69] 2017
SoCC Conference [20] 2017
IEEE FASS Workshop [65] 2017
ASPLOS Conference [73] 2018
IEEE ICC Conference [40] 2018
IEEE ICDE Conference [64, 75] 2018, 2021
Elsevier Big Data Research Journal [27, 39, 41] 2018, 2021, 2022
ICDCS Conference [33] 2019
Elsevier FGCS Journal [21] 2019
ACM SIGKDD Conference [35] 2020
IEEE TSE Journal [50] 2020
IEEE Cloud Conference [71] 2020
IEEE TSC Journal [79] 2021
IEEE ISCC Conference [62] 2021
Elsevier JSS Journal [26] 2021
Springer Cluster Computing Journal [31] 2022
Springer Applied Intelligence Journal [19] 2022
Elsevier JPDC Journal [22] 2022
Elsevier KBS Journal [28] 2022
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space, the difficulty of accurately modeling performance, and the need for effective

workload classification. These challenges have motivated several research efforts

in the area of ML-based tuning. We have identified our survey questions that re-

main to be addressed. These questions represent essential research directions for

advancing the state-of-the-art in ML-based tuning and improving the performance

of complex systems. The next set of chapters will answer our survey questions.

The next chapter discusses and answers the first research question (R1).
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Chapter 3

ML-based Tuning Frameworks
and Challenges

Big Data frameworks are developed for managing massive and intricate datasets

by distributing the workload across multiple nodes. To ensure peak performance,

it is essential to tune the configuration settings of these frameworks for the execu-

tion of a variety of workloads. However, this can be an arduous task that requires

specialized knowledge of the framework and a comprehensive understanding of

its configuration options. Furthermore, different Big Data framework configura-

tions can be tuned by tuning frameworks, adding to the complexity of transferring

knowledge across platforms. Consequently, this chapter explores the challenges
of transferring tuning knowledge in Machine Learning (ML) based tuners.
Specifically, this chapter aims to answer the first research question (R1) raised in

Chapter 2.

3.1 Introduction
In literature, there are various tuning framework types [43] that aim to tune the

configurations of Big Data frameworks. Compared to other tuning frameworks

like cost-model-based tuners and experiment-based tuners [43], ML-based tuners

have three clear advantages:

1. They treat the underlying system to tune as a black box. ML-based tuners

12



Figure 3.1: A generic architecture for ML-based tuner. This architecture is
motivated by the architecture used for database tuners [77]

can tune the configurations of the big data framework with a minimum un-

derstanding of the internals.

2. The tuners can leverage past tuning experiences. They have the capability

to reuse the trained performance prediction models from the past to tune the

system for a new or unknown workload.

3. The tuners use performance prediction models to explore the search space.

This helps in saving time as the performance prediction model can predict the

outcome without executing a candidate configuration, unlike the experiment-

based tuner, which has to execute every configuration candidate to get the

optimal solution.

A generic ML-based tuner (Fig. 3.1) mainly has two core components [54], [17]:

(1.) search space exploration algorithm, which explores the search space (i.e., gen-

erates candidate configurations and returns the best among them), and (2.) perfor-

mance prediction model, which can predict the metric which the tuner wants to

optimize.

As shown in Fig. 3.1, the search-space explorer generates configurations to

explore. These configurations are used to execute the workload on the Big Data

framework. The tuning framework aims to generate the best values for configura-

tions that can lead to optimal performance for workload execution. The workloads

13



are external to the tuning framework and can also change. Once any workload

executes, it generates runtime metrics or observational data. Using the generated

observational data, the tuners can optionally classify the workload execution data

to the closest one seen in the past. Based on the closest source found, the tuner

picks up a relevant performance prediction model from the model store. The search

space explorer further performs the exploration using the model and generates new

configurations to explore. Here workload characterization is an optional step, and

tuning frameworks can opt not to use it, which would result in training performance

models from scratch instead of reusing models trained in the past. Tuners can op-

tionally rank or prune the configuration parameters with the least impact on the

outcome. This process is similar to the feature pruning in any classical ML task.

The deployment of ML algorithms in a tuning framework can optimize Big

Data framework deployments by predicting performance based on previous ob-

servational data. Still, challenges arise when attempting to leverage past tuning

experiences due to the architecture and framework of the performance prediction

model. A typical tuning framework deployment runs a set of ML algorithms that

can be used to tune the configurations for one or many Big Data framework de-

ployments. The performance prediction models in the tuning framework learn the

system behavior of executing different workloads in the ML-based tuning frame-

work using the generated observational data. Workload classification and charac-

terization algorithms in the tuning framework are responsible for detecting new

unknown workloads. This means the tuner would reuse a previous performance

prediction model if the new workload is similar to the workload with which the

performance prediction model was trained earlier. However, the core challenges

of leveraging past tuning experiences depend on the architecture and framework

of the performance prediction model. Hence, in the next section, we summarize

the performance models based on the tuning frameworks used in the literature and

then discuss the knowledge transfer challenges in Section 3.3.

3.2 Summarizing the performance prediction models
We found that tuning frameworks use different performance prediction models in

the literature. In this section, we discuss each type of performance prediction

14



model used along with bit details of the respective tuning framework. Then, based

on the identified performance prediction model types, we discuss the knowledge

transfer challenges in the next section. This chapter sets the context for the dis-

cussion of challenges related to the first research question in chapter 2 (R1). We

categorized the performance prediction models into six following groups:

1. Gaussian Process Regression-based performance prediction models

2. Regression-based performance prediction models

3. Tree or Ensemble-based performance prediction models

4. Classifier-based performance prediction models

5. Performance predictions in Reinforcement style tuning frameworks

We have summarized the performance prediction models in Table 3.1. Further,

we discuss the performance models and start with the Gaussian Process Regression-

based performance prediction model in the next section.

Gaussian process regression-based performance prediction models

Gaussian Process Regressors (GPRs) have been widely used to model the perfor-

mance of a black box system mainly because they measure uncertainty over the

prediction. This helps the search space explorer to model the unknown and uncer-

tain regions. GPRs typically assume that the data distribution is Gaussian.

In Tuneful [35], the authors use GPR to model the performance of Spark. Here

the authors model Spark’s performance using configuration parameters as the fea-

tures and execution time as the outcome. Further, in Tuneful, the authors use the

Expected Improvement-based MCMC (EI-MCMC) algorithm to explore the un-

certainty over the GPR.

In [31], authors proposed a tuning framework that tunes not only Spark’s con-

figuration parameters but also the kernel’s and JVM’s configuration parameters. It

uses an importance score to rank the parameters and a dropout Bayesian Optimiza-

tion algorithm (which internally uses a GP regression) to address the challenge of

high dimensionality (or huge search space).
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Table 3.1: Summarizing the ML-based tuners based on performance predic-
tion models and search space exploration algorithm

Overall Approach Prediction Model Type Search Space Exploration

GPR Based Single GP [35] Expected Improvement MCMC
Single GP [33] Expected Improvement
Single GP [31] Expected Improvement
Single GP [49] No Searching Needed
Two GPs [74] State-Transition based
Single GP [65] Genetic Algorithm
Multiple GPs [64] Multi-Objective Gradient Descent
Multi-Task GPs [34] Expected Improvement

Regression-based Support Vector Regressor [51] Pattern Search Algorithm
NN based regression [22] Global & Local Search
Support Vector Regressor [53] Heuristic Based Search

Tree or Ensemble-based Random Forest [16] Multi-Bound Search Algorithm
SGB Trees [42] Genetic Algorithm
Hierarchical Modelling [73] Genetic Algorithm
AdaBoost Algorithm [26] Genetic Algorithm
Random Forests [18] [71] Genetic Algorithm
Stacked Neural Network [79] NSGA-II
PeiceWise Regression [25] Heuristic Based Search
EDK Regression [69] No Searching Needed
Random Forests [23] Random Sampling + Hill Climbing

Classifier-based XGBoost Classifier [28] No Searching Needed
K-Nearest Neighbour [48] No Searching Needed
SVM [66] Genetic Algorithm
Decision Tree Classifier [70] Recursive Random Search

RL-style performance Q-Learning Reinforcement Learning [19]
prediction models Similarity Matrix + SVD [21] Two Phase Random Search

Population-based search Evolutionary MCMC [50]
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Kadirvel and Fortes [49] after multiple evaluations on different workloads, they

selected the five most important features “Map Input Size, Number of Reduces, I/O

Sort Record Percent, Map-Reduce Parallel Copies” [49]. Using these features, the

authors found that Regression by Multilayer Perceptron, Discretization, Gaussian

Process Regression, and M5 Pruned Model Tree were the models which showed

encouraging results in predicting the performance of map-reduce jobs.

To tune Storm configurations, Zacheilas et al. [74] proposed a tuning frame-

work that tries to find the optimal Esper engines to use for balancing the costs (cost

of missing tuples, monetary cost of the computing resources, and the cost of rebal-

ancing the topology). To tune this parameter, it uses two GPRs. Zacheilas et al.

state that “The first GP model will have as target variable y the Latency values and

as features will use a multidimensional vector that contains the timestamp of the

measurement, the time of day, the day of week and the number of engines.” [74].

The second GPR predicts the number of input tuples (future load). Further, they

model a state transition model where transiting from one state to another quantifies

the impact of the transition on performance.

The tuning framework proposed by Trotter et al. [65] tunes the total number of

executors and worker processes. It reads metrics from JMX - CPU load, memory

usage, and Java class related profiling data. And from Storm, it reads each execu-

tor’s processing throughput within a Storm topology. Further, using this collected

performance data, the tuner uses GPR for performance prediction and Genetic Al-

gorithm (GA) to explore the search space and find the optimal configurations. Also,

they bootstrap the tuner’s exploration with constraints (added to the optimization

problem) from the standard rules of thumb.

