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Abstract

This thesis presents two contributions. The first contribution deals with the

problem of siloed data collection and prohibitive data acquisition costs. These costs

limit the size and diversity of datasets used in health research. Access to larger and

more diverse datasets improves the understanding of disease heterogeneity and fa-

cilitates inference of relationships between surgical and pathological findings with

symptomatic indicators and outcomes. Unfortunately, freely enabling access to

these datasets has the potential of leaking private information, such as medical

records, even when these datasets have been stripped of personally identifiable in-

formation.

In the first part of this thesis, we present LEAP, a data analytics platform with

support for federated learning. LEAP allows users to analyze data distributed

across multiple institutions in a private and secure manner, without leaking sen-

sitive patient information. LEAP achieves this through an infrastructure that main-

tains privacy by design and brings the computation to the data, instead of bringing

the data to the computation. LEAP adds an overhead of up to 2.5X, training Resnet-

18 with 15 participating sites, when compared to a centralized model. Despite this

overhead, LEAP achieves convergence of the model’s accuracy within 20% of the

time taken for the centralized model to converge.

One of the techniques used by LEAP to preserve the privacy of sensitive queries

is differential privacy. Successive DP queries to a dataset depletes the privacy

budget. When the privacy budget is depleted, data curators must block access to

the underlying dataset to prevent private information from leaking. In the second

part of this thesis, we present a system called the SmartCache. The SmartCache

optimizes the use of the privacy budget by interpolating old query results to help
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answer new queries using a synthetic dataset. Queries answered from the synthetic

dataset have a smaller privacy cost, so more queries can be answered before the

budget runs out. For statistical queries, the SmartCache saved 30%-50% of the

budget for threshold values of 0.99 and 0.999, and for gradient queries it consumed

70% less of the privacy budget when training a fully connected model.
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Lay Summary

Collecting a large enough dataset that covers all forms of disease, including

rare variants is of utmost importance, but cannot be provided by a single health

center. More and better data leads to better medical research, which leads to better

medicine and more lives saved. Furthermore, medical data is often sensitive and

existing techniques used to query sensitive data restrict the number of queries that

can be made.

We present two systems, LEAP and SmartCache, that deal with the challenges

above. LEAP allows researchers to query data distributed across multiple institu-

tions, thus making more available to users, and the SmartCache solves the problem

of querying sensitive data by allowing users to execute more queries on sensitive

datasets without a privacy risk.
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Chapter 1

Introduction

Artificial intelligence (AI) and Machine Learning (ML) as well as improvement

in networking speeds, computational ability, and cloud computing present unprece-

dented opportunities to glean knowledge from health data, to improve patient care,

clinical outcomes, and use health care resources more efficiently. However, to date,

many of the benefits of AI remain unrealized in the health domain. This is because

AI and ML require massive amounts of data to be effective. Even as vast amounts

of health data are increasingly generated from traditional health care encounters,

medical and consumer devices, wearables, and patient-reported outcomes, these

data remain siloed due to privacy concerns.

A large enough dataset that covers all forms of the disease, including rare vari-

ants is of utmost importance, but cannot be provided by a single center. Tradition-

ally, de-identified data from multiple institutions was centralized for the purpose of

analysis. With patient records becoming richer and high-dimensional, moving that

data to a central location causes both logistical and privacy concerns. Moreover,

data transfer agreements between health institutions take a long time, and despite

several efforts, access and transfer remains a barrier [39].

Federated Learning (FL) is a technical solution that does not require data to

be centralized for the development of AI/ML models. This can help both with

scalability and privacy. FL can run a variety of ML tasks over a network; the data

stays where it was originally collected and never transferred. One of the benefits

of federation is that it offers continuous control over the data access.
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Federated data analysis does not guarantee privacy. For example, FL is sus-

ceptible to a variety of attacks such as model inversion [40] [21], membership

inference [31] [36], and record re-identification [19] [30]. These attacks can be

carried out by analyzing results from queries or predictions of a model.

Differential privacy [13] [15] (DP) is a framework that provides privacy. DP

provides formal privact guarantees by ensuring that the removal or addition of a

database record affects the outcome of a result by only a small amount. Thus, it

prevents the identification of individuals and gives mathematical guarantees on the

risk of being identified in the database. DP is achieved by adding random noise

from a distribution to the result of a query, so that the real value is obfuscated but

the returned result still retains statistical significance. DP enables quantification

of privacy loss of a system through a parameter ε . For example, developers can

enforce that a system will not have a privacy loss worse than ε by measuring the

privacy loss of individual queries and blocking further queries from being answered

when a limit is reached. Consequently, there has been much research into systems

that use DP as efficiently as possible because of the constraints imposed by the

accumulated privacy loss [8] [24] [41] [34] [35].

DP queries are composable, meaning that Successive queries to a dataset in-

creases the privacy loss. Composition [18] [22] [12] [17] is one of the fundamental

properties of differential privacy. With each query, privacy degrades, but it de-

grades in a controlled fashion, allowing the total privacy loss of a system to be

measured. The privacy budget determines the max privacy loss acceptable by a

system, so a data curator or system administrator can restrict queries to the system

when all the privacy budget has been spent. In other words, the budget sets the

upper bound on the privacy loss. For instance, a data curator can specify that the

privacy budget of a dataset is ε = 3. If a user issues three queries, where each query

has a privacy loss of ε = 1, the budget will be depleted and proceeding to query

the dataset further will result in a privacy risk for individuals in the dataset. This

imposes a query limitation on systems using differential privacy. These restrictions

make differential privacy unpalatable to those who want to extract the most out

of their data or to those who are operating in scenarios with large query volumes.

Tackling this issue is important to increase the adoption of privacy systems using

differential privacy.
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Many techniques and relaxations of DP have been developed to reduce the

privacy loss of individual queries [27] [29] [24]. However, there is not much work

on preserving the budget by re-using information and insights gathered from past

queries. A few theorethical results exist, but they are not practical enough to be

deployed [20] [10].

My contributions in this thesis are two-fold. One is the development of a gen-

eral purpose data analytics system that can be used to query federated health data

across sites. Privacy is a concern for healthcare systems because they deal with

sensitive data. A solution to these privacy concerns is to issue queries with dif-

ferential privacy guarantees. The problem is that differential privacy restricts the

number of queries a user can perform. Therefore, my second contribution is the

development of a technique that maximizes the amount of queries answered by a

system before running out of the privacy budget.

In the first part of this thesis I present my first contribution, a Large scale feder-

ated and privacy preserving Evaluation and Analysis Platform (LEAP) that allows

users to analyze data distributed across multiple institutions in a private and secure

manner, without leaking sensitive patient information. LEAP achieves this through

an infrastructure that maintains privacy by design and follows a federated philos-

ophy of bringing the computation to the data, instead of bringing the data to the

computation.

The LEAP infrastructure is divided into two groups, the cloud infrastructure

and the site infrastructure. Queries are distributed to different sites by the cloud

infrastructure and a LEAP module running on each site sends back the result after

running local computation on the local data. Optional noise can be added to results

to provide differential privacy (DP) guarantees, when requested. These results are

returned from multiple sites to the LEAP infrastructure in the cloud, where they

are aggregated and returned to the end-user. The infrastructure also keeps track of

the privacy loss from each query, safeguarding against information leakage from

repeated queries. Our evaluations have shown that using LEAP incurs an overhead

when compared to training a model or performing queries on a centralized dataset.

Nonetheless, there are benefits to LEAP such as control over data (e.g. revoking

access), simplified data agreements, and time saved in network IO from central-

izing the data. For example, our evaluations have demonstrated that as more sites
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join LEAP (and thus more data is available) the convergence time for the validation

accuracy decreases.

In the second part of this thesis I present a system called SmartCache. Smart-

Cache saves DP budget across queries by learning from each query and interpolat-

ing old results to answer new queries without consuming much of the DP budget.

SmartCache generates a DP synthetic dataset based on the real dataset, and answers

incoming queries using both real and synthetic dataset. If the difference between

results is smaller than an acceptable threshold, results are returned from the syn-

thetic dataset at a small privacy cost (cache hit). If the difference between results

is above the threshold, results from the real dataset are returned at a larger privacy

cost (cache miss). Our cache initializes a vector of weights w, where each element

wi ∈ w is associated to a row in the synthetic dataset. With each miss, the cache

is improved by updating weights of the synthetic dataset to minimize differences

between results from the real and synthetic datasets. Our evaluations have shown

that the SmartCache is able to maintain the quality of queries answered, and save

the DP budget when answering gradient queries. For statistical queries the results

were not as positive and we were not able to use less of the privacy budget than the

real dataset with DP.

Given that federated learning and differential privacy are important for under-

standing LEAP and the SmartCache, the next chapter will cover background ma-

terial on both. For the federated learning section, the background chapter covers

how a machine learning model is trained using federated learning. In the following

section, I will review differential privacy and its basic properties.
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Chapter 2

Background

This section covers some background material necessary to understand LEAP

and the SmartCache. The following sections define and illustrate federated learning

and differential privacy. LEAP performs computation in a federated setting where

data never leaves the site holding the data. Below I go over how a machine learning

algorithm can be trained in these situations. Differential privacy is important for

both LEAP and the SmartCache. It gives a formal definition of privacy that lets us

quantify how much privacy is lost with each query. In Section 2.2 I formally define

differential privacy and some popular relaxations of the original definition.

