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Abstract

Internet censorship is a form of digital authoritarianism in certain countries that

restrict access to the internet. Internet freedom, to a degree, is possible even in

these countries by means of proxies maintained outside of the censor’s boundaries.

These proxies can be compromised by censors who pose as legitimate users to

discover proxies. Censors are powerful adversaries and may block access to any

proxy once they know about it.

We propose a novel technique to address the proxy distribution problem in this

thesis. We introduce the needle algorithm that preserves proxies by limiting their

distribution. We show that it is a useful mechanism for both preserving proxies and

maintaining client service under a censorship threat model.

We examine characteristics of the needle algorithm in a simulation. Three mea-

sures are important under the censorship threat model; the enumeration or discov-

ery of all proxies, load balancing guarantees, and the collateral damage of innocent

bystanders. We compare the results of these experiments with two well-known al-

gorithms, uniform random and power of 2 choices, as well as Tor’s bridgedb

proxy assignment mechanism.
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Lay Summary

Internet censorship prevents citizens of a country from accessing content on spe-

cific websites. Censors are powerful figures that restrict free access to information

by limiting their citizens’ internet access when they are within the censor’s coun-

try. A proxy is a single hop beyond the reach of the censor that is controlled by an

organization on the outside. A censored user connects to the proxy to hop outside

of their country to view restricted content. There are not enough proxies for each

censored user to have their own, so they must share. A censor may pretend to be

honest to learn about the proxies to block access to them. This thesis presents an

approach to proxy distribution that preserves some proxies by restricting their dis-

tribution. We examine the lifetime of proxies in a simulation to see if this solution

is practical in a real-life setting.
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Chapter 1

Introduction

Internet censorship is a significant and growing problem that threatens our free-

dom of expression and access to information. A citizen within a censored country

attempts to access the internet that is hosted beyond the censor’s control boundary,

shown in Figure 1.1. A censor is a strong nation state adversary that conducts mass

surveillance and utilizes blacklists. One of the simplest techniques employed by

censors is to deny access to users by blocking traffic destined for blacklisted sites.

Figure 1.1: A censor observes a citizen’s network activity.

This effective censorship technique can be circumvented by means of proxies;

single-hop servers outside of the censored country that facilitate indirect access

to censored information. In Figure 1.2, a citizen is blocked from the internet but

manages to access sites via a proxy. Censorship Resistance Systems (CRS) like
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rBridge [25], meek [9], and Tor’s bridgedb [2] manage proxies and allow users

in censored countries to access blacklisted websites. These systems bypass censors

and route users through secret paths. Secret paths rely on proxies that are managed

by censorship resistance systems. Proxies serve as intermediary hops between a

user and a blacklisted destination site.

Figure 1.2: The citizen uses a proxy to access the internet.

CRS are composed of honest and dishonest (fake) users, several honest proxies,

and a centralized proxy distributor that is also honest. Figure 1.3 shows a typical

censorship circumvention system using a collection of proxies and a centralized

distributor. CRS rely on the proxy distributor to assign clients to proxies. Honest

users anonymously request proxies and receive proxy information details from the

distributor. However, a censor may also learn proxy details by posing as an hon-

est user via legitimate, anonymous methods. The censor coordinates information

collected through a collection of fake accounts to gain knowledge of the proxies in

the circumvention system.

To get an idea of the scale of censorship events around the world, Figure 1.4

shows a world map where the Open Observatory of Network Interference (OONI)

project’s network measurement tests, ooniprobes, are run daily by volunteers

[3]. The red areas on the map outline confirmed cases of censorship. Censorship is

confirmed by the response body of a Hypertext Transfer Protocol (HTTP) request

of a blocked page from within a censored country.
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Figure 1.3: Censorship circumvention via proxy distribution.

Figure 1.4: OONI project’s censorship data.

Proxies in censorship resistance systems that cannot distinguish between hon-

est users and fake users are destined for discovery over time. Most systems man-

ually reserve a set of proxies that is only distributed when all other proxies are

compromised. This manual solution is effective, but does not maximize the alloca-

tion of proxies.