The tuner proposed by Song et al. [64] optimizes k different objectives. The

users use the framework to specify the objectives, such as latency, throughput,

CPU utilization, memory utilization, etc. And then, the framework forms a multi-

objective problem and solves it. It proposes a new Progressive Frontier approach to

compute a decent Pareto frontier in practical time. It transforms the multi-objective

functions into single objectives and solves them individually. With the decoupling,

it can train multiple performance models (GPs and DNNs) offline, which would

eventually get consumed by the optimization pipeline.

Fekry et al. [34] propose a tuning framework that uses MultiTask Gaussian Pro-
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cess (MTGP) to model individual workloads as tasks. MTGP learns the correlation

between the tasks and inputs. In this work, authors specifically use MTGP with

Bayesian Optimization to utilize the knowledge transfer of significant parameters

from past similar workloads.

Next, we discuss the regression-based performance prediction models (apart

from Gaussian Regression).

Regression-based performance prediction models

Unlike a Gaussian Process Regressor, which assumes that the data distribution is

a Gaussian Distribution, other regression algorithms may or may not assume any

distribution to be specific. In literature, various other regression methods have also

modeled the performance of Big data frameworks.

The tuning framework proposed by Lama and Zhou [51] uses an SVM-based

regressor to predict a job’s relative performance for jobs grouped by k-medoid. The

framework trains a performance model for every cluster formed using k-medoid

and keeps track of the significant configuration parameters detected by the step-

wise regression approach. It uses a pattern search algorithm to find the optimal

configuration values.

The tuning framework proposed by Chen et al. [22] tunes the Hadoop level

configuration parameters and the resource level configuration parameters. The core

of the tuner consists of a Neural Network based prediction model and a proposed

global and local search-space exploration strategy. The search-space exploration

algorithm first generates (samples uniformly) random configuration values and per-

forms a global search over them using the performance prediction model. It per-

forms a local search on the prediction model based on the selected global best.

The stream processing system’s performance is evaluated in terms of the la-

tency of tuple processing. Modeling the execution latency of a tuple is challenging

as it involves execution at multiple Processing Units PUs. The tuning framework

proposed by Li et al. [53], Li et al. uses the topology of execution DAG to model

the tuple processing latency of a thread (task) and tuple transfer latency using Sup-

port Vector Regression (SVR). This scheduling algorithm uses the prediction, and

a heuristic search to assign threads, total cores, and memory to machines (schedul-
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ing).

Next, we discuss the tree-based performance prediction models.

Tree or Ensemble-based performance prediction models

Many different tuning frameworks have used decision tree-based regressors to

model the performance of black-box systems. The trees-based regressors have

been widely used for performance predictions when the features (configuration pa-

rameters) are categorical or discrete in nature [77]. Compared to any traditional

database system, the execution flow in the big data processing framework is di-

vided into stages. Executing the stages in serial or parallel depends on the workflow

scheduler. Some tuning frameworks model individual stage execution and then ag-

gregate the total execution time from individual stage-level predictions. This ben-

efits in terms of higher prediction accuracy, as modeling the individual stages is

easier than modeling the end-to-end execution time. Some tuning frameworks also

use an ensemble of regressors or classifiers for modeling the performance, where

the final prediction is decided based on the weights or scores of individual models

in the ensemble.

To generate sufficient samples for the predictive model of the tuning engine,

work by Bao et al. [16] utilizes the computation properties of the workload and the

internal communication patterns between different machines in the cluster. Inter-

nally, the framework trains a Random Forest Regressor as the performance predic-

tion model and Latin Hypercube Sampling to explore the search space.

Guo et al. [42] propose a tuning framework that consists of two main compo-

nents, i.e., synthetic training data generator and Genetic Algorithm based tuner,

which uses a performance model to explore the search space effectively. It trains

a Generative Adversarial Network (GAN), which generates training data for the

performance model using these sampled data points. In this framework, they use

Stochastic Gradient Boosted Regression Trees as the performance model and use a

Genetic Algorithm to explore the search space.

Yu et al. [73] use a tuning framework where the search-space exploration is

done using GA. The performance model is a Hierarchical Model (HM) of regres-

sion trees. The submodels are trained with more optimized hyperparameters (num-
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ber of trees in the random forest, learning rate, tree complexity). Here the submod-

els are arranged in hierarchy-based first, second, and higher-order levels (at each

level, the model’s variance reduces). HM model picks the configurations randomly

at any level, and the whole process continues till a target accuracy from the overall

HM is achieved.

The tuning framework by Cheng et al. [26] proposes a decomposition-based

multi-objective optimization (MOEA/D). To optimize resource usage cost, and ex-

ecution time, MOEA/D also uses a performance prediction model to solve the

multi-objective problem. Overall, the MOEA/D is responsible for exploring the

configuration space, and for every exploration, the performance prediction model

(AdaBoost model) evaluates the fitness of the given candidate.

The tuning framework proposed by Bei et al. [18] utilizes an ensemble of Ran-

dom Forest regressors to model the total execution time of the map-reduce jobs.

To model the total job execution time, the tuning framework models the map phase

separately with four regressors to model the read phase, map phase, collect phase,

and merge & spill phase, respectively. Similarly, for the reduce phase, they model

the shuffle & sort phase, merge phase, reduce phase, and write phase, respectively.

With this ensemble of regressors, where the features are the configurations and

the outcome is a performance metric, the exploration is performed using the GA

approach.

The tuning framework proposed by Chen et al. [23] uses Random Forest Re-

gressor to predict total job execution time. Here they use two predictors: one for

predicting the total execution time of the map stage where the input feature is only

the configuration parameters that impact the map phase, and the second predictor

is used to predict the execution time of the reduce phase, where the input feature is

the configuration parameters that impact the reduce phase. After predicting the ex-

ecution time of the individual phases, they aggregate the individual times into the

total execution time. They use Random Sampling with a Hill Climbing algorithm

to explore the search space.

The tuning framework proposed by Zong et al. [79] targets optimizing the con-

figurations when multiple workloads execute concurrently on the same cluster. It

proposes a multiobjective optimization framework that optimizes execution time

and resource usage across the cluster. They propose a stacked neural network ap-
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proach to model the performance. Further, they use NSGA-II to solve the multi-

objective optimization problem.

To tune the configuration parameters of Hadoop, a tuning framework proposed

by Wang et al. [71] builds Random Forest-based performance models which can

separately predict the execution time for map tasks, reduce tasks and shuffle tim-

ings. Using an ensemble of regressors and a packing algorithm, it can predict the

total job execution time. Further, it uses a Genetic Algorithm approach to explore

the search space.

In the framework proposed by Chen et al. [25], the authors suggest breaking

down the total search space into a d-dimensional mesh using the Delaunay Trian-

gulation method. Then, for each d-dimensional mesh, they build a piece-wise lin-

ear regression model. To get the best samples for training the performance model,

Chen et al. propose an adaptive sampling method where they state that the proposed

method “heuristically searches the area with significant runtime changes and more

unknown configurations”.

The tuning framework by Wang et al. [69] aims to optimize both latency and

resource usage. It uses an ensemble of ML algorithms - Naive Bayes, Hoeffd-

ingTree, Online bagging, and Nearest neighbors. The framework models resource

usage with data-, plan-, operator-, and cluster-level features. They also propose an

outlier removal algorithm, increasing the training data quality. Using the ensemble

of regressors, they predict compute CPU & Memory usage, latency, and throughput

from a given data sample.

Next, we discuss the classification-based performance prediction models.

Classifier-based performance prediction models

Search space exploration algorithms evaluate a candidate configuration using per-

formance prediction models. In literature, some tuners have used classification-

based performance models which can predict if a given configuration can lead to

performance improvement or not. Some tuners in the literature also use classifiers

to predict the optimal configuration values.

The tuning framework proposed by Daud et al. [28] does not need re-training

performance models when the workload changes. This tuner is overengineered for
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Twitter link prediction workloads (Daud et al. specifically state “Graph Clustering

(GC), Overlapping Community Detection (OCD), and Redundant Graph Detec-

tion (RGD)” algorithms). The tuner’s core has an XGBoost classifier, which can

classify workload and resource consumption (of master and worker nodes) related

features to executors needed per node value. From the prediction (which is execu-

tors needed per node value), the framework use rules which can set the values of

other configuration parameters. No search-space exploration is performed here as

the classifier can predict the optimal configuration directly.

Jia et al. [48] propose a tuning framework that tunes the processor’s SMT con-

figuration for different Spark Workloads. This operates at the state level, where for

any given stage in a big data processing framework, it aims to predict the optimal

value of the SMT configuration. The operations of the tuning framework are split

into two phases. The first phase (offline) trains the prediction model where the fea-

tures are handpicked set of processor’s hardware counters, and the label is the SMT

configuration. Once it has the offline trained model, it integrates this model with

Spark’s internal hooks. These hooks get triggered once a stage starts execution. It

collects the processor’s metrics after collecting initial execution details from stage

execution and uses the prediction model to get an optimal value of the SMT.

The tuner proposed by Wang et al. [70] uses a Recursive Random Search to

explore the configurations and decision tree-based classifier as the performance

prediction model. The tuner uses two classifiers which helps it to perform search-

space exploration. The first is a binary classifier which predicts whether a configu-

ration value will improve performance. And the second is a binary classifier which

predicts how much improvement the given configuration value will yield. For the

second classifier, the labels are relative performance improvements (for example,

5% improvement, 10% improvement, 20% improvement, etc.).