2.1 Federated Learning
Federated learning [25] is a method for training machine learning models from

decentralized data. In a traditional scenario, data is centralized on the machine

where the learning takes places. Federated learning breaks this paradigm and en-

ables different devices to contribute to training without ever exchanging the actual

data. As shown in Figure 2.1, a ML model can be trained using federated learning

by having a central coordinator push an initial model to each participating device.

Each device then computes an SGD update using the data available locally to them.

Each device then sends the gradients from the SGD update back to the central co-

ordinator. The coordinator aggregates the gradients from each device by summing

them together and then averaging the result. The averaged gradients are then ap-
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plied to update the model weights, thus completing one SGD step. The updated

model is then pushed to each device and the steps are repeated until the model

reaches convergence.

Figure 2.1: 1. Centralized coordinator sends model to each site. 2. Sites
compute an update on the local data. 3. Sites send gradients back to
centralized coordinator. 4. Updated model is sent back to each site and
the process is repeated for n iterations.

2.2 Differential Privacy
Differential privacy [13] [15] is a framework for privacy that provides strong

formal guarantees. Differential privacy enables the use of datasets in any anal-

ysis without adversely affecting data of individuals included in the dataset. For

example, when differential privacy is upheld, with a certain probability the same

conclusions of a study will be derived, regardless of whether an individual is part

of a dataset or not: the probability of any sequence of responses to queries on the

dataset is essentially the same, independent of the presence or absence of an in-

dividual. Presented formally, a randomized mechanism M satisfies ε-differential
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privacy (also known as pure differential privacy), for any adjacent datasets 1 A, B

and any set of possible outputs U ⊆ Range(M) if

Pr[M(A) ∈U ]≤ eε Pr[M(B) ∈U ].

As this definition shows, the probability of the output of a mechanism M when

an individual is added or removed from a dataset is bounded by eε . This translates

to the notion that a smaller value of ε provides stronger privacy guarantees and a

larger value has weaker guarantees. A bigger ε increases the bound on how much

the probability of the output of a mechanism may change when an individual is

added or removed from a dataset, potentially making it easier to draw conclusions

about an individual, since one person has a larger influence on the output.

There are different mechanisms that produce DP results, but the most common

mechanism for pure DP is the laplace mechanism, which is defined as

ML( f (x)) = f (x)+Lap(0,
∇1 f

ε
)

where f is a non private query and ∇1 f is the max `1-sensitivity of query f taken

over adjacent datasets A and B

∇1 f = max
A,B
|| f (A)− f (B)||1.

Differential privacy has two properties that are of interest to our work: ro-

bustness to post-processing and composability. The post-processing theorem of

differential privacy states that if the output of a mechanism M satisfies differential

privacy, so does g(M(A)), where g is an mapping from the set of possible outputs

of M to an arbitrary set. This allows a differentially private result, or a dataset in

our case, to be released and modified without losing DP guarantees. Furthermore,

even if a query is DP, privacy degrades with each query. One of the nice properties

of differential privacy is that it degrades in a controlled fashion and the compos-

ability theorem allows us to quantify the loss after n queries. For example, suppose

we have a mechanism that is ε-DP. If we query this mechanism n times, the result

is nε-DP.
1Adjacent datasets are datasets that differ by at most one row
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2.2.1 (ε , δ )-DP

In this thesis we deal with a relaxation of ε-DP (pure differential privacy) called

(ε,δ )-DP [14]. A mechanism M is (ε,δ )-DP if for any adjacent datasets A and B

and any set of possible outputs U ⊆ Range(M)

Pr[M(A) ∈U ]≤ eε Pr[M(B) ∈U ]+δ .

This relaxation means that the mechanism is ε-DP with probability 1−δ . One

of the reasons that we opt for this relaxation is because it allows us to use the

Gaussian mechanism instead of the Laplace mechanism, since the Gaussian mech-

anism does not satisfy ε-DP but it does satisfy (ε,δ )-DP guarantees. The Gaussian

mechanism is defined as:

MG( f (x)) = f (x)+Normal(0,σ2)

where σ is equal to ∇2 f
ε

√
2ln(1.25

δ
) and the `2 sensitivity of function f is

∇2 f = max
A,B
|| f (A)− f (B)||2.

The Gaussian mechanism is preferrable in our case because the tails of the

Gaussian distribution decay faster than the tails of the Laplace distribution. This

means that when adding random noise there is a smaller chance of the noise coming

from a large number on the tails of the distribution. The Gaussian distribution

also has convenient properties and is familiar to most data analysts and scientists,

which makes it convenient when releasing DP results. Furthermore, it allows us to

use advanced composition theorems [22] so that for small values of ε and a large

number of queries, we have a tighter bound on the privacy loss. This means that

more queries can be issued with a smaller privacy cost.

Differential privacy is used by both LEAP and the SmartCache to give formal

privacy guarantees for sensitive queries, while federated learning is the basis for

the LEAP architecture. Given the background material on both these approaches,

the next chapter will cover the design of LEAP, how the design in LEAP allows for

federated queries, and how differential privacy is used for sensitive queries.
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Chapter 3

LEAP Design

LEAP is a general purpose federated data analytics platform that enables users

to query data distributed among multiple sites. Participating sites register with the

LEAP system and users send query requests that are distributed to each site. LEAP

aggregates results from each site and sends the aggregated result back to the user.

Three main design goals influenced the development of LEAP: flexibility, security

and cloud deployment. With respect to flexibility, LEAP is a data agnostic platform

that supports a large set of statistical queries used for exploratory data analysis in

addition to supporting training of ML models. LEAP provides a flexible interface

that allows the addition of new query types to suit user needs. A user can either use

one of the predefined queries available in the LEAP API, or they can create their

own custom queries by composing a set of primitive query building blocks.

In terms of security, the LEAP system has multiple components to provide a

layered defence. The LEAP infrastructure at each site has different modules that

are each responsible for either accessing the data, executing queries, or communi-

cating with the infrastructure in the cloud. Furthermore, the federated nature of the

system gives continuous control over data access to the data owners. The infras-

tructure in the cloud also follows a similar design where different LEAP function-

alities are divided into modules. For example, user access control, site coordination

and query execution reside in different services. Some participant sites may con-

tain sensitive data, and even though federated queries might provide an initial layer

of defense against attackers, it does not provide formal privacy guarantees. With
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this in mind, LEAP was designed to allow for random noise to be added to queries

in order to provide differential privacy guarantees.

The third design goal was to support cloud deployment for part of the infras-

tructure. Namely, the aggregation and coordination are hosted in the cloud, which

facilitates IT management, scalability, and gives us flexibility with different server

types. This goal also goes hand in hand with security and flexibility. A cloud

deployment allows us to use robust logging and monitoring tools from a cloud

provider to improve system security and use the scalability of the cloud to support

more computationally intensive queries.

In the rest of this chapter I will cover the threat model delineating the capabili-

ties of different components and agents. I will also cover in more detail the LEAP

architecture and how data and requests flow through the system.

3.1 Threat Model
Sites: We model sites as honest but curious. We assume they will properly

follow the protocols in the LEAP system. We trust sites to participate correctly in

the machine learning training process and use their local data to return a correct

result. Nonetheless, we do not trust a site with another site’s data. For example, if

a site gets hold of another site’s sensitive data, we do not trust them to not inspect

the data.

Coordinator and Cloud Algo: The coordinator and cloud algo are hosted in

the cloud. We do not trust the coordinator and cloud algo with the raw data from

the sites. However, we do trust these cloud-hosted services to honestly participate

in the LEAP system and trust them with the query results from each site.

User: Users of LEAP are not trusted with sensitive data from each site, but they

are allowed to have access to aggregated results for executed queries. Different

types of users have different levels of trust attached to them, as defined by the

capabilities associated with each role.

3.2 Architecture
The LEAP infrastructure (Figure 3.1) is divided into two groups, the cloud

infrastructure and the site infrastructure. The cloud infrastructure forms the first
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point of contact between a user and LEAP. Users send requests to the coordinator,

which is responsible for managing connections to different sites and authenticating

user credentials. Credentials are kept in a user database. With each request LEAP

checks whether the user is a valid LEAP user and has the capabilities to issue the

query. The other job of the coordinator is to orchestrate and send the request to the

correct sites.

The point of contact between the cloud and a site is the site connector. The

site connector is responsible for registering with the coordinator, so that the cloud

knows which sites are available, and it takes incoming requests from the coordina-

tor and passes these down to the appropriate site algo. The site connector is also

responsible for detecting whether the site algo is down and returning the appropri-

ate error to the coordinator. At the moment, LEAP runs only one site algo instance

at each site, but in the future the plan is to be able to scale the computational mod-

ules up and down on demand at each site.

The site algo is the main computational module at each site. With each request

the site algo uses one of the data connectors such as the REDCap connector [6]

or the OpenSpecimen connector [7] to fetch the appropriate data. This data is

consumed by the site algo, which performs the user requested computation and

returns a result back to the site connector which pipes it back to the cloud through

the coordinator.