We offer a lightweight, elegant solution to the proxy distribution problem by

slowing down the progress of the censor to learn new proxies. Our goal is to

3



provide service to clients while preserving proxies from distribution, a goal that

is complimentary to reserving proxies. We introduce a partially random strat-

egy for the proxy distribution problem to distribute proxies to honest clients while

fake clients are present. Our approach uses principles of load balancing in a non-

intuitive way to preserve random proxies by unbalancing the load on proxies, mak-

ing them more difficult to discover.

We provide an approximation of the censor’s required effort to discover all of

the proxies in a system based on the coupon collector problem [11]. We validate

this approach in a simulator that simulates a proxy distributor in a censorship re-

sistance system.

We contribute to the existing body of knowledge in the following five ways:

1. We introduce a novel algorithm, needle, that restricts the distribution of prox-

ies in order to slow the expected time of proxy system compromise while still

maintaining service to a proportion of clients.

2. We define a censorship threat model within which we evaluate the needle

algorithm. We define honest users, a proxy distributor, insider attackers,

popularity blocking, and a colluding censor within this model.

3. We analyze the needle algorithm in the context of the coupon collector prob-

lem to give bounds on the average time to collect all of the proxies.

4. We build a simulator to evaluate the needle proxy distribution algorithm and

compare the results with Tor’s bridgedb distribution, uniform random dis-

tribution, and the power of 2 choice load balancing algorithms.

5. We discuss the benefits and drawbacks of trust-based proxy distribution vs.

lightweight approaches and provide ideas for future work on our approach.
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Chapter 2

Background

2.1 Censorship Threat Model
The first goal of our censor in this model is to discover proxies. The censor discov-

ers, or enumerates, proxies by posing as a legitimate user of a CRS. The distribution

of proxies to honest users and the censor posing as an honest user is a cat-and-

mouse game between the censor and a CRS, referred to as the proxy distribution

problem.

There are three attacks that lead to the ability of our censor to block a proxy;

the Sybil attack followed by the insider attack leading to the enumeration attack.

In the first stage of the insider attack, a malicious entity, such as a censor, deploys

multiple accounts through anonymous authentication. This is the Sybil attack that

creates fake accounts to gain entry to the system. The insider attack occurs when

the knowledge of assigned proxies gained from honest proxy assignment is given to

the censor. The enumeration attack that follows is usually the action of the censor

to block all of the proxies it knows about [25].

Once a censor knows about a proxy, it can decide to block that proxy. The sec-

ond goal of our censor is to block the largest amount of honest users as possible.

The censor may choose to block immediately when a proxy is discovered, known

as immediate blocking. The censor may instead delay blocking in order to maxi-

mize the collateral damage to honest clients, or perhaps wait for a critical time or

maximum number of users to time a blocking attack.
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In addition, the censor keeps track of proxies that are the most popular. The

censor determines that a proxy is popular by the number of times a proxy is as-

signed compared to other proxies that it knows about. The censor then chooses to

block proxies based on their popularity ranking.

We make different kinds of blocking assumptions in the evaluation section in

Chapter 4. Immediate blocking makes the most sense when we evaluate enumera-

tion because as soon as the censor is assigned to any proxy, it is enumerated. We

assume delayed blocking behaviour in the load balancing analysis because we want

to observe load balancing trends over time, without any blocking on the part of the

censor. The bystander evaluation assumes that the censor blocks the most popular

proxies so that we can measure the number of bystanders in the remaining proxies.

2.1.1 Out of Scope

The censor is a powerful, nation-state adversary and many of its capabilities are

beyond the scope of this work. For example, network-level proxy discovery where

the censor actively or passively scans Internet Protocol (IP) addresses is not ad-

dressed. A censor may monitor all traffic in their network, store the state of the

network, and monitor requests and responses to known proxy addresses. This al-

lows the censor to potentially mount a zig-zag attack to connect users together by

their proxies [1]. Only proxy discovery by assignment of an attacker to a proxy is

explored in this thesis.