The tuner proposed by Trotter et al. [66], uses Genetic Algorithm to explore

the search space. Further, instead of using a regression-based performance model

where regression-based models usually overfit (as per the workload), they train a

classifier that can predict whether a given set of configurations will lead to per-

formance improvement (binary classification). To generate the training dataset,

they use three workloads, SOL, WordCount, and RollingCount, where the config-

urations are sampled randomly. They label a configuration good if the measured
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throughput exceeds the default throughput by a certain margin.

Next, we discuss the performance predictions in Reinforcement style tuning

frameworks.

Performance predictions in Reinforcement style tuning frameworks

Ben Slimane et al. [19], propose a tuning framework that uses Reinforcement

Learning (RL) based Twin Delayed Deep Deterministic Policy Gradient (TD3)

algorithm. Here they use TD3 algorithm for tuning the tasks instead of DDPG.

Further, they propose to use three reward functions i.e.

1. The reward is decided based on the last performance of the agent.

2. The reward is based on the agent’s last and initial performance.

3. Where the reward is decided based on past performance, best performance,

and the initial performance of the agent

To find the optimal configurations for populating the configuration repository

by executing the workloads offline, the tuning framework proposed by Cai et al. [21]

uses a two-phase random search algorithm, a variant of a hill-climbing algorithm

for the global search. The global search uses Latin hypercube sampling to generate

the configurations. Followed by this, it uses a simulated-annealing algorithm for

local search. Once they generate performance data for all the selected workloads,

they build a similarity matrix (using the collaborative filtering approach) with per-

formance data (execution time) for all the configurations and all the workloads.

They use stochastic gradient descent (SGD) with singular value decomposition

(SVD) to fill in the missing values. Now they have the similarity matrix. Now

for the new job, they map it to the closest previous workloads by measuring the

relative standard deviation on the execution time.

Tuning framework by Genkin et al. [38] aims to assign resources to the YARN

containers optimally. It measures the response time of the containers by their total

execution duration. It receives the resource allocation requests for YARN contain-

ers and modifies them. With the modified resource requests, it creates containers

and executes the tasks. This mode (the Analyze mode) only observes and watches

for any significant performance variation in the container’s response time. If it finds
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one, it systematically explores the resource allocation parameters until it finds the

best setting.

Tuning framework by Perez et al. [60] uses a tuner that identifies and tunes the

resource bottlenecks of the systems. Specifically, they monitor and quantify CPU,

Memory, Disk, and Network resource bottlenecks and use this information with a

fuzzy controller to tune the values of the associated configurations. Further, they

use rule-based search-space exploration.

The tuner proposed by Krishna et al. [50] takes advantage of the fact that con-

figurations that lead to better performance are often nearby in the search space.

Hence, to use this fact, they propose to use the Evolutionary MCMC algorithm

to explore the search space accompanied by metropolis hasting. Here metropolis

hasting helps the explorer to make random jumps so that it does not always get

stuck in local minima or maxima.

This tuning framework proposed by Guo et al. [41] optimizes the overall plat-

form execution stack in three phases. In the first two phases, it optimizes system-

level and application-level configuration parameters; it uses a rule-based system (a

heuristic approach). After setting these values and experimenting with the under-

lying system with these values, they further optimize the system (for both system-

level and application-level configuration parameters) using a searching-based algo-

rithm. In this phase, they use a hill-climbing algorithm to optimize the configura-

tion parameters further. After configuring the system from the first two phases, they

get a base system performance and a default performance value. The hill climbing

algorithm uses the base system performance numbers to explore the search space.

In this section, we categorized and discussed the performance prediction mod-

els used by different tuning frameworks in the literature. This sets a context for

R1. Now based on the performance prediction types discussed in this section, we

further discuss the knowledge transfer challenges in the next section.

3.3 Knowledge transfer challenges
This section discusses the knowledge transfer challenges based on the previous

section’s identified set of performance prediction model types. To start with, we

first discuss the core aspects of knowledge transfer and then move on to discuss the
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challenges.

The knowledge transfer process involves two main steps:

1. Comparing the execution of the current workload with all workloads exe-

cuted in the past. Based on the comparison, the framework has to figure out

the closest workload in the past.

2. Reusing past tuning experiences. This can be done by either reusing the al-

ready trained model or reusing the observational data (generated while tun-

ing a similar workload) and training a new model.

Comparing workloads or workload classification/characterization has been at-

tempted by different tuning frameworks in the past, and we also investigate this in

the next chapter 5.

Reusing past tuning experiences is not as straightforward as it looks [34]. Re-

placing the performance prediction model with the past model (trained while tuning

a similar workload) does not guarantee that the replaced model will lead the tuner

to generate optimal configurations. The primary reason is that the current work-

load to tune might be similar to the past workload (with which the past model was

trained) but not identical. The second reason is that the models that were trained

in the past used influential configurations as features. This means the influential

configuration parameters for a previous workload may differ for a new workload.

The tuning frameworks in the literature that use GPR-based, Regression-Based,

and Decision Tree based performance models (as shown in Table 3.1) can easily

reuse the trained models from the past after figuring out similar workloads. How-

ever, in the worst case, the tuning framework might take more than double the

iterations and explorations for the replaced model to learn the new workload com-

pared to training a new model from scratch [77]. This problem arises when the

tuner picks a wrong model from the past and uses it to tune a new unknown work-

load. Though this is a complex problem to solve, some tuning frameworks have

tried minimizing the impact of the problem in different ways.

To avoid the above-mentioned problem, the tuning framework presented by

Fekry et al. [34] uses a multi-task Gaussian Process where each workload is mod-

eled as a separate task. For a new unknown workload, the framework models it as
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a new task. Once the framework identifies a similar workload (source task) seen

in the past for the target workload (target task), it starts exploring the source task.

It then trains the target task (defined over the significant parameters of the found

source task) using the new observations. The proposed acquisition function in the

tuning framework further maximizes the Expected Improvement of the source or

target task.

The same problem has also been addressed by the framework proposed by

Feurer et al. [36], where the tuning framework uses an ensemble of GP models,

which includes a source GP model (the model trained using observational data of

a similar workload) and a target GP model (the new model created for the target

workload). In this ensemble, the weights are assigned based on relative ranking

loss. This generalizes the ensemble across the models trained in the past and mod-

els trained when the workloads are executed on different infrastructures.

The tuning frameworks which use ensemble-based performance prediction mod-

els (as shown in Table 3.1) do not model end-to-end workload execution but instead

model individual stage-level execution. Any new target workload might or might

now have the same stage-level distribution. Hence, in the case of ensemble-based

performance prediction models, the tuning frameworks need to map individual ex-

ecution phases (or stages) to the stages seen in the past. Once the mapping is com-

plete, the tuning framework reuses the trained models from the past for every stage

and could form a new ensemble. This process becomes more challenging in the

case of Big Data Frameworks like Spark or Storm, where the workload execution

is divided into hundreds of stages. This is typically seen in ML-based workloads

in HiBench. With this method, the tuner’s insufficient experience (when the tuner

cannot find a similar execution profile from the past) will impact the convergence

and exploration process of new ensemble-based models.

Any RL-based [19] or MCMC-based tuner [50] could easily train the algorithm

by replaying the workload offline and then further reusing when a similar workload

has to be tuned. Further, once the offline trained model is used for tuning actual

workloads, the tuning framework can continuously update the model based on the

live observations by executing the workload [77]. The same approach could be

used for any search-based tuning framework which does not use a performance

prediction model.
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The classifier-based performance prediction models are divided into two fur-

ther sub-groups.

1. Using Classifiers to predict the optimal configuration - Tuning Frameworks

[28], [48] use a classification-based approach where the labels are configu-

ration parameter values.

2. Using Classifiers to predict the performance - Tuning Frameworks [70], [66]

use a classification-based approach to predict if a given candidate configura-

tion would lead to better performance compared to a base performance.

The classifiers that directly predict the optimal configuration value are trained

to learn the system’s behavior. This means they can predict the optimal config-

uration for any given workload. Hence, there is no need for knowledge transfer

required. The main problem with this approach is that it can predict the value for

only one configuration parameter. Also, it is expected that the configuration param-

eter that has to be tuned should be discreet or categorical. Predicting the optimal

configuration value when the configuration range is continuous would be challeng-

ing. Another challenge for this tuning framework is that the selection of features

(application-level metrics) needs to be done by an expert. The chosen features

should sufficiently quantify the system behavior for any workload.

The classifiers used to predict the performance can be replaced with classifiers

trained in the past using a similar approach described above. The challenges would

also remain the same.

3.4 Conclusion
ML-based tuning frameworks offer several advantages, such as treating the system

as a black box, leveraging past tuning experiences, and using performance predic-

tion models to explore the search space. The challenges arise when attempting

to leverage past tuning experiences due to the architecture and framework of the

performance prediction model. In this chapter, we summarized the performance

models used in the literature and presented the knowledge transfer challenges. This

chapter answers the research question (R1) presented in Chapter 2.

27



Some tuning frameworks do not rely on knowledge transfer and use different

mechanisms to amortize the tuning costs. The following section discusses config-

uration parameter pruning (one such mechanism used to amortize the tuning cost),

its pros & cons pruning, and the trade-offs. The next chapter aims to answer the

second research question (R2) presented in Chapter 2.
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Chapter 4

Configuration Parameter
Pruning and Challenges

With the increasing popularity of Big Data platforms, such as Apache Spark, man-

aging many configurations for optimal performance can pose a significant chal-

lenge. To address this issue, configuration pruning, also known as dimensionality

reduction, is used to eliminate configuration options that do not significantly im-

pact performance. This approach simplifies the system’s tuning and enhances its

overall efficiency.