The coordinator gets results from all the sites and pushes these results to the

cloud algo, which is the computational module in the cloud. The cloud algo acts

as an aggregator for all the results and can return the aggregated result back to the

user, and controls the logic of when to stop and return the result to the user if the

query is iterative, such as when training a model using federated learning. DP noise

can also be added at this step for global differential privacy or at the site algo level

for local differential privacy.
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Figure 3.1: The coordinator connects to the site connector module on each
site. At each iteration the site algos compute a result on the local data
which gets sent to the coordinator by the site connector through a se-
cure connection. Results are then aggregated in the cloud algo modules
hosted in the cloud.

3.3 Data Flow
LEAP is designed so that raw data from a site does not leave the site. Namely,

data is exchanged between different components in a site, such as the data connec-

tors and site algo, but this data is never passed to the coordinator residing in the
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cloud. LEAP only pipes the result of running a certain query on the local data to

the cloud for aggregation. Below is a description of the relevant remote procedure

calls issued by the different LEAP components when computing the result for a

query. A time-sequence diagram in Figure 3.2 visualizes the process.

Figure 3.2: Data flow for executing a query in LEAP.

3.3.1 Message Types

ComputeRequest

• AlgoCode: Specifies what algorithm to run

• Sites: Specifies what sites to run the algorithm

• Functions: Custom building block functions (custom algorithm)

ComputeResponse

• Response: Aggregated result from running algorithm
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MapRequest

• AlgoCode: Specifies what algorithm to run

• Sites: Specifies what sites to run the algorithm

• Functions: Custom building block functions (custom algorithm)

MapResponse

• Response: Individual map results from each site

3.3.2 Coordinator

ComputeResponse← Compute(ComputeRequest)

• Caller: Client

• Callee: Coordinator

• Description: Client calls coordinator which starts the execution of the speci-

fied algorithm.

• Arg: ComputeRequest

• Return: ComputeResponse

MapResponses←Map(MapRequest)

• Caller: Cloud algo

• Callee: Coordinator

• Description: Receives state from the cloud algo (can include model parame-

ters) and collects results of map computation from each site.

• Arg: MapRequest

• Return: MapResponse
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3.3.3 Cloud Algo

ComputeResponse← Compute(ComputeRequest)

• Caller: Coordinator

• Callee: Cloud Algo

• Description: Coordinator makes RPC call to cloud algo to start the execution

of the specified algorithm

• Arg: ComputeRequest

• Return: ComputeResponse

3.3.4 Site Connector

MapResponse←Map(MapRequest)

• Caller: Coordinator

• Callee: Site connector

• Description: Sends a request to the local site algo service requesting for map

function to be computed on local data. Returns the result to the coordinator.

• Args: MapRequest

• Return: MapResponse

3.3.5 Site Algo

MapResponse←Map(MapRequest)

• Caller: Site connector

• Callee: Site algo
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• Description: Runs map function on local data and returns result to the site

connector.

• Args: MapRequest

• Return: MapResponse

This chapter covered the different components and their roles in the LEAP

system. It also covered the LEAP architecture and how a query from a client flows

through the system. The next chapter will go into implementation details, such

as the message protocols used, the programming languages used for the different

components, how LEAP ensures security through authentication and encryption,

and how users are represented in LEAP.
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Chapter 4

LEAP Implementation

LEAP was implemented as a series of modules that can be divided into two

main groups. The infrastructure modules implemented in Go, such as the coordina-

tor and the site connector, and the computational modules implemented in Python,

such as the cloud algo and the site algo. This chapter gives an overview of the im-

plementation of the different components in LEAP. Furthermore, this chapter also

covers implementation details of security protocols such as encryption, authentica-

tion, and message protocols. Finally, the end of the chapter covers details on how

users interact with the system and are authenticated and created.

4.1 Components
Cloud Algo: The cloud algo is written in Python and is responsible for aggre-

gating the data from the multiple sites and post-processing them before returning

an aggregate to a user. To get a response from pre-selected sites, the cloud algo

uses GRPC to send a protobuf message to the coordinator, which handles all com-

munication between the cloud and a local site.

Coordinator: The coordinator, written in the Go programming language, is re-

sponsible for managing all the sites available in the LEAP system. It is responsible

for propagating the proper error messages to the cloud algo when a site is down,

and for passing the computation requests issued by the cloud algo to the proper

sites. When a coordinator contacts a site, it serializes the request using protobuf
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and uses grpc to issue a remote procedure call to each site. The coordinator has

a multithreaded design in which one goroutine (Go thread) listens for cloud algo

connections and another goroutine listens for site connector connections.

Site Connector: The site connector runs a grpc server written in Go that listens

to requests from the coordinator. Before showing up as available, the site-connector

sends a registration request to the coordinator. After this is done, the site connector

can receive computation requests from the coordinator and delegates them to a

node running the site algo. Communication between the site connector and the site

algo also uses grpc and protobufs for serialization.

Site Algo: The site algo is a Python program responsible for retrieving the

appropriate data from a database and running some sort of computation on the

data. If differential privacy (DP) is turned on, the site algo is responsible for taking

the appropriate measures to make the result differentially private, such as adding

Laplacian noise to the result. The site algo uses the REDCap API to retrieve the

data from a REDCap database or a REDCap external module that is optimized for

cases where all the necessary computation can be done in a SQL query.

User Database: The user database keeps a record of all the registered users

in the LEAP system. It keeps track of their username, password and the sites the

user has access. When a new request arrives at the coordinator from a user, the

coordinator checks whether the user has the permissions to perform the requested

computation on the selected sites.

4.2 Message Protocols
Each service in the LEAP infrastructure runs a server that listens to requests

from the appropriate services at a port specified in a configuration file. These ser-

vices communicate using remote procedure calls and utilize TCP as the underlying

transport protocol for reliable message transfer. We use Google’s Grpc [3] library

as the remote procedure call implementation and protocol buffers as the serializa-

tion method. Protocol buffers [5] provide us with faster serialization than JSON,

although for some messages we still pass JSON blobs for convenience. These

JSON blobs are used to pass Python functions that are executed in the LEAP in-

frastructure. Each JSON blob is turned into a string that is then passed as a field
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in the protobuf structure. The protobuf structure is deserialized at an endpoint, the

JSON string is extracted, and the functions are executed accordingly.

4.3 Node Encryption and Authentication
LEAP uses mutual TLS/SSL [33] to encrypt connections between nodes and

authenticate the identity of nodes in the system. An internal certificate authority is

used to authenticate connections between nodes. This internal certificate authority

generates a 2048 bit private RSA key that is used to generate a SHA256 self-signed

root certificate that is valid for a specified number of days. This root certificate is

distributed to the trusted nodes in the system (coordinator, cloud algo, site connec-

tor, site algo). Each one of these nodes generates a private 2048 bit RSA key, and a

SHA256 certificate signing request, which can be adjusted based on the certificate

authority being used. This certificate signing request is signed with the private key

of the node that generated it and is sent to the local LEAP certificate authority us-

ing the administrative procedures in place. The signing request is signed with the

private key of the certificate authority and is returned to the requesting node.

Every connection established between nodes is authenticated by having the

nodes on both sides of the connection send their certificates to each other. This

certificate is checked against the root certificate to ensure that it is coming from

one of the nodes trusted by the LEAP administrators. After authenticity is verified,

the two nodes communicate using an encrypted connection as established by the

SSL/TLS protocol.
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Figure 4.1: Nodes send their certificates to a certificate authority. The certifi-
cate authority signs and returns the certificate to the LEAP node. Nodes
establish mutual trust and open an encrypted connection by verifying
the signed certificates against their copy of the root certificate.

4.4 Users
Users can issue queries to different locations based on their permissions. Each

user is associated with a list of sites that they have access to based on their creden-

tials, and they are only allowed to issue queries to those sites. This state is stored

in the User DB shown in Figure 3.1.

4.4.1 User Interface

Users interact with LEAP through a programming interface in Python. A

Python library exports the necessary functions to register and authenticate a user,

which returns a token to be used in subsequent requests. The library also exports

the functions available in LEAP and users can select the sites to send their queries.

4.4.2 User Creation

When new users are created, they pick a username that uniquely identifies them

in the LEAP system and a password that is used to login. Only the hash of the

password is stored to prevent an attacker from acquiring the password used by the
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user. On top of that, user passwords are salted, so that a unique hash is created for

every input.

In the salting process, a unique salt is created for each user and this salt is

appended to the user password before hashing the password and storing it in the

database. For example, suppose a user chooses catdog as the password. During

the sign-up process we will generate a salt, such as b3ob, for that user. The salt is

then appended to the password before being hashed and stored. This means that

when the user signs up we store the hash of catdogb3ob. Salting is meant to prevent

rainbow table attacks, where an adversary uses a precomputed table of hashes to

recover the original cleartext password of a user.

4.4.3 User Authentication

After a user is created, that user requires a token to send computation requests

to the LEAP system. This token is obtained by calling the LEAP API and passing

the username and password for that user. We append the salt stored for that user to

the password inputted and hash the appended input. If the input hash matches the

hash stored in the database, LEAP returns a JWT token [4] to the user that expires

after a certain amount of time. The user then has to attach this token to any request

sent to LEAP. This token is then validated and parsed at the coordinator and the

claims are checked to extract the user associated with the token. If the user exists,

LEAP checks whether this user has permissions to query the selected sites.