However, it is essential to consider the different search-space techniques and

their respective trade-offs when implementing configuration pruning. Multiple

pruning techniques are available, each with its own advantages and disadvantages.

To make informed decisions, users must understand these trade-offs.

This Chapter examines the various search-space pruning techniques, their ben-

efits and drawbacks, and the trade-offs that users must consider when implement-

ing them in Big Data platforms, such as Spark. By providing insights into the

strengths and limitations of each technique, our study can aid users in selecting the

most suitable approach for their specific use case. This Chapter will answer the

second research question (R2).
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4.1 Introduction
Out of all the configurations of a Big Data processing framework, only a hand-

ful significantly impact the execution [35]. Hence, in the literature, multiple tuning

frameworks prune the non-influential configurations to reduce the search space [34,

35, 42, 51, 57, 60, 63, 79]. Different tuning frameworks use various pruning (di-

mensionality reduction) techniques.

Configuration pruning techniques require observational data which can increase

the cost of tuning, but once an influential set of configurations is found, it can re-

duce the search space and training time, creating a trade-off between tuning effi-

ciency and cost amortization. The configuration pruning techniques are statistical

and need some amount of observational data. This brings a trade-off between tun-

ing efficiency and tuning cost amortization. Tuning efficiency reduces if the config-

uration pruning techniques need more observational data (as the tuning framework

has to run multiple initial experiments to generate the observational data) to find

influential configuration parameters. At the same time, once the tuning framework

finds out the influential set of configurations, it can reduce the search space for

exploration, reducing the training time. However, if the pruning techniques need a

lot of observational data, amortizing the initial cost of generating the observational

data will become problematic. Many tuning frameworks opt for manually selecting

a bunch of configurations for tuning.

Our study finds that many tuning frameworks opt for manually handpicking a

set of configurations. Manually selecting configurations always has a risk of miss-

ing influential configurations. However, by manually picking the configurations,

the tuning framework gains an advantage in search space as its size is relatively

smaller than the search space with all the configurations. Further, we summarize

and discuss the different pruning techniques used in the literature.

In the next Section 4.2, we summarize and discuss the pruning techniques used

by different tuning frameworks.

4.2 Summarizing the pruning techniques
We summarize all the pruning techniques with the respective challenges in Ta-

ble 4.1.
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Table 4.1: Summarizing the configuration pruning techniques

Approach Pruning Techniques Challenges

[42] Genetic Algorithm Mutation Needs sufficient size of
using Gini’s Importance score observational data

[79] Statistical Significance test using Needs sufficient size of
Gini’s Importance score with p-value observational data

[34, 35] Approximating Gini’s Importance score Needs sufficient size of
using Recursive Feature Elimination observational data

[60] Prunes the non-influential configurations Needs solid understanding of
using Resource Bottleneck scores configurations per resource

bottlenecks

[51] Significance analysis using Needs sufficient size of
t-values and p-values observational data

[63] Finds out configuration dependencies Needs solid understanding
using execution cost models of systems internals

[57] Finds out dependencies manually Needs solid understanding
for pruning non-influential configs of systems internals

[56] Manually prunes the configuration Needs solid understanding
based on workload classification of systems internals

[30] Manually prunes the configurations Needs solid understanding
as per the stage type of systems internals

[39] Manually explores the entire search Hard to scaled when
space to prune configs configs are in hundreds

Different works in the literature use Gini’s importance score to rank the con-

figurations and then prune the non-influential ones. The traction toward Gini’s

importance score was mainly because it can rank the configurations as per their

importance using a minimal size of observational data. Gini’s score also works

well because the majority of configurations of Big Data frameworks are categor-

ical. This fact suits the Decision Tree based regressors the most [77] and is used

for computing the importance scores. This configuration ranking method must also

trade off between tuning efficiency and tuning cost amortization. This is because
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computing the Gini’s score involves training a decision tree-based meta-model,

which requires observational data. Ginis score can be used to rank the configura-

tions. Different tuning frameworks have used it differently.

Guo et al. [42] use Genetic Algorithm (GA) to explore the search space. The

tuning framework does not explicitly prune out the non-influential configurations

in this work. Instead, the GA implicitly uses the Gini’s importance scores. While

selecting the next set of candidate configurations to explore, the GA uses the impor-

tance score in the mutation phase. This also speeds up the convergence. Using both

p-value and Gini’s importance score-based measures in the tuning framework [79]

can help identify and prune non-influential configurations, improving the efficiency

of the tuning process.

Zong et al. [79] use both p-value and Gini’s importance score-based measures

to find the influential configurations. To detect the configurations that do not im-

pact the execution, they do null-hypothesis testing by finding out the p-values of the

configurations. Further, the configuration whose p-values are less than a specific

threshold is pruned in this phase. Further, the framework finds the Gini’s impor-

tance score among the selected configurations and prunes the configurations with

a score less than a defined threshold value. Linear Regressors are tools that help

in computing the p-value. To identify the most effective features for predicting job

performance, Lama and Zhou [51] employ a stepwise linear regression technique.

It uses a systematic approach to prune the configurations from the performance

prediction model based on the statistical significance. This approach recursively

computes the parameter’s importance scores using the p-value of a t-statistic. In

this approach, they define certain thresholds to reject the null hypothesis (i.e., con-

figurations with p-value less than a threshold are pruned). The proposed statistical

approach also needs observational data and has to trade off between tuning effi-

ciency and cost amortization. Gini’s importance score is computed using Decision

Tree based regressors. Tuneful’s [35] approach of approximating the Gini’s impor-

tance score with Recursive Feature Elimination (RFE) provides an efficient method

to manage the trade-off between tuning efficiency and tuning cost amortization, al-

lowing for a reduction in training time and computational resources.

To manage the trade-off between tuning efficiency and tuning cost amortiza-

tion, Tuneful [34, 35] proposed a method to approximate the Gini’s importance
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score or feature importance with Recursive Feature Elimination (RFE). Tuneful’s

approach takes advantage of the fact that non-influential knobs will have little ef-

fect on the outcome, for which even a rough approximation of the meta-model’s

prediction would be enough. These techniques compute the feature importance at

a global level (i.e., for all the data points from the training data and not individ-

ually for every data point or observation) based on the decrease in meta-models

performance (like - a decrease in RMSE, model impurity, etc.). Search space can

be explored in an easy way when similar configurations are grouped. Gini’s impor-

tance scores do not give any information about the dependencies of configurations,

or configurations that represent a specific subsystem of the Big Data framework.

The PETS [60] groups organize 18 parameters into different ensembles where

each ensemble affects the workload execution in a specific way. This allows mul-

tiple parameters to be adjusted in certain directions. The framework forms eight

groups or ensembles, each indicating a possible direction for adjustment. Perez

et al. explain the adjustment process as - “As such we elaborate on a total of eight

groups/ensembles, indicating two possible directions (increasing or decreasing) for

four different resources (CPU, memory, network and disk)”. Further, they use

a fuzzy controller and resource bottleneck scores to narrow the search-space ex-

ploration to specific parameters per the identified bottleneck. They compute the

resource bottleneck scores by averaging the scores across the nodes in a cluster

based on the fraction of total tasks executed on the specific node. The problem

with this approach is that it needs an excellent understanding of the configurations

per the resource bottlenecks. Hence, this approach cannot be entirely categorized

as a block-box approach. The statistics gained from the execution model of a Big

Data framework like Hadoop can also be used to infer optimal values of specific

configurations.

In MRTuner [63], authors propose to use the execution model to find the opti-

mal values for four key parameters. Using this, they further derive the dependen-

cies between the configurations. With the dependencies, the framework reduces the

search space. This approach can be used specifically for frameworks like Hadoop,

but extending it to other frameworks like Spark or Flink isn’t easy. This is because

their proposed execution model is built based on the Map and Reduce execution

stages. At the same time, other frameworks like Spark can perform workload
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execution using any number of stages and not just map and reduce. One of the

problems with this pruning technique is that it needs a solid understanding of the

system internals and is more inclined towards a gray-box approach. Some works in

the literature showcase the benefits that a tuning framework can achieve if it knows

the dependencies between the configurations.

Liu et al. [57] propose a pruning strategy that first finds out the set of parameters

which can be independently searched and further divides the exploration process

accordingly. And then, the framework further recursively performs a similar search

(in parallel) across the newly created sub-search spaces to find the influential con-

figurations and prunes the non-influential ones. This framework also needs a good

understanding of the system internals to determine the dependencies. Apart from

pruning strategies, workload characterization can also help in reducing dimension-

ality.

The tuning framework proposed in Gunther [56] classifies any given applica-

tion into four classes. For classifying applications, authors selected specific metrics

that can help quantify the resource bottlenecks in Hadoop. Further, they use thresh-

old values for the metrics to group the applications. The authors manually prune

specific configuration parameters based on the classified group to which the appli-

cation belongs. For example, if the application is classified into the group which

signifies a low shuffle intensity, then most of the parameters that impact the Shuf-

fling behavior can be pruned out. The pruning of non-influential configurations is

a manual process based on understanding and human experiences. As Big Data

frameworks execute the workloads in stages, it is observed in [30] that configura-

tions that impact specific stages can be grouped.

Jellyfish [30] reduces the search space by grouping the configuration parame-

ters into two groups, i.e., map-phase relevant configurations and reduce-phase rel-

evant configurations. They group the configurations based on the understanding of

the documentation. This framework also follows a manual pruning process based

on understanding and human experiences. With a limited set of configurations,

Gounaris and Torres [39] filters out the non-influential configurations by manually

exploring the configurations.

The tuning framework proposed by [39] [39] gains a significant advantage from

its proposed knob pruning method. Based on its experience, it initially picks up
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Spark’s top 15 configuration parameters. Then it manually finds the highly impact-

ing parameters by executing all possible configuration pairs. They select the top

nine configuration parameters using a systematic approach and the generated ob-

servational dataset (from the experiments). They find the best configurations from

three workloads and use the best set for new workloads. This framework assumes

that dependencies (among the configurations) only exist in pairs. However, static

analysis tools like [24] and documentation mention that dependencies can exist

across various configurations, not just pairs.

In the next section, we conclude this Chapter.

4.3 Conclusion
While configuration pruning techniques can effectively reduce the search space

and training time of Big Data processing framework tuning, they require observa-

tional data and bring a trade-off between tuning efficiency and cost amortization.

Many tuning frameworks opt for manually selecting a set of configurations, which

has a risk of missing influential configurations but gains an advantage in search

space. The literature presents various pruning techniques, which we summarize

and discuss in this study.

The set of influential configurations can be the same for similar workloads.

However, figuring out similar workloads can be challenging. Hence, in the next

Chapter, we explore the workload characterization techniques, which specifically

aim to answer the third research question (R3) (from Chapter 2).
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Chapter 5

Workload Characterization
Methods

With unprecedented data volume growth, big data workloads are becoming increas-

ingly diverse and complex [77]. Understanding and characterizing these workloads

are crucial for efficient resource allocation, capacity planning, and performance

optimization [43]. Workload classification categorizes similar workloads based on

their characteristics, which helps identify suitable previously learned ML models.

To classify big data workloads, researchers have proposed various techniques and

features. This Chapter investigates the present state-of-the-art workload classifi-

cation methods, focusing on the techniques and features used to characterize and

classify big data workloads. In particular, it aims to answer the third research ques-

tion (R3) from Chapter 2.

5.1 Introduction
Big Data frameworks execute applications where different metrics are available at

different layers of the execution stack that show variations with statistical signifi-

cance. These variations can be used to define similar workloads. Big Data frame-

works execute applications that process massive volumes of data. The execution

occurs in stages where the stage executions are part of the physical execution plan.

Metrics available at different layers (i.e., Kernel, JVM, Application, etc.) show
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variations when the applications execute. These variations are statistically signif-

icant when different applications execute and when individual stages of different

applications execute. In literature, workloads are defined in terms of the statisti-

cal significance observed across different layers of metrics. Two different jobs are

considered similar workloads if the observed metrics variances are statistically the

same [37]. Selection of features (that define a Big Data workload) should be per-

formed in such a way that the variations in the features should be as minimum as

possible when the same instance of workload is executed multiple times and should

be maximum when a different workload gets executed. [32].

The selection of physical and logical features in defining a Big Data workload

defines its scope. Two workloads that look similar when using one set of metrics

might look different when using another. Multiple works in the literature use phys-

ical features like metrics variations to define a workload. However, some works

also use logical features like execution plans, features extracted from the execution

profile, etc., to define a workload [75]. And some works use logical and physical

features to define workloads [32]. In any definition of a Big Data workload, the se-

lected features define its scope. For example, a workload defined over the metrics

exposed by the Big Data processing framework has a lesser scope than a workload

defined over the metrics exposed by both the OS kernel layer and Big Data pro-

cessing framework. This also means two workloads that look similar when using

the Big Data framework metrics might look very different when using the kernel

metrics [72]. ML-based tuners are better than others as they can save time and

costs by transferring knowledge from past workloads. The process of characteriz-

ing workloads is crucial for optimal knowledge transfer.

The workload characterization process is crucial for ML-based tuners to opti-

mally map the current workload to a similar workload in the past to transfer knowl-

edge and save time and tuning costs. ML-based tuners are better than other tuners

because they can transfer knowledge and save a lot of time and tuning costs. We

mentioned the challenges of knowledge transfer in Chapter 3.3. A tuning frame-

work has to find a workload from the past that very closely resembles the charac-

teristics of the current executing workload. This mapping of the current workload

to a workload from the past has to be done optimally so that the tuning framework

can use knowledge or learning from the past. In literature, mapping the current
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workload to a similar workload in the past is referred to as the workload charac-

terization/classification process [34, 68]. The workload characterization process

groups the workloads that exhibit similar variation patterns in the features (logical

or physical). The workload characterization process is critical for an ML-based

tuning framework to accurately detect a workload change that may arise due to a

change in data size, executing application, application code, logic, or the underly-

ing software or hardware stack.

For an ML-based tuning framework, the workload characterization process is

expected to detect a workload change and map a current workload to the optimal

one. To detect workload change, tuning frameworks often compare the features

obtained from every single execution of the workload. The core challenge for the

tuning framework is accurately detecting a workload change. A workload change

can happen for the following reasons [37]:

1. When the data size that the workload is executing significantly changes.

2. When the executing application changes (for example, an OLAP workload

changes to an OLTP workload).

3. When the application code or logic changes. This might cause a change in

the execution plan.

4. When the underlying software or hardware stack changes.

We summarize the different approaches and features used in Table 5.1.

Many works in the literature have preferred physical features over logical ones.

This is because it is easy to detect workload change with physical features com-

pared to the logical features [37, 72]. Hence, we first describe the different features

that the tuning frameworks have used in the literature (Section 5.2) to define work-

load and then discuss the workload characterization techniques (Section 5.3).

5.2 Features used for defining workloads
This section presents the different features used in the literature to quantify the

workload execution behavior on Big Data frameworks.
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Table 5.1: Summarizing the workload characterization features and tech-
niques

Approach Input Metrics Characterization Techniques

[37] yarn-Container level Sliding Window
[72] job and micro-architectural level Benchmark Similarity Matrix
[48] micro-architectural level XGBoost Classifier
[22] resource utilization & Hadoop counters MLP Classifier
[56] Hadoop counters Thresholding based
[51] resource utilization LCS & K-Medoid
[50] System Calls Jaccard Index
[34] Spark stage level AE & Euclidean distance
[28] workload properties & cluster level XGBoost Classifier
[75] Spark stage DAG Graph Edit Distance

Genkin and Dehne [37] measures the system performance metrics and Yarn

container metrics. They measure the system performance metrics using nmon and

the Yarn container metrics using KERMIT logs [38]. Some Yarn container metrics

include the number of containers created, average active memory, average con-

tainer response time, etc. They convert the observed metrics to a time-series dataset

and characterize the workload. Genkin and Dehne define workload as if it can be

“used to represent any continuous sequence of observation windows with feature

vectors that do not show any statistically meaningful differences.” [37]. Using job-

level and micro-architectural metrics allows for a more granular understanding of

system behavior, which is essential for accurately characterizing workloads and

improving tuning performance.

Yu et al. [72] use a set of job-level and micro-architectural-level metrics. These

metrics quantify the system behavior at the granularity of the application level. The

job-level metrics are chosen to quantify the amount of input and output data, com-

munications at the job level (shuffles), and processing & execution. Similarly, the

micro-architectural-level metrics are collected to quantify the performance at the

processor level for every worker node in the cluster. These metrics are collected at

every node and then aggregated globally. Similarly, Jia et al. [48] only measure the

simultaneous multi-threading (SMT) features (micro-architectural-level) to define
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a workload. They precisely measure 11 performance events using the Per f tool

to observe the SMT behavior accurately. The system metrics and job counters are

collected from different computing resources to quantify the workload execution

behavior.

Chen et al. [22], the tuning framework collects system metrics and Hadoop

counters for workload characterizations. The system metrics are collected from

computing resources like CPU, Memory, Disk, and Network. Many tuning frame-

works assume that the best set of metrics that quantify the workload execution

comes from the application layer (the Big Data processing framework layer).

The Hadoop counters measure the job execution details (precisely the runtime

behavior) at the Yarn layer. Similarly, Liao et al. [56] use five specific job counters

to measure the shuffle intensity, and the amount of data read and written to HDFS.

The tuning framework uses these five metrics to quantify a workload in this work.

Some of the tuning frameworks in the literature rely on the assumption that re-

source utilization patterns serve as a good way of quantifying workload execution

on Big Data frameworks.

Lama and Zhou [51] use metrics to measure the resource utilization patterns

of the workload execution. They assume that the applications that exhibit similar

resource utilization patterns can be tuned using the same performance prediction

model. They precisely measure the resource utilization (i.e., CPU, disk, and net-

work usage on all the worker machines using dstat). Based on the same assump-

tion, Krishna et al. [50] profile the runtime behavior using system call traces. Fur-

ther, they extract features from the system call traces measured across all worker

nodes. The actual execution of workload in Big Data frameworks follows a stage

execution model where the workload is executed in stages. Some of the tuning

frameworks in the literature use stage-level metrics to quantify workload execu-

tion.

Unlike Hadoop’s MapReduce, Spark’s execution can be divided into several

hundred stages. Fekry et al. [34] measure the applications execution behavior by

aggregating the stage-level metrics. These metrics are exposed by Spark and are

available for every stage. The stage-level metrics are intended to precisely capture

the shuffle overhead, CPU overhead, serialization overhead, memory overhead, and

garbage collection overhead. Big Data frameworks execute the workloads using
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clusters of physical machines. The cluster-specific metrics also help in quantifying

the workload execution.