Capabilities are associated with users out-of-band, where a prospective user

contacts the person responsible for the LEAP system. The administrator will then

associate the user with the appropriate query capabilities and access to sites.

This chapter covered the implementation details of the LEAP system. Namely,

the libraries and programming languages used to build the different components

and ensure communication is properly encrypted and authenticated. We also cov-

ered how users are represented in LEAP and how they interact with the system.

The following chapter evaluates the design and implementation details provided in

this chapter. Namely, it evaluates the overhead of using LEAP with different types

of queries.
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Chapter 5

LEAP Evaluation

In this section, we aim to answer four research questions:

1. What is the overhead of using LEAP?

2. Where is most of the time spent during execution of a query?

3. How does adding more sites affect execution time (distributed overhead)?

4. How does having more data available affect the convergence time of a ma-

chine learning model in the LEAP system?

To answer these questions we designed a set of experiments where we com-

pare LEAP to a centralized baseline that has all the data stored locally. We run

different types of queries and train different machine learning models using LEAP

to measure the overhead incurred by the system. Our experiments reveal that there

is an overhead associated with using the LEAP system. This overhead is more

pronounced when training more complex models such as Resnet-18 over running

simple statistical queries such as count. Nonetheless, when enough sites join LEAP

the convergence time for a model becomes similar to the centralized baseline.

5.1 Experimental Setup
Experiments were conducted in a cluster of 17 nodes. Each node is an Azure

Standard D4s v3 Ubuntu 18 virtual machine with 4 vcpus and 16 GB of memory.

22



15 out of the 17 nodes were used as LEAP sites and had the site algo and the site

connector modules installed. Furthermore, a REDCap instance was installed on

each of the sites and populated with tabular data from the HAM10000 skin lesion

dataset [37]. Skin lesion images were saved to the hard disk of the site virtual

machines. One of the 17 nodes was used for the cloud infrastructure and had the

cloud algo and the coordinator modules deployed. One other node was used as a

client that issued query requests to the coordinator and waited for the result of a

query.

The nodes in the cluster were deployed in different Azure regions. The client

and the cloud algo, along with three sites were deployed in the West US. The

other three sites were deployed in East Australia, East Asia, East US, and West

Europe. The sites were deployed in different regions to mimic a federated network

of hospitals and health centres distributed around the globe. Each experiment was

run four times and the end to end training time was averaged.

5.2 Performance Overhead
The results in this section help answer three out of the four proposed research

questions, while the question on model convergence is answered in Section 5.3.

Namely, this section discusses the overhead of using LEAP, the stages that cause

the overhead, and how adding more sites affects the overhead. We first discuss

the associated overhead to train machine learning models such as Resnet-18 and a

simple logistic regression, and then we discuss the overhead associated to running

a statistical query, such as count.

To evaluate the scalability of LEAP when training deep learning models the

images from the HAM10000 dataset were divided between each of the sites. This

resulted in 8000 training images being equally distributed to the sites, so that each

site contained a total of 533 images. Resnet was then trained to classify the type of

skin lesion from an image using the federated learning algorithm implemented in

LEAP. Resnet was trained for a total of 1000 iterations, where 100 of those were

global iterations where the cloud algo aggregated the model updates for each site

and for each global iteration 10 local iterations were computed at each site. The

baseline is a Resnet-18 model trained on 8000 images stored on disk. REDCap
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does not support images well, so for the Resnet experiment, both on the baseline

and site VMs, the training dataset was saved and retrieved from disk while train-

ing. It is important to note that when training these machine learning models, the

amount of data available on each site is not important for measuring the overhead

of our system. At each federated learning iteration LEAP performs the same num-

ber of local iterations. Therefore, even if a site has more or less data, the amount

of computation done at each iteration is the same.

As the bar chart in Figure 5.1 demonstrates, there is an overhead to training

Resnet using LEAP. Most of the time is spent in the site compute stage, which is

where gradients are computed on the local data. Interestingly, more time is spent

during the site compute stage than in the total baseline time. In an ideal scenario,

the time spent on both of these should be very similar, but LEAP ends up spending

extra time serializing and deserializing gradient and model parameters for sending

and receiving data from the coordinator. Despite being a smaller portion of the

total running time, LEAP also spends time in the cloud compute stage. The cloud

compute stage is where gradient aggregation happens, which explains why the time

spent on this stage increases as the number of participating sites incrases. The

more participating sites, the more gradients have to be aggregated. As the number

of participating sites continues to increase, the time spent in the site compute stage

may overshadow the site compute stage.
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Figure 5.1: Time to train Resnet 18 using HAM10000 dataset on 1, 5, 10 and
15 sites.

Similar to the Resnet-18 experiment, the logistic regression experiment trained

a logistic regression model on the HAM10000 dataset with the objective of clas-

sifying the gender of the skin lesion from tabular data on the dataset. Since this

experiment deals only with tabular data, the dataset was stored in REDCap and re-

trieved during training using API calls sent to the REDCap database. The logistic

regression was also trained for a total of 1000 iterations, where 100 of those were

global iterations where the cloud algo aggregated the model updates for each site

and for each global iteration 10 local iterations were computed at each site.

As seen in Figure 5.2 the logistic regression experiment shows that LEAP has

a similar total running time to the centralized baseline when only one site is added,

but this overhead becomes significantly higher when more sites are added. The

time spent in the cloud compute stage is significantly larger than the time spent in

the site compute stage. This can be partly explained by the less compute inten-

sive nature of the logistic regression when computing gradients. Nonetheless, the
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overhead still seems higher than expected and it is not clear what is causing this.

Figure 5.2: Time to train a Logistic Regression modelusing HAM10000
dataset on 1, 5, 10 and 15 sites.

On top of training machine learning models, we were also interested in under-

standing the performance of LEAP when executing simple statistical queries. One

of the big differences between these queries and the model training queries is that

they are what we call single-shot queries, results get aggregated only once so there

is no iterative back and forth, and they are less computationally intensive.

With the statistical queries we were concerned with understanding the perfor-

mance of a query as more sites join LEAP and increase the size of the total data

available. The HAM10000 dataset was divided to each site, so that every site held

10000 records. A count query that retrieved all of the data and then counted the

number of records was then executed with different numbers of sites. The time

for the query to be returned to the client was averaged among four runs and is

displayed in Figure 5.3.
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In this experiment we can notice that the time to compute a count query in-

creases when there are more participating sites in LEAP. The overhead seems to

plateau when five sites are added and only slightly increases from 10 participating

sites to 15. This demonstrates that multi-site LEAP has an overhead when scaling

the size of the dataset. The increase in execution time is caused by more time being

spent aggregating the data from the different sites.

Figure 5.3: Time to perform a count query on different number of sites. Each
site had a total of 10000 records

5.3 Convergence Time
As the experiments above have shown, there is an overhead to using LEAP. One

of the advantages of using LEAP is that by connecting different sites and research

centres we have more data available for researchers. This brings us to our fourth

research question: how does having more data available affect the convergence
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time of a machine learning model in the LEAP system? How can the accuracy

of a model improve as more data becomes available? To measure this we trained

Resnet-18 using LEAP and increased the number of participating sites at different

runs. The 8000 training images from the dataset were divided to each site so that

each site had a total of 533 images. For example, in a run with one participating

site the one site would have 533 images for a total of 533 images in the LEAP

network. With five participating sites, each site would have 533 images for a total

of 2665 images in the LEAP network.

As seen in Figure 5.4, as more sites join the LEAP network, the convergence

time to train the model to convergence decreases. With only 533 images available,

one participating site wasn’t even able to increase the validation accuracy of the

model. As more sites were added to the system, the convergence time improved.

With 15 sites, and a total of 8000 images available in the network, LEAP was able

to make the convergence time similar to the centralized model with 8000 images.

Essentially, despite the overhead incurred by using LEAP, the larger datasets avail-

able in a deployment setting give benefits in the quality of the results.

Figure 5.4: Convergence time and accuracy to train Resnet 18 measured in
number of total seconds.

In this section we covered different experiments designed to measure the over-

head of using LEAP, find where the overhead comes from, inspect how adding
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more sites affects execution time, and answer how having more data available af-

fects the quality of results, such as when training a machine learning model. These

experiments showed that there is an overhead to using LEAP, coming from time

spent aggregating results from different sites and serializing and deserializing these

results. Furthermore, as the number of participating sites increases, the overhead

also increases due to more time being spent in the aggregation. Nonetheless, LEAP

shows gains in the quality of trained models, with better accuracy and faster con-

vergence when more sites are added. Given these results, the next chapter will

compare LEAP to similar systems and will explore the similarities and differences

between them and LEAP.
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Chapter 6

LEAP Related Work

Coordinating health research with data distributed across several institutions

poses several important challenges including ensuring privacy without revealing

confidential patient information. Furthermore, different health organizations may

collect data with vastly differing representations requiring reconciliation before

further analysis can be carried out. Moreover, sending data to other sites for anal-

ysis, especially high-dimensional imaging and genomic data, can incur significant

communication and computation costs.

Federated and distributed research networks are useful in facilitating cross-

site research where privacy and security policies may prevent data from leaving

the governance of the data owner or health organization. These systems can also

provide gains in speed by foregoing data centralization.

6.1 CanDIG
CanDIG (Canadian Distributed Infrastructure for Genomics) [1] is a Canadian

p2p-distributed, secure and private platform aiming to enable healthcare research

for genomics data. CanDIG has similarities to LEAP. Namely, both are distributed

and support differential privacy. Furthermore, local sites control access to the data.

CanDIG differs from LEAP in its architecture, which is peer to peer. Furthermore,

CanDIG offers limited support for machine learning tools. At the moment CanDIG

only supports a Decision Tree Classifier.
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6.2 DataShield
DataShield [2] is a free to download R library that allow for federated data anal-

ysis using non-disclosive summary statistics from local sites. Queries are issued

through an Analysis Computer (AC) through secure web services to multiple Data

Computers (DCs) and analysis at each local site is done simultaneously. DataShield

is popular in the healthcare community, but different from LEAP in that it does not

provide machine learning methods. Furthermore, it does not support differential

privacy like LEAP and CanDIG.

6.3 COINSTAC
The Collaborative Informatics and Neuroimaging Suite Toolkit for Anonymous

Computation (COINSTAC) [32] is a Cloud-based distributed platform for large

scale analyses of brain imaging data with the intention to allow federation of neu-

roimaging data motivated by privacy and data sharing concerns, and the size and

dimensionality of neuroimaging data. COINSTAC’s data is kept private through

differential privacy algorithms. In addition, users are able to build pipelines for

additional steps such as feature generation, matrix factorization models, and pre-

processing to their workflows (i.e. may want to convert file formats or apply

batch transformations to imaging data) – this can be accomplished relatively sim-

ply through config files and scripts. This system uses summary statistics of local

nodes, which are then aggregated at a remote node and analyzed using global in-

ference rules. Despite some similarities such as support for differential privacy and

deployment in the healthcare setting, COINSTAC is not a general purpose analysis

platform such as LEAP. For example, the COINSTAC toolkit seems mostly geared

towards brain imaging data.

This chapter covered the similarities and differences between LEAP and other

popular data sharing systems, specially in healthcare. This wraps up the LEAP

section of this thesis. The following chapters will now delve into the SmartCache

and how it can be used to optimize the use of the privacy budget when answering

DP queries.
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Chapter 7

SmartCache

In the differential privacy framework, each query issued spends a part of the

privacy budget. The budget presents an upper limit on how many queries can be

issued before information leaks. This provides a practical problem to data analytic

systems because it restricts the number of queries that can be issued by users. Suc-

cessive DP queries compose and incur a compounded privacy loss. For example,

if a user issues five DP queries to the LEAP system, each with a privacy loss of ε ,

the total privacy loss for the five queries is 5ε . This means that the privacy budget

may be depleted if too many queries are issued, thus blocking users from using the

LEAP system if only DP queries are allowed. A key challenge in LEAP will be to

maximize the utility of analysis queries (i.e., the accuracy of analysis results and

models) over time, while maintaining DP guarantees.

An analysis in LEAP is assigned a privacy budget, and each new query that runs

on the data spends a portion of that budget. To maintain DP guarantees, this budget

cannot be overspent. To maximize the value of this privacy budget we developed a

system called SmartCache, which works by generating a DP synthetic dataset and

answering queries from this dataset with a smaller privacy loss. If the answer from

the synthetic dataset is not accurate, the SmartCache falls back to the real dataset.

The following chapters cover synthetic data generation, improving the accuracy

of results from the synthetic dataset, making better use of the privacy budget, and

concludes with an evaluation of the accuracy and privacy costs of the SmartCache.
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Chapter 8

SmartCache Threat Model

Data Curator: We assume there is a data curator that controls access to a

dataset D with sensitive information. This data curator may have access to privacy

leaking data and they provide data access to the SmartCache. We assume the data

curator will not leak information to other participants.

SmartCache: We assume the SmartCache is honest and runs in a trusted en-

vironment with permission from the data curator and access to the real dataset.

Untrusted parties or programs do not have access to the internals of the Smart-

Cache and cannot influence it in any way. The SmartCache provide an interface

that allows queries to be issued to the system and only returns differentially private

results. We assume this interface cannot be modified by a malicious agent so that

more than the differentially private result of a query is released.

Users: We assume users are malicious and will take advantage of information

disclosure of sensitive information. Nonetheless, we also assume they only have

access to results of queries issued to the SmartCache. Users can collaborate with

each other to join query results to form a coordinated attack, but they cannot query

the dataset when the collective privacy budget has been depleted.
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Chapter 9

SmartCache Design

The goal of the SmartCache is to mitigate the privacy loss from repeated queries

while maintaining good accuracy. We achieve this by generating a DP synthetic

dataset from the real data. Queries answered from the synthetic dataset use only a

small portion of the privacy budget, so the objective of the SmartCache is to max-

imize the amount of times we can accurately answer a query using the synthetic

dataset, and falling back to the real dataset when the query cannot be answered

with precision from the synthetic dataset. This is done by using a three step pro-

cess comprised of a decision mechanism, a query extrapolation procedure and a

quality check. If a query can be answered using the synthetic dataset we consider

this to be a hit, and if it is answered from the real dataset we consider it a miss.

When a query arrives, we use the decision mechanism to determine whether to use

the cache. This is done by comparing results from queries on subsets of the syn-

thetic dataset. If the SmartCache is not confident in a hit, it returns the query result

on the real data with noise and consumes the query budget. On the other hand, if

the SmartCache is confident in a hit then it runs the query extrapolation procedure.

In this step, SmartCache queries a DP dataset generated from the real data. If the

result of the query in the synthetic dataset has low error SmartCache returns the

synthetic result. If the error is high SmartCache has a miss and return the result

from the real dataset with DP.

The insight behind the SmartCache is that we use misses as an opportunity to

make our cache ”smarter”. Weight parameters are used to reweight the contribu-
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tion of each example in the synthetic dataset, are updated with each miss with the

objective of minimizing a cost function that measures the difference between re-

sults. The update procedure leads to more cache hits and allows us to consume less

of our privacy budget because the synthetic dataset is differentially private.

Results from the SmartCache can be used to answer a variety of statistical

queries or to train a machine learning model. In the case of statistical queries, we

have added support for different types of mean, histogram and count queries (the

API can be extended to add more). The user issues a query to the SmartCache and

the result is returned using the heuristics described above. Statistical queries that

result in a hit are computed using the synthetic dataset. Each query computed from

the synthetic dataset uses the cache’s parameters to reweight the contribution of

each row in the synthetic dataset.

Gradient queries are used to train machine learning models. For instance, a user

can train a model by sending a gradient query to the SmartCache at each iteration

of the training procedure. The query takes the model parameters and optimizer

as input and the SmartCache returns a gradient update computed from either the

synthetic or real data. This gradient update can then be used to train a local model.

The following sections will go deeper into how the SmartCache works. Namely,

we detail how data is generated, how the decision mechanism decides whether

SmartCache should use the cache or not, how weights are updated in the synthetic

dataset, and how we ensure that the SmartCache returns accurate results in a DP

manner.
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Figure 9.1: When the SmartCache is initialized, synthetic data is generated
at a cost of εg. A new query goes through three components: decision
mechanism, quality check, and query extrapolation. These components
decide whether results from the synthetic dataset rS or the real dataset rD

are released. On top of εg budget spent for data generation, the Smart-
Cache consumes εq when a query from the real dataset is released and
εc when the quality check is run.
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9.1 Data Generation
The synthetic dataset is generated using an independent feature generator. For

each numerical feature in the dataset the mean and variance of the feature is calcu-

lated. DP noise is added to the mean and variance to guarantee differential privacy.

Values are then randomly sampled from a normal distribution with the calculated

mean and variance. The synthetic dataset is populated with these random samples

for each feature column in the dataset. For the categorical features the unique val-

ues in each column are identified and a histogram is created with the frequency of

these values. DP noise is then sampled and added to each frequency bin to guar-

antee that the generation process is DP. The frequency of each value is then used

to randomly generate samples with the probability given by the frequency bins.

After the synthetic data is generated, each row in the dataset is assigned a weight,

as seen in Figure 9.2. Weights are uniformly initialized, so that each row has the

same weight.

The independent feature generator will not pick up correlations between columns.

Nonetheless, if enough samples are generated, the weight tuning process gives

more importance to rows that are able to more closely resemble the original dataset.

The privacy cost of generating data using an independent feature generator is also

smaller than using other methods such as VAEs and GANs.

Figure 9.2: The real data is used to generate a synthetic dataset where each
row is associated to a weight.
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9.2 Decision Mechanism
After data is generated the SmartCache is ready to receive queries. Nonethe-

less, a good decision mechanism is important so that we only use the SmartCache

when there is a high probability of a hit. To do that, we leverage the following

insight: if a cache can learn the right answer from past queries, multiple version-

s/initializations should agree; if it is extrapolating arbitrarily, they should disagree.