Daud et al. measure the applications properties and cluster metrics using “mas-

terMemory, masterCore, workerNode, workerMemoryNode, workerCoreNode, data-

Size, applicationComplexity and memoryCapacity” [28]. However, these metrics

are used only to study the behavior of executing Twitter’s link prediction work-

loads on Spark. Stage DAGs (execution plans) are easy to model the Workloads.

Using the stage DAGs, the workload comparison also becomes easier.

Zacheilas et al. [75] exploit that two workloads must be similar if their re-

spective stage graphs are similar. Hence, they directly compare the stage graphs

generated by the DAG scheduler in Spark to compare the two workloads.

Next (Section 5.3), we summarize and discuss the workload characterization

techniques used in the literature by different Big Data tuning frameworks.

5.3 Techniques used for workload characterization
This section presents the different workload classification techniques used in the

literature to categorize Big Data workloads.

In [37], authors define workload change in terms of:

1. Workload cycles: shifts caused by a change in usage pattern (i.e., read heavy

to write heavy).

2. Workload drifts: shifts characterized by long-term change. Changes in user

volume can cause changes in data volume or changes in underlying software

or hardware infrastructure.

3. Workload anomaly: shifts characterized by sudden, abrupt, short term and

random variation in usage pattern.

4. Workload transition: deeper in granularity, at the level of stages in the big

data framework.

The architecture proposed by Genkin and Dehne [37] introduces a multivariate

observation window that moves over time series data. The observation window is
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combined with analytical sliding windows with feature vectors as mean and stan-

dard deviations of individual metrics. They statistically characterize a change in

the observational workload pattern based on the changes observed in the feature

vectors of the analytical sliding window. The overall workload of a big data frame-

work is statistically defined as an observation window with a steady-state period

(represented by an analytical sliding window) connected to other non-steady-state

periods. Here non-steady state periods are the same as the workload transition

defined above. For example, in a map-reduce workload execution, the steady state

periods would be the sliding window capturing the execution of the map and reduce

phase. In contrast, the transition phase from the map would characterize the non-

steady state period to reduce. On a high level, they define a workload change detec-

tor which classifies analytical sliding windows into a steady state or a non steady

state. This component to mark any significant difference between the given sliding

windows performs a set of statistical significance tests. They use a random forest

ensemble as a workload classifier to classify steady-state observational windows

to workload sub-types. Further, using a transition classifier with the same random

forest ensemble method to figure out long-term or short-term workload transitions

from non-steady state analytical windows by computing the rate of change of fea-

ture vectors. Finally, they use a workload predictor using the LSTM approach to

find the temporal dependency in the time-series sliding window data. These tech-

niques are specifically designed for system performance metrics and Yarn container

metrics and might not work with job-level and micro-architectural-level metrics.

For the job-level and micro-architectural-level metrics [72] authors, try to quan-

tify the system behavior at the granularity of the application level. They introduce

two new metrics for comparing the benchmarks or workloads: Metrics Importance

Analysis based on Benchmark Similarity Matrix (BSM) and Kiviat plots. For both

metrics, the first step is to compute the importance of metrics. For this, the au-

thors use Gini’s based importance score. Then they compute the important metrics

for all workloads and rank them. These important metrics are then used to plot

the Kiviat plot using which the authors compare the workloads. Also, they use

the same important metrics and compute the Manhattan distance to find the BSM.

Similarly, Jia et al. [48] use micro-architectural-level metrics to define workload.

And further, they train an XGBoost-based classifier to directly predict the SMT
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configurations’ optimal value. They train the classifier with training data generated

from the execution of many different workloads. When a new/unknown workload

starts execution, the trained classifier implicitly maps the new metrics data to the

closest workload and predicts the optimal configuration. A similar approach has

been seen in [28] where the tuning framework uses a classification model (trained

using many different workload execution data) to implicitly map the new metrics

to the closest workload. Some works in the literature have used a simple classifier

to classify the workload with labels.

Chen et al. [22] train a Multi-Layer Perceptron (MLP) based Neural Network

classifier offline using the workload execution data. They generate the training

data created for every workload by labeling each data point with its respective

workloadId. For generating the training data, they execute the workload on a spe-

cific testbed setup using a minimal dataset. Some works [56] in the literature create

a set of rules to classify/characterize workloads. Instead of a classification engine,

tuning frameworks have used a manual set of rules [56]. Liao et al. [56] classify the

workloads using manually created rules. Here the rules are the thresholds defined

for the specific metrics. The classification frameworks do not specifically consider

the noise generated by resource contention (in the observational data) while work-

load execution.

To quantify the resource usage at the job level [51], authors aggregate the time-

series data by taking the average. Further, they use the Longest Common Subse-

quence (LCS) based distance metric and group similar jobs together using the k-

medoid clustering approach. Another motivation to use the LCS distance metric is

that it works better even with noise created by resource contention (when multiple

jobs execute). Besides using the application and kernel-level metrics to measure

resource utilization, system call traces can quantify resource usage patterns.

To assess how similar resource usage patterns are, Krishna et al. [50] employed

a method that involves converting system call trace records to a four-tuple dataset.

The first tuple in the dataset represents the system call sequence, while the sec-

ond tuple counts the categorical arguments across all system calls. The third tu-

ple quantifies the term frequency and counts the categorical arguments for every

system call, and the fourth tuple computes the numerical arguments mean in the

system calls. To measure the similarity between two workloads, the Jaccard Index
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is used as a metric, which has been previously utilized for comparing sets. The

high dimensionality of the metrics presents challenges for workload classification

or characterization.

To model the workload execution data, authors in Fekry et al. [34] convert the

aggregated high dimensional stage-level execution data to lower dimensions using

Auto Encoders. Further, to quantify the similarity between any two workloads,

Fekry et al. [34] measure the Manhattan distance between the lower dimensional

vectors. The above-mentioned techniques cannot find workload similarity when

modeled using the graph data structure.

To find similar workloads for a given new workload, Zacheilas et al. [75] mea-

sure the dissimilarity score using the Graph Edit Distance (GED) on the physical

execution plan (stage graphs). GED has been used in literature to find the similar-

ity between two graphs. Authors initially assume the two graphs are the same and

then find the dissimilarity by measuring the cost to delete a stage from the stage

graph modeled as Delete Stage Cost (DSC).

5.4 Conclusion
The effectiveness of configuration tuning of Big Data frameworks relies on the

precise characterization and classification of workloads, achieved through analyz-

ing various features across different layers of the execution stack. Workloads can

be defined based on physical features, such as metric variations, logical features,

like execution plans and profiles, or a combination of both. The choice of fea-

tures needs to be made cautiously, considering the workload’s scope and variances

among multiple executions of the same or different workloads. ML-based tuning

frameworks are preferable because they transfer knowledge, minimize time, and

save costs. Nevertheless, accurately detecting a workload change is challenging

for these frameworks, with physical features being preferred over logical ones.

This Chapter presents an overview of the features used to define workloads and the

workload characterization techniques employed in the existing literature.

Based on the diversity of workloads and different tuning frameworks in litera-

ture, designing a tuner benchmarking or evaluation strategy is challenging. Hence,

in the next Chapter 6, we survey the benchmarks and metrics used in the literature
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to evaluate the tuner’s performance.
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Chapter 6

Benchmarking Tuning
Frameworks

Tuning Big Data processing frameworks is a challenging task that has led to the de-

veloping of various automated tuning frameworks in the literature. Effective evalu-

ation of these frameworks’ performance necessitates identifying and using suitable

benchmarks and metrics. This Chapter explores the literature and highlights the

different benchmarks and metrics used to assess the tuning of Big Data processing

frameworks. Specifically, this Chapter answers the fourth research question (R4
from Chapter 2).

6.1 Introduction
As discussed in Chapter 3, the main components of ML-based tuners are a search-

space explorer engine, performance prediction model, workload mapping engine,

and configuration pruning engine. This section discusses how different approaches

in the literature have evaluated proposed tuning frameworks. Specifically, in this

Chapter, we survey the metrics and benchmarks used to evaluate the tuning frame-

works and some of their core components.

Next, we present how the performance prediction models are evaluated in Sec-

tion 6.2, the configuration pruning in Section 6.3, the search space exploration in

Section 6.4 and the end-to-end tuning in Section 6.5.
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6.2 Evaluating the performance prediction models
Performance Prediction Models are ML models trained to learn the impact of a

configuration change on the system. Here the features are the configurations or

specific system metrics and workload characteristics, and the outcome is a perfor-

mance metric. The performance metric varies based on the underlying Big Data

Framework to be tuned. For example, for batch processing systems, the outcome

is mostly end-to-end execution time or system resource utilization, whereas for

streaming systems, the outcome could be throughput or latency. This section fo-

cuses on the metrics used to evaluate the performance prediction models.

Root Mean Square Error (RMSE) has been used by Zacheilas et al. [75] and

Lama and Zhou [51] to quantify the prediction error. The frameworks use stan-

dard cross-validation mechanisms to evaluate the RMSE of the regression model.

Similarly, Mean Squared Error (MSE) has been used by Gu et al. [40], and Bei

et al. [18] to evaluate the regression models. In the case of RMSE, it is measured

using the same unit as the outcome variable. However, MSE is used to penalize

the more significant errors more severely. These metrics measure the actual error

instead of using a percentage scale.

Wang et al. [69] use Relative Absolute Error (RAE) to evaluate the regression

model. The RAE compares the mean error with the actual error. Mean Absolute

Percentage Error (MAPE) has also been used to evaluate the regression models [23,

25, 69, 71]. This metric is more often used as the scale used is a percentage.