Therefore, we divide the synthetic dataset into multiple smaller datasets, each with

an independent set of parameters k and w that are used to reweight the contribution

of each example in the dataset. When a query arrives, it is computed on each of the

datasets. The variance of query results is also computed to determine whether there

is a chance that the SmartCache will hit because it is unlikely that each dataset will

converge to the same poor result. On the other hand, if the variance is high, there is

a high chance that the SmartCache will return a poor answer, so we return a result

from the real dataset with added DP noise. When a query is answered, the weights

are updated on a random subset of the original dataset. The reason behind this is

so that there is more variability in the weights of the datasets, otherwise they will

converge to similar weights and there will be little difference between results from

the different datasets.

Formally, we have a set of n datasets S1 . . .Sn, each with an independent set

of weights w1 . . .wn and k1 . . .kn. When a query q arrives it is answered on all

datasets individually. The appropriate set of weights w are used to reweight the

contribution of a row in the dataset to the query result and the k parameter is used

to rescale the result to the appropriate magnitude 1 For example, a weighted count

is computed by k ∑
n
i=0 wixi. The result from each dataset is then averaged and

returned as the final synthetic result. For example, if the SmartCache is initialized

with n datasets, queries q(S1,w1,k1) . . .q(Sn,wn,kn) will return results r1 . . .rn. To

get the final synthetic result we average the results by computing (r1 + . . .+ rn)/n.

We also compute the variance of the results r1 . . .rn from each dataset and use this

variance to make our decision. If the variance is above a certain threshold we deem

the chance of a hit to be low, so we simply return the answer from the real dataset.

1The synthetic and real datasets are often not of the same size. For some queries, such as counts,
the result will depend on the size of the dataset. Parameter k is used to rescale the result so that the
magnitude of the answer from the synthetic and real datasets match.
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Figure 9.3: The variance of the results between each sub dataset is used to
predict whether we will have a hit or not.

9.3 Query Extrapolation
There are two optimization procedures used to update the parameters in the

SmartCache and extrapolate results from previous queries. One of them deals with

updating parameters when general statistical queries such as mean, count, and his-

tograms cause a miss, while the other deals with improving the weights to answer

gradient queries used to train a model. For both procedures we employ an online

learning setup that utilizes results from a recently executed query to update the

cache’s parameters. The update reweights rows in the synthetic dataset. Rows that

represent good approximations of the real dataset are given more weight, while

rows that poorly represent the dataset are given less weight.

For statistical queries we use the results of the queries executed on the synthetic

and real dataset to compute the L1 loss. We minimize the loss by updating the

weights w on each row of the dataset. In popular machine learning parlance, the

target value is the result from the real data and the predicted value is the result from
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the synthetic dataset.

The results of queries such as counts and histograms are altered by the size of

the dataset, so for some queries we also optimize a parameter k that is used to scale

queries on the synthetic dataset. For instance, a synthetic dataset with double the

size of the real dataset will produce a count query that is roughly double the same

count query on the real dataset. Since the size of the dataset can be privacy leaking,

we use a small amount of the budget to initialize k with some random noise before

starting the optimization procedure. For each miss we update w and k for multiple

epochs E using the same result from the real dataset, but recomputing the query

from the synthetic dataset with the new parameters at each iteration. This process

is described in Algorithm 1.

Another technique used to alleviate the outsized effect of some query types is

the normalization of query results to values between 0 and 1. For example, for

mean queries we extracted a normalized result by getting the min and the max of

the column that was used to compute the mean, and getting the following normal-

ized result (r−min(col))/(max(col)−min(col)). For count queries we simply

divide by the parameter k so that we get r/k. Other queries will have their own

intuitive computations for normalizing the values between 0 and 1.

During the development process we noticed that without normalization we

overfitted to queries with large results, which hindered the accuracy of other queries.

Another potential solution is to standardize the dataset itself, but we chose not to

follow this route because our synthetic dataset would not be useful for analytic

tasks that do not use standardized or normalized datasets and we would still have a

problem with large count queries.
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Algorithm 1: Parameter Update (Query) E is the number of epochs,
q(S,w,k) is a query on the synthetic dataset, q(D) is a query on the real
dataset.

UpdateCacheParams(w, k, D, S):

for t ≤ E do
rD = Q(D)

rS = Q(S,w,k)

f = |rD− rS|
∇ fw = f d f

dw

∇ fk = f d f
dk

wt+1 = wt −η∇ fw

kt+1 = kt −η∇ fk

end

For gradient queries we update the weights on the synthetic dataset each time

the SmartCache misses on a gradient query. The procedure for the update, de-

scribed in Algorithm 2, takes the parameters of a machine learning model θ and

the gradient updates computed for this model when using the synthetic dataset and

the real dataset. The gradient updates are used to compute Lw, the normalized dot

product of two gradient tensors.

Lw =
∇ f S

θ
·∇ f D

θ

‖∇ f S
θ
‖2 · ‖∇ f D

θ
‖2

(9.1)

Furthermore, we take the gradient of Lw with respect to w and minimize the

normalized dot product between gradients from the two datasets. For each miss,

we update w multiple times as denoted by the number of epochs E. We have found

that this helps the cache warm-up faster and find better weights earlier.

41



Algorithm 2: Parameter Update (Gradient) E is the number of epochs
for each update, S is the synthetic dataset, D is the real dataset, θ is the
parameters of the regression model trained using loss Lθ , and w is the
weights of the synthetic dataset. Gradients w.r.t. to θ are returned from
the synthetic dataset in Q(θ ,w,S) and the real dataset in Q(θ ,D).

UpdateCacheParams(w, θ , D, S):

for t ≤ E do
∇ f S

θ
= Q(θ ,w,S)

∇ f D
θ

= Q(θ ,D)

g = Lw(∇ f S
θ
,∇ f D

θ
)

∇gw = g dg
dw

wt+1 = wt −η∇gw

end

9.4 Quality check
The quality check procedure is used to prevent the SmartCache from releasing

low quality results. The error between results from the synthetic and real datasets

are compared to a user-defined threshold with noise added to it, so that the process

is DP. If the error is below the threshold, the synthetic result is released. If the error

is above the threshold, the real result with DP is released. For statistical queries we

base the error threshold on the distribution of DP noise. A user can set a threshold

so that the difference between the real and synthetic result falls within x% of the

values from the sampling distribution of the noise. A smaller value of x leads to

more precise queries, while a larger value may be less precise, but will lead to more

hits. For example, a query is executed on the real dataset and noise is added to it

by sampling from N(0,σ). The user wants a hit if the difference between the real

and synthetic value is within 95% of the samples from the Gaussian distribution.

The threshold is defined by setting T = φ−1(0.95), where φ is the inverse of the

cumulative distribution function.

For gradient queries we use the normalized dot product as the hit threshold.

This is a good threshold because it returns a hit when the gradient computed on

the synthetic dataset is pointing in a similar direction as the gradient from the real
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dataset. The user can decrease the threshold if they are comfortable with a greater

variation in the direction of the gradients, or they can increase the threshold, so that

they only have hits when the direction of the two gradients is close together.

To bound the sensitivity of the threshold for the gradient queries we slightly

modify the normalized dot product formula, so that the threshold is

T =
1
ln

n

∑
i=0

l

∑
j=0

gi j
S · g̃

i j
D

‖gi j
S ‖2C

where gi j
S is the gradient for the i-th example and l-th layer on the synthetic

dataset and g̃i j
D is the clipped gradient for the i-th example and l-th layer on the real

dataset. This formula has a sensitivity of 1
n

Proof: Assume the `1-sensitivity of function f taken over adjacent datasets D

and D′ is given by ∇1 f = maxD,D′ || f (D)− f (D′)||1.

f (D) =
1
ln

n

∑
i=0

l

∑
j=0

gi j
S · g̃

i j
D

‖gi j
S ‖2C

(9.2)

=
1
ln
(

n−1

∑
i=0

l

∑
j=0

gi j
S · g̃

i j
D

‖gi j
S ‖2C

+
l

∑
j=0

gn j
S · g̃

n j
D

‖gn j
S ‖2C

)

≤ 1
ln
(

n−1

∑
i=0

l

∑
j=0

gi j
S · g̃

i j
D

‖gi j
S ‖2C

+
l

∑
j=0

‖gn j
S ‖2‖g̃n j

D ‖2

‖gn j
S ‖2C

)

=
1
ln
(

n−1

∑
i=0

l

∑
j=0

gi j
S · g̃

i j
D

‖gi j
S ‖2C

+
l

∑
j=0

‖gn j
S ‖2C

‖gn j
S ‖2C

)

=
1
ln
(

n−1

∑
i=0

l

∑
j=0

gi j
S · g̃

i j
D

‖gi j
S ‖2C

+
l

∑
j=0

1)

=
1
ln
(

n−1

∑
i=0

l

∑
j=0

gi j
S · g̃

i j
D

‖gi j
S ‖2C

)+
l
ln

=
1
ln
(

n−1

∑
i=0

l

∑
j=0

gi j
S · g̃

i j
D

‖gi j
S ‖2C

)+
1
n

Since adjacent datasets differ by at most one row assume without loss of gen-

erality that
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f (D) =
1
ln
(

n−1

∑
i=0

l

∑
j=0

gi j
S · g̃

i j
D

‖gi j
S ‖2C

)+
1
n

(9.3)

f (D′) =
1
ln
(

n−1

∑
i=0

l

∑
j=0

gi j
S · g̃

i j
D

‖gi j
S ‖2C

)