Like MAPE, some works [18, 22, 26, 42, 73, 79] use error percentages to evaluate

the regression models. These metrics can evaluate regression-based performance

prediction models and will not work when the performance prediction model is a

classification model.

We also observed that some of the tuning frameworks in the literature use clas-

sification models as performance prediction models (Table 3.1). Instead of predict-

ing the actual performance numbers, the classification models can predict whether

the given features (configurations) would lead to performance improvement. This

could be a binary or multi-class classification where the class labels are expected

to performance improvement (in percentage scale). Also, some tuning frameworks

use classifiers to directly predict the optimal values of specific configuration param-
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eters. Accuracy, precision, F1-score and Recall has been used [22, 28, 48, 66, 70]

for evaluating classification based models. Generating observational data for train-

ing performance prediction models is costly as the tuning frameworks need to per-

form experiments on the target system. Hence, Guo et al. [42] propose to create

and evaluate synthetic observational data.

Guo et al. [42] use Generative Adversarial Networks (GANs) to generate syn-

thetic data that the performance prediction models can consume. To evaluate the

effectiveness of the generated synthetic data, authors visualize and compare the

distribution of generated synthetic data with ground truth data. For this, authors

use 3d-Kiviat plots.

The next section presents the metrics used to evaluate configuration pruning

(dimensionality reduction).

6.3 Evaluating configuration pruning engines
Tuning Frameworks sometimes use configuration pruning engines to prune the

non-influential configuration parameters [35] to reduce the search space. Once

the search space is trimmed, it is easier for the configuration explorer to search

for the optimal configurations. Evaluating the configuration pruning is difficult for

unknown (production) workloads because of the absence of the ground truth about

the actual influential configuration parameters for the unknown workload. Eval-

uating configuration pruning is easier if the tuning framework knows the ground

truth.

Fekry et al. [35] first use a huge set of observational data (generated offline by

randomly setting the configurations) to find the ranking of the configurations and

term it as ground truth. Using the ground truth, they evaluate the performance of

the tuning engine when it is used with minimal observational data. They compute

the accuracy to evaluate the pruning engine. The accuracy is computed using the

ranking produced by the pruning engine. Using the ranking, the tuner finds the

significant configuration parameters and non-significant parameters. The authors

compute the accuracy based on the computed significant and non-significant pa-

rameters and the ground truth data. It is difficult to evaluate the ranking of the

influential configuration parameters using accuracy.
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Bao et al. [16] define Discounted Cumulative Gain (DCG) to evaluate the qual-

ity of ranking for the configuration pruning engine. Given a set of significant con-

figurations (n) and their respective ranking (r), ranked in the order of the impor-

tance score (calculated using Gini’s importance), the DCG is described as follows:

DCG =
n

∑
i=1

2reli −1
log2(i+1)

(6.1)

Here reli is the graded relevance of the configuration i. Authors in [16] used

this metric to compare the DCG of the ranked configurations generated by the tuner

with the ground truth.

Search Space pruning inherently helps search space exploration by filtering

out non-effective regions. Evaluating the search space pruning is different from

assessing search space exploration. In the next section, we present the metrics

used to evaluate the search space exploration process.

6.4 Evaluating search space exploration
The search space exploration algorithm is responsible for exploring the configu-

rations to find the optimal one within the fewest possible iterations. The search

space exploration algorithms use performance prediction models to evaluate can-

didate configurations. In this section, we present the different metrics used in the

literature to assess the search space exploration process.

Fekry et al. [35] use the searching time as the metric to evaluate the search

space exploration. Using this metric, the authors measure the total search time un-

til the explorer finds the best configuration. In the literature, convergence has been

widely used to evaluate the effectiveness of search space exploration. Previous

works [34, 35, 42, 79] use convergence (best execution time vs. total iterations) of

the tuner to evaluate the search space explorer. Similarly, to measure the conver-

gence, Perez et al. [60] normalizes the iterations based on the iterations it takes for

a baseline tuner to converge. Convergence evaluates the search space exploration

and the performance prediction model. This is because finding the best execution

time with the least iterations is a function of both search space exploration and

learning of the performance prediction model.
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Apart from evaluating different sub-components of the tuning frameworks, it

is also essential to assess the end-to-end tuning. Hence, in the next section, we

survey the overall tuning efficiency (or end-to-end tuning efficiency).

6.5 Evaluating the end-to-end tuning performance
Any tuning framework aims to find the optimal configuration in the fewest iter-

ations. This results in better scores on the outcome metrics. However, the tuner

performs many experiments (by setting the configurations) to learn the workload

execution behavior of the underlying system. This is the tuning cost [35] which

the tuner incurs in the initial runs and is expected to amortize once the learning

is complete. Some of the tuners which tune the infrastructure configurations, like

the number of VMs, the size of VMs, etc., can easily suggest higher configurations

where the workload execution becomes faster, but the infrastructure cost increases.

Due to this, various metrics have been discussed in the literature, which we sum-

marize in this section. We also summarize the benchmarks and workloads these

tuners have used to understand a tuner’s applicability and scope.

The end-to-end performance metrics vary for different Big Data frameworks.

For example, stream processing frameworks’ outcome metrics are often through-

put or latency, whereas batch processing frameworks’ outcome metrics are total

execution time. Due to the difference in outcome metrics, benchmarks vary for

different frameworks. In the next section, we present the metrics used by tuning

frameworks that aim to tune the Big Data streaming frameworks.

Metrics used for evaluating the streaming frameworks

Streaming frameworks like Apache Storm, Heron, and Flink follow a per-record

execution model [77] and care about higher throughput and lower latency. There

are also streaming systems like Spark streaming, which process the workload in

micro batches (or batched streaming model). Typically the throughput is higher in

the batched streaming model than in per-record processing frameworks.

Previous works [42, 69, 74] have used 99th percentile latency to measure the

system performance. In a stream processing system, when the 99th percentile la-

tency is recorded as x seconds, it means that 99% of the records or micro-batches
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Table 6.1: Summarizing the streaming workloads and benchmarks

Workload Benchmark Used in

Bus Traces collection of traces [74]
ClickStream extended [52] [64]
FixWindow HiBench [5] [42]
Streaming WordCount HiBench [5] [42, 53, 65, 66, 69]
Repartition HiBench [5] [42]
Identity HiBench [5] [42]
Traffic Monitoring Manually Created [69]
Yahoo Ads Streaming Benchmark [12] [42]
Log Stream Storm Benchmark [10] [53]
SQL Queries Storm Benchmark [10] [53, 65, 66]
Rolling Count Storm Benchmark [10] [65, 66]
TPC-H Spark Cyclone [3] [69]

were processed in under x seconds. Similarly, performance gains are measured

using throughput. Some of the previous works [42, 53, 65, 66, 69] use throughput

for measuring the performance gain. Guo et al. [42], propose a framework that

measures the throughput in events (graph operations) per second. Similarly, some

works use [65, 66, 69] tuples per second to measure the throughput. Likewise, Trot-

ter et al. [66] also measures the normalized (compared to the throughput obtained

by the baseline tuner) throughput to understand the system’s performance. Tuner

efficiency can also be measured by the total search time for optimal configurations.

Trotter et al. also measures the total runtime for the tuner to find the optimal con-

figurations. The total time also inherently signifies the tuner’s convergence (take

taken for the tuner to converge). Apart from searching time, the optimal configu-

rations obtained from a tuning framework can also lead to side effects, such as an

increase in error rate, etc.

Stream processing systems might miss records or tuples when the incoming

rate peaks. Hence, Zacheilas et al. [74], measure the tuples missed over the time

tuner finds the best configurations. The tuning framework proposed by Zacheilas

et al. [74], adjusts the total number of engines which process the records. Hence it

is essential to measure the total cost and resource utilization [69].

We summarize the workloads and benchmarks used for evaluating tuning frame-
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works that tune the stream processing systems in Table 6.1. As per the findings, we

observed that HiBench had been used by most of the tuning frameworks, followed

by Storm Benchmark. Regarding workload, it is clear that Streaming Wordcount is

the highest used workload from HiBench by different tuning frameworks. And fol-

lowed by Streaming Wordcount, other highly preferred workloads are SQL Queries

and Rolling Count.

In the next section, we present the different metrics used in the literature for

evaluating tuning frameworks that tune batch-processing Big Data frameworks.

Metrics used for evaluating the batch processing frameworks

The batch processing systems like Apache Spark and Hadoop process the data and

execute the workloads in stages. Hadoop executes the data in a map and reduce

stages, whereas the Spark processing framework executes the workload in multiple

stages. If there is no dependency between the stages, Spark executes them in par-

allel or serially. Typically in batch processing systems, workload execution time

may vary from minutes to several hours [29]. Hence, the most important end-to-

end metric is total execution time. However, SQL workloads that execute queries

can also be interested in observing the system’s overall throughput.

Cumulative execution time [21, 34, 35, 50] helps visualize tuning cost amorti-

zation. Any ML-based tuner initially incurs the cost of training performance pre-

diction models, which must be amortized after training. Cumulative execution

time helps in the visualization of the amortization process. However, visualizing

the overall gains achieved using different configurations is challenging to visualize

using the cumulative execution time metric.