This means that

max
D,D′
|| f (D)− f (D′)||1 = max

D,D′
|| 1

ln
(

n−1

∑
i=0

l

∑
j=0

gi j
S · g̃

i j
D

‖gi j
S ‖2C

)+
1
n
− 1

ln
(

n−1

∑
i=0

l

∑
j=0

gi j
S · g̃

i j
D

‖gi j
S ‖2C

)||1

(9.4)

= max
D,D′
||1

n
||1

=
1
n

QED

If the calculated value is within the stipulated threshold, the SmartCache will

deem the value to be accurate and will return the value from the synthetic dataset,

thus minimizing the use of the privacy budget. On the other hand, if the value is

not within the threshold it will fail the quality check. In this case, the answer from

the real dataset is returned and more of the privacy budget is consumed. We can

control the quality check to use a larger value of ε and thus consume less of the

budget. This allows us to find a balance where if there are enough hits we use less

of the budget than querying just from the real dataset. For example, in a regular DP

setup we will consume a part of the budget with every query. The value of ε cannot

be too small or else the accuracy of the query will suffer. In the SmartCache, if a

query is a cache miss we consume both εq, the privacy loss for the query, and εc,

the privacy loss due to the added noise in the quality check mechanism. The trick

is that we can use smaller values of ε for the threshold, since the accuracy of the

query depends less on it. If there is a hit we consume only εc. This means that if

there are enough hits we end up with privacy savings.

44



Another option is to use the sparse vector mechanism as a quality check mecha-

nism. The sparse vector technique lets us report queries such that privacy degrades

only with the number of queries above a threshold. In the basic formulation of the

technique, noise is added to the result of a query and the answer is reported only

when the noisy value exceeds the threshold. Therefore, the total privacy loss of a

function is the number of queries above the threshold. In the SmartCache setting, if

the error from a query exceeds the sparse vector technique threshold the real value

is returned and the threshold is renoised. If the error is below the threshold then

the value from the synthetic dataset is returned.

9.5 Budget Analysis
The privacy budget in the SmartCache can be divided into three groups: data

generation, queries, and the quality check. The synthetic dataset used for the

SmartCache has to be generated in a DP manner. This means that noise is added

during the generation process and some of the privacy budget is consumed upfront.

The more noise that is added to the generated dataset, the more private it becomes,

but the less accurate it will be. We use εg to stand for the privacy loss stemming

from the data generation process. The budget from the generated data is only con-

sumed once during the initialization of the SmartCache. The synthetic dataset can

then be used without any more budget penalties.

After the initial data is generated the SmartCache is ready to receive queries.

Queries only consume the privacy budget from the SmartCache if an answer from

the real dataset is returned. We let εq to stand for the privacy loss stemming from

each query that misses and that has to return an answer from the real dataset. On

top of εq each query also consumes some budget from the quality check procedure

εc. The total budget consumption for the SmartCache if there are n queries and m

misses is

εt = εg +mεq +nεc

If the sparse vector mechanism is used for the quality check the quality check

budget will be consumed only when there is a miss. The total budget consumption

when the sparse vector mechanism is used is given by
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εt = εg +mεq +mεc

The budget accounting can look a bit different if Rényi differential privacy is

used to account for the budget spent by the queries. In Rényi-DP, also known as

(ε,α)−RDP, the budget expenditure can be given in terms of the best value of

alpha, which gives tighter bounds on the privacy loss of the queries.
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Chapter 10

SmartCache Evaluation

The goal of the SmartCache is to reduce the budget spent by a set of queries,

thus allowing users to perform more queries without compromising the privacy of

individuals in the dataset. On top of that, we also want the SmartCache to provide

accurate results. In this evalation we want to answer two research questions:

1. How much budget is spent by using the SmartCache when compared to an-

swering queries directly from the real dataset with DP?

2. How does the SmartCache affect the accuracy of queries and how does it

compare to answering queries from a synthetic dataset with uniform weights?

To evaluate the SmartCache we ran experiments on the bank-marketing [28]

and the avocado prices [11] datasets. The bank-marketing dataset contains a com-

bination of 16 categorical and numerical features and a total of 45211 rows. The

avocado prices dataset also contains a combination of categorical and numerical

features but with a total of 11 features and 18249 rows. These experiments mea-

sured the accuracy of different statistical queries and gradient queries and calcu-

lated the privacy cost of using the SmartCache against querying the real dataset

with differential privacy. Experiments were run on an Ubuntu 18 machine with

32GB of RAM and an Intel Core i7-8700 CPU with six cores. A Nvidia GeForce

GTX 1080 with 8GB of memory was used as the graphics processing unit.
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10.1 Budget Spent
We evaluated the budget savings for statistical queries by executing 600 queries

against the SmartCache and recording the privacy loss after each query was exe-

cuted. We compared the privacy loss of the SmartCache to the privacy loss of

directly querying the real dataset with noise added to the result of each query. The

blue line shows the budget spent by the SmartCache and the green line shows the

budget spent by our baseline (querying a real dataset with DP). The red line shows

the amount of budget spent by using just a synthetic dataset with DP guarantees,

without the decision mechanism, quality check, and decision mechanism used in

the SmartCache. In short, the budget spent by the red line is equivalent to the bud-

get spent in the data generation process. The SmartCache is considered succesful

if the blue line is below the green line, or in the case of gradient queries, if the blue

line is below the green line before convergence. This means that the SmartCache

used less of the privacy budget than the baseline.

When answering statistical queries for the avocado dataset (Figure 10.1), the

SmartCache was able to yield privacy savings when using a threshold error of 0.99

and 0.999, but it was not able to yield privacy savings when a more strict thresh-

old of 0.9 was used. The reasons why the SmartCache is not able to yield privacy

savings with a threshold of 0.9 are two-fold: there is an initial cost for generat-

ing data and misses are more expensive because of the budget spent answering

the query and performing the quality check. These results can be improved by ei-

ther improving the query extrapolation process, so that the weights are better tuned

and we have more hits, or by improving the decision mechanism so that we have

fewer misses when we decide to use the cache. As seen in Figure 10.2 the Smart-

Cache was not able to yield privacy savings when answering statistical queries

on the bank-marketing dataset. It was close to breaking even with thresholds of

0.99 and 0.999, but the initial cost for data generation added extra expenses to the

privacy budget that made the total budget consumed by the SmartCache highter

than the budget consumed by the DP baseline. There seems to be a dataset de-

pendency in the results, as evidenced by the contrast in performance between the

bank-marketing and avocado datasets. A possible reason for these differences is

that the hyperparameters chosen for the avocado dataset were better tuned to the
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task than the hyperparameters chosen for the bank-marketing dataset.

Figure 10.1: Budget spent after answering 500 statistical queries on the av-
ocado dataset. The 500 queries were a mix of mean, histogram and
count queries. Each graph shows the results of using the SmartCache
with a threshold of 0.9 (top left) 0.99 (top right), and 0.999 (bottom).
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Figure 10.2: Budget spent after answering 500 statistical queries on the bank-
marketing dataset. The 500 queries were a mix of mean, histogram and
count queries. Each graph shows the results of using the SmartCache
with a threshold of 0.9 (top left) 0.99 (top right), and 0.999 (bottom).

For gradient queries we trained both a fully connected model and a ridge re-

gression to convergence by using the SmartCache and recorded the privacy loss

after each iteration in the training of the model. We compared the privacy loss of

the SmartCache to the privacy loss of directly training a DP model on the real data.

As seen in Figure 10.3 the SmartCache is able to consume a mininal amount of

budget for the first 200 queries of the ridge regression. Afterwards, we see the bud-

get consumed by the SmartCache rise rapidly and overtake the budget consumed

by the model trained only on the real dataset with DP. This is because of the extra

expense in the quality check procedure. This rapid rise in budget consumption can

be mitigated by having the decision mechanism make more accurate predictions,

but towards the middle of training it becomes innacurate. The budget spent by the

SmartCache eventually overtakes the budget spent by the real dataset with DP, but

this happens only after the model converges as denoted by the dotted yellow line,
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which leads to privacy savings. The results for the bank-marketing dataset (Figure

10.4) was not as favourable as the results for the avocado dataset. As denoted by

the dotted convergence line, the budget consumed by the SmartCache surpasses

the budget consumed by the DP baseline before the model converges. Nonethe-

less, the total budget consumed by both was similar and the SmartCache was able

to stay under the green line for close to three fifths of the queries. Once again, if

the decision mechanism is able to identify that we have more misses when closer

to convergence, we would be able to have budget savings in Figure 10.4.

Figure 10.3: Budget spent after each query used to answer ridge regression
on the avocado dataset.
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Figure 10.4: Budget spent after each query used to answer ridge regression
on the bank-marketing dataset.

With the avocado dataset, the fully connected model performed significantly

better than the ridge regression in terms of budget saved. Figure 10.5 shows that

the fully connected model consumed a small amount of budget and most of the

queries hit the cache. It is not clear why the fully connected model performed so

much better than the ridge regression, but with better selection of thresholds and

hyperparameters it is possible that the ridge regression can have similar perfor-

mance. The results with the avocado dataset did not translate to the bank-marketing

dataset (Figure 10.6). For the bank-marketing dataset the budget consumed always

stayed above the budget consumed by the DP baseline. Careful selection of hyper-

parameters may help yield better results for other dataset types.
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Figure 10.5: Budget spent after each query used to answer fully connected
model on the avocado dataset.