Some of the tuning frameworks [16, 38, 50] use execution time improvement

percentages to measure the end-to-end performance gain. They compute the im-

provements (gain in execution time) caused by the tuner’s best-recommended con-

figuration and convert it to a percentage by comparing it with the execution time

achieved with a baseline tuner. To evaluate the best-recommended configuration

(after the tuner converges) from the tuner, many works in the literature have mea-

sured the execution time. Raw execution time achieved from a tuner’s best config-

uration is also used to compare the efficiency of different tuners [18, 19, 21, 22, 25,
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26, 31, 34, 38, 40, 41, 70, 71, 73, 79]. Some tuning frameworks [22, 38, 48, 60]

measure the execution time by normalizing it using the base execution time (base

execution time is achieved using a base tuner or default configuration). Similarly,

some of the works [23, 32, 39] measure the speedup compared to the execution

time achieved using the default configurations to evaluate the best configurations

found by different tuners. Apart from the end-to-end execution time, some works

in the literature have used stage-specific distributions to visualize and evaluate the

impact of an obtained configuration on different stage execution times rather than

the end-to-end execution time.

Bei et al. [18] and Yu et al. [73] use stage-specific distribution to measure the

impact of good configurations at the stage level. When Big Data batch processing

frameworks are used to execute SQL queries, it becomes challenging to measure

the overall performance of a workload (where a workload consists of a set of SQL

queries) as some queries will execute in parallel. There is a high possibility that

parallel executing queries will not complete simultaneously. Hence, the end-to-

end execution time will not be a good indicator for evaluating the performance of

executing a SQL workload.

For SQL workloads, where the batch processing systems execute transactions

(in the form of queries), different queries will have different execution times. Hence,

in such cases, it is often feasible to measure the system’s performance using through-

put, where the throughput is measured in queries executed in unit time [38] and [41].

Measuring the performance improvement rate also helps evaluate the configu-

ration quality [19, 31, 64]. The improvement rate signifies the gain in execution

time (compared with a baseline) over the total tuning iterations. Dou et al. [31]

measure the execution time distribution obtained using the best configuration, com-

paring the distributions’ mean, median, and standard deviations. Similarly, Chen

et al. [23] plot the Cumulative Distribution Function to compare systems’ behavior

of executing workload with different configurations. Some tuning frameworks aim

to solve a multi-objective problem. Hence, the above-discussed metrics might not

be a good choice to evaluate the tuning of such tuners.

Tuners that solve multi-objective optimization problems are often interested

in measuring systems resource utilization [28, 41, 64, 79] as the configuration

can greatly impact resource utilization. To measure the quality of configurations

53



(where the tuner is supposed to minimize the infrastructure cost), Cheng et al. [26]

measure the total cost of individual executions. In multi-objective problems where

the result is a Pareto optimal set. [64] [64] use uncertain space to find the most

optimal candidates among the Pareto optimal candidates. Daud et al. [28] measure

the resource utilization rate, where the utilization rate is represented as the sum of

CPU & memory utilization and packet delivery ratio.

We summarize the workloads and benchmarks used for evaluating tuning frame-

works that tune the batch processing systems in Table 6.2. As per our findings, it

is clear that HiBench is the most popular benchmark used for batch-processing

frameworks. Some highly used workloads in Hibench are PageRank, Naive Bayes,

WordCount, KMeans, TeraSort, Sort, etc. The tuning frameworks have also pre-

ferred HiBench’s SQL queries and SQL Benchmark [1] for SQL workloads.

6.6 Conclusion
This Chapter has presented a survey of the benchmarks and metrics used to eval-

uate the performance of tuning frameworks for Big Data processing frameworks.

Our survey has explored the metrics used to assess the various components of the

tuning frameworks, including the search-space explorer engine, performance pre-

diction model, configuration pruning engine, and end-to-end tuning. The study

has revealed the strengths and weaknesses of existing benchmarks and metrics by

analyzing the current evaluation techniques. Ultimately, this chapter is a valuable

resource for researchers and practitioners who aim to evaluate and compare the

performance of tuning frameworks for Big Data processing frameworks.

In the next Chapter, we discuss related work, such as previous surveys in the

configuration tuning of Big Data frameworks.
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Table 6.2: Summarizing the batch workloads and benchmarks

Workload Benchmark Used in

Grep BigDataBench [2] [51, 70, 75]
PageRank HiBench [5] [16, 34, 35, 40, 60]

[19, 25, 31, 48, 79]
Naive Bayes HiBench [5] [16, 34, 35, 60, 79]

[25, 26, 70]
WordCount HiBench [5] [16, 34, 35, 40, 60]

[19, 23, 26, 71, 79]
[18, 23, 25, 32, 51, 70]

KMeans HiBench [5] [16, 19, 40, 60, 79]
[25, 26]

Linear Regression HiBench [5] [26]
Support Vector Machine HiBench [5] [16, 31]
Gradient Boosting Trees HiBench [5] [16]
TeraSort HiBench [5] [34, 38, 60, 71, 79]

[18, 26, 31, 41]
Sort HiBench [5] [19, 32, 48, 60, 70]

[18, 23, 51]
NWeight HiBench [5] [26, 79]
PCA HiBench [5] [19, 48]
DFSio HiBench [5] [41]
SQL Queries HiBench [5] [25, 32, 41]
Alternating Least Squares Manually Created [75]
SGD Regression Manually Created [75]
Lasso’s Regression Manually Created [75]
Twitter Link Prediction Manually Created [28]
Collaborative Filtering Manually Created [32]
Frequent Itemset Mining Manually Created [32]
Inverted Index PUMA Benchmark [14] [18, 32, 71]
LogQuery Spark Default [40]
TPC-H SQL Benchmark [1] [34, 35, 38]
TPCx-BB SQL Benchmark [1] [64]
Word2Vec Spark-Perf [8] [48]
PyPearson Spark-Perf [8] [48]
YCSB YCSB Bench [13] [41]
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Chapter 7

Related Work

In this Section, we survey and closely review the previous surveys conducted to

address the challenges of configuration tuning for Big Data frameworks.

Multiple works can be found in the literature that aims to improve the perfor-

mance of Big Data Frameworks. Ousterhout et al. [58] showcase how networks can

become bottlenecks while executing workloads on massive data sets. They further

showcase how much performance gain the system would achieve if these bottle-

necks were cleared using configuration parameter tuning. For stream processing

systems, Hirzel et al. [44] surveys several optimization techniques that aim to opti-

mize the performance of the stream processing systems. However, just a part of this

work discusses tuning the batch-size-related configuration parameters. Similarly, it

is observed that in [61], only the improvement of performance of stream-processing

systems through parallelization and elastic methods is discussed, while the param-

eter tuning aspects are not addressed. And a lot of work in the literature aims to

improve the execution plan for Big Data frameworks. We keep these works out of

scope and only consider the works that aim to tune the configuration parameters of

Big Data frameworks automatically.

There are already surveys in the literature investigating the different tuning

approaches used for parameter tuning [27, 43, 45, 77, 78]. However, some sur-

veys focused on tuning database system parameters using Machine Learning algo-

rithms [77, 78] and not big data frameworks. Traditional SQL or NoSQL databases

were not designed to handle the 5“Vs” (Volume, Velocity, Variety, Veracity, and
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Value). Our scope of this survey is to focus only on big data processing frame-

works or tools that can cater to the needs of 5 “Vs.”. Hence, in this work, we

limit the scope of our work to studying tuning systems for Big Data processing

frameworks.

Other work [27, 43, 45] focuses on surveying the different categories of param-

eter tuning of big data processing frameworks (including Machine Learning based

approaches). The survey in [43] studies six different types of tuners: rule-based,

cost-modeling-based, simulation-based, experiment-based, ML-based, adaptive-

learning-based tuners. A similar survey can be seen in [27] where authors summa-

rize the ML-based tuners without explicitly discussing the challenges of different

components. Autonomic computing principles (specifically related to control com-

munities) are discussed in [45] that aim to reduce/minimize human involvement in

finding optimal configurations. However, the techniques and methods discussed

in [45] are quite different than ML-based techniques, so we keep them out of scope

for this study.

On the other hand, tuners that use Machine-Learning algorithms face chal-

lenges like knowledge transfer, huge search space, workload classification, etc. To

the best of our knowledge, the survey conducted by Zhang et al. [77] is the closest

survey in terms of the survey questions they follow. However, their survey con-

siders the database, not Big Data frameworks. The second closest survey to the

current one is conducted by Herodotou et al. [43]. This survey studies the different

types of tuning frameworks for Big Data frameworks but not discusses the specific

challenges faced by the different components of ML-based tuning systems.

In this chapter, we covered various works in the literature that aim to improve

the performance of Big Data frameworks, focusing on tuning configuration param-

eters. The previous surveys explore and discuss the different tuning approaches,

including machine learning-based approaches. This Chapter also highlights the

challenges machine learning-based tuners face, such as knowledge transfer, huge

search space (high dimensionality), workload classification, etc.
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Chapter 8

Conclusion

Configuration tuning in big data processing frameworks is necessary to optimize

performance and resource utilization across the cluster of machines. This task is

challenging due to the high diversity of workloads, rapid growth of data, changing

software and hardware infrastructures, and inter-dependency between configura-

tions.

The literature has extensively explored ML-based tuners to solve the auto-

tuning problem. This essay studies the challenges related to the automatic ML-

based tuners that treat the underlying Big Data processing frameworks system as a

black box. More specifically, we consider the challenges faced by different compo-

nents of ML-based tuning frameworks and define four survey questions based on

the challenges. Further, following a systematic literature review plan, we discussed

a comprehensive overview of the state-of-the-art techniques and summarized our

findings for every survey question.

We investigated four research questions: (1) the different performance pre-

diction models based on tuning frameworks and challenges related to knowledge

transfer, (2) search-space pruning techniques and their trade-offs, (3) workload

classification techniques and features, and (4) benchmarks and metrics used to eval-

uate tuner performance. The insights gained from these questions will be valuable

for researchers and practitioners working in the field of performance tuning of big

data frameworks.
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