Figure 10.6: Budget spent after each query used to answer fully connected
model on the bank-marketing dataset.

10.2 Accuracy
It is important for the SmartCache to return accurate results for it to be prac-

tical. We evaluate the accuracy of statistical queries executed on the SmartCache

by measuring the mean absolute error of queries executed using the SmartCache

to the DP values on the real dataset. We compare this error to the error of return-
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ing queries using only a synthetic dataset without the weight parameters used by

the SmartCache. Before the absolute error was computed for statistical queries the

result from the query on the synthetic dataset and the SmartCache were divided

by the query threshold, which is based on the sensitivity of the query. This was

done so that the results from different query types can be compared and analyzed

together. For example, a = |(p/t)− (r/t)|, where a is the absolute error, p is either

the predicted value from the SmartCache or the synthetic dataset, r is the real value

with DP and t is the query threshold.

As seen in Table 10.1 the SmartCache significantly improves the accuracy

when compared to just using a synthetic dataset to answer queries. This shows

that it can maintain the quality of queries released to the user within the stipu-

lated threshold. The SmartCache was run for different choices of threshold, so that

released queries fall within 90% 99% and 99.9% of DP noise.

Type Dataset Thresh MAE MAE Scaled
SmartCache Avocado 0.9 10749.53 0.39

SmartCache Avocado 0.99 11951.83 0.35

SmartCache Avocado 0.999 15354.082 0.10

Synth Avocado - 259040.38 4.50

SmartCache Bank-Marketing 0.9 43.19 0.24

SmartCache Bank-Marketing 0.99 116.33 0.27

SmartCache Bank-Marketing 0.999 150.81 0.28

Synth Bank-Marketing - 1958.72 2.54

Table 10.1: Average absolute error and average variance of queries answered
using the SmartCache and the synthetic dataset with uniform weights.
MAE is the mean absolute error and thresh is the threshold used to de-
termine hits for the SmartCache.

For gradient queries we trained a ridge regression and fully connected model

to convergence using the SmartCache and compared the final loss of the model

trained using the SmartCache to a model trained using only the real data with DP

guarantees and a model using only DP generated synthetic data.

Figures 10.7 10.8 and Figures 10.9 10.10 show that both the fully connected
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model and the ridge regression were trained to similar validation loss using the

SmartCache as to using the real dataset with DP. The red line in both graphs show

the results of training the models with only the synthetic dataset and without any

of the weight update procedures used in the SmartCache (weights are uniform for

every row). These graphs show how the weight update procedure helps improve

the accuracy of the model.

Figure 10.7: Validation loss after each query used to answer ridge regression
on avocado dataset.

Figure 10.8: Validation loss after each query used to answer ridge regression
on bank-marketing dataset.
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Figure 10.9: Validation loss after each query used to answer fully connected
model on avocado dataset.

Figure 10.10: Validation loss after each query used to answer fully connected
model on bank-marketing dataset.

Given the results in this section, we can see that the SmartCache was able

to optimize the use of the privacy budget when answering gradient queries and

statistical queries for some thresholds. Unfortunately, the results didn’t translate as

well for different dataset types, but with more careful hyperparameter tuning we

believe it is possible to improve these results. The second goal of the SmartCache

was to maintain good accuracy when answering queries. This goal was achieved
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when answering both gradient queries, as evidenced by the low validation error of

the model trained using the SmartCache, and the low absolute error of the statistical

queries answered using the SmartCache.
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Chapter 11

SmartCache Related Work

Optimizing the use of the privacy budget is an active research area in differ-

ential privacy. Without good mechanisms to control the amount of budget spent

by successive queries, users may be blocked from issuing more queries. There-

fore, maximizing the use of the privacy budget is important to make a system more

usable. Techniques such as the multiplicative weights mechanism and the sparse

vector mechanism have provided interesting ways to improve the use of the privacy

budget and influenced the design of the SmartCache. Nonetheless, in SmartCache

we have taken some of these ideas that work well in theory and in some restricted

scenarios and made them more practical.

11.1 Multiplicative Weights
The multiplicative weights mechanism [20] allows for a large number of in-

teractive counting or linear queries to be answered. The multiplicative weights

mechanism views databases as distributions over the data universe. Each item in

the database is associated with a positive weight, where the initial weights are a

uniform distribution where each weight is 1/N. When the t-th query qt arrives a

noisy answer is computed by adding Laplace noise to the true answer. The answer

from round t is compared to the answer from round t−1. If the answers between

the rounds are close then the weights are kept the same as in the previous round.

If the answers are far from each other the weights on the dataset are reweighted
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by using multiplicative reweighting, so that the new updated database is closer to

an accurate answer. This method is similar to what we do in the SmartCache. In

fact, it is the inspiration to the weighted dataset approach used by the SmartCache.

Nonetheless, the multiplicative weights mechanism deals with only linear queries,

while the SmartCache is also able to deal with non-linear queries such as returning

update gradients for neural networks. Another difference is that the SmartCache

is meant to support a varied number of queries, that more closely resembles the

workload of a real data analyst. This led to the implementation of the decision

mechanism and the quality check mechanism so that we can guarantee good accu-

racy and better utilize the privacy budget.

More recent work has shown that the multiplicative weights mechanism can

also be used to answer linear convex minimization queries [38]. This work has

shown that multiplicative weights can be used to answer a large number of queries

used to train a machine learning model as long as the optimization problem is

convex. This differs from the SmartCache approach where we are also able to

answer queries to train non-linear models with non-convex minimization, such as

with neural networks.

11.2 Sparse Vector Technique
The sparse vector technique [16] [23] satisfies differential privacy and allows

a person to output some queries without an added privacy cost. The sparse vector

technique works by setting a certain threshold T and outputing whether an answer

from a query is above or below the threshold. The threshold has noise added to it

and each query result is compared to this perturbed threshold. If a query result is

below the threshold no budget is consumed. The privacy budget is only deducted

when the outcome of a query is above the threshold. This means that as long as

queries are not above the threshold, queries can still be answered with no privacy

risk. This mechanism is useful in settings where results above the threshold are

sparse. For example, if users only care about results that are above the threshold

and most queries issued by them are below the threshold, the sparse vector tech-

nique becomes a good alternative to save the privacy budget.

When compared to the SmartCache, the sparse vector technique is another
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method to help privacy budget preservation. In fact, it can be slightly modified

and used in the quality check to decide whether to release a query from the real or

synthetic dataset. Nonetheless, the sparse vector technique would require a hit-rate

of above 50% for any budget gains, since there is a cost to renoise the threshold

when a query is above it, thus doubling the amount of privacy budget necessary

for the system. In other words, if query results that are above the threshold are not

truly sparse, the sparse vector mechanism is not a good choice. This issue is miti-

gated in the SmartCache by using the decision mechanism to reduce the amount of

times we use the SmartCache and have a miss.

11.3 Other Budget Optimizing Systems
The above techniques have been adopted by various systems with the purpose

of optimizing the use of the privacy budget. Honeycrisp [34] and Orchard [35]

use the sparse vector technique to increase the number of times a query can be

answered before a budget runs out. Nonetheless, they do not focus on strict budget

optimization and thus lack features in the SmartCache such as the weighted syn-

thetic dataset and decision mechanism to help decide when it is viable to use the

sparse vector technique.

Other data analytics systems such as Airavat [9] for a MapReduce interface and

PINQ [26] for SQL like queries exist. Despite the strong and mature querying ca-

pabilities of these systems, they do not have the privacy budget optimization focus

of the SmartCache. Nonetheless, many of the techniques used in the SmartCache

can be integrated into other data analytics systems.
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Chapter 12

Conclusion

This thesis presented two systems: LEAP and the SmartCache. LEAP solves

the problem of performing data analytics on multiple sites. There is substantial

overhead to using LEAP (up to 2.5X slower when training a model such as Resnet-

18), but it provide benefits when data sharing. Some of these benefits are control

over data (e.g revoking access), facilitating data agreements, and time saved not

centralizing data. These benefits are in large part achieved by the federated nature

of the system: raw data does not need to be centralized to answer queries.

The SmartCache, on the other hand, solves the issue of optimizing the privacy

budget. It allows users to perform more queries before a dataset is at risk of leaking

private information. The SmartCache was able to train models to the same valida-

tion loss as a DP baseline on the real dataset and consumed close to 70% less of the

privacy budget when training a fully connected model on the avocado dataset. For

statistical queries, results varied depending on the thresholds used. For thresholds

of 0.99 and 0.999 the SmartCache consumed approximately 30% and 50% less of

the budget for the same amount of queries when compared to querying the real

dataset with DP.

Despite both systems standing on their own, they can also interact. LEAP,

for example, can issue DP queries when dealing with sensitive datasets. In this

instance, the SmartCache can be used on each site to answer queries from a weight

tuned synthetic dataset, and thus allowing each site to answer more queries without

putting individuals present in the datasets at risk.
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