2.2 Coupon Collector Problem
In our model, the problem of proxy distribution is simply to distribute a collection

of n proxies to some users, where k of these users are attackers, in such a way as to

provide a degree of functionality to the honest users. From the censor’s viewpoint,

it closely aligns to the Coupon Collector Problem (CCP) where the proxies are

coupons and the censor is the coupon collector.

CCP is a classic occupancy problem that considers the number of coupons that

must be collected before one has the entire collection of coupons. There are n

distinct coupons that are collected one at a time where the ith coupon arrives with

probability pi [21]. The uniform random algorithm, shown in Algorithm 1, chooses
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one coupon randomly from the list of total coupons.

Where probabilities pi from i = 1 to n are equal, the arrivals are uniform ran-

dom. This equi-probable case, where all probabilities of coupons are equal, shows

that the probability of obtaining a new coupon i decreases with each draw. The

average number of draws to collect all of the coupons is nHn where Hn is the nth

harmonic number [11]. We briefly show why this is the case below.

The summation of probabilities of obtaining a distinct coupon, not previously

seen, is n
n +

n−1
n + n−2

n + ...+ 1
n . The probability of receiving a unique coupon

decreases by 1 in the numerator for each selection. The probability of a new coupon

in the first draw is 100% for instance, because no coupon has yet appeared. The

very last coupon is the most difficult to select with probability = 1/n. By linearity

of expectations, where pi is the probability of obtaining the ith coupon, this can be

written as:

pi =
n−1

∑
i=0

n− i
n

This follows a geometric distribution, therefore E[Xi] =
1
pi

where X is the sum

of the expected number of draws for the ith coupon from i to n. The expected

number of draws for all n coupons in total is:

E[X ] =
n−1

∑
i=0

n
n− i

By changing the variable i to j = n− i, we obtain E[X ] = nHn, where Hn is the

nth harmonic number:

E[X ] = n
n

∑
j=1

1
j

= nHn

We use two previous works in our analyses in Chapter 3; the uniform random

approximation and singleton coupons.
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Data: A list of coupons and one randomly selected coupon c. Coupons are
selected uniform randomly

Result: A coupon c
begin

c←− random(coupons)
end

Algorithm 1: Uniform Random Coupon Collection

2.2.1 Harmonic Number Approximation

Recall that the censor collects n proxies in E[X ] = nHn steps. There is no closed

form expression for the harmonic number, Hn. Instead, the approximation with

Euler Mascheroni Constant γ ≈ 0.5772156649 and Hn = lnn+ γ +1/2n is used in

this analysis [11].

2.2.2 Singleton Coupons

Variations of the CCP are explored in [22] where a single collector attempts to

obtain a specific number of coupons out of n total coupons. As part of this analysis,

we use the number of singleton coupons that Myers et al. provide. Singleton

coupons are coupons that have been selected exactly once after all of the other

coupons have been collected. Most coupons are duplicates and only a few appear

only once. On average, the number of singleton coupons is equal to the harmonic

number Hn.

2.3 Load Balancing
From the perspective of the proxy distributor, the proxy distribution problem is a

form of load balancing where some clients are malicious and the proxy distributor

would like to allocate as many proxies as possible to honest clients. Load balancing

strategies are used to evenly allocate resources in distributed systems and have

historically been modelled as balls and bins [19].
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2.3.1 Maximum Load

The evenness of the distribution is formalized as the maximum load. The maximum

load is equal to the number of balls in the bin that has, with high probability1, the

maximum number of balls over all the bins. The closer that the maximum load is

to a perfect distribution of m balls over n bins, m/n, the more even the distribution,

and thereby the load is more evenly balanced.

2.3.2 Uniform Random Distribution

The maximum load of a uniform random placement of balls in bins where m = n

is well known to be approximately logn/ log logn with high probability [12]. See

Lemma 5.1 below from the analysis in Chapter 5 of Probability and Computing

[19].

Lemma 1 When n balls are thrown independently and uniformly at random into

n bins, the probability that the maximum load is more than 3lnn/ ln lnn is at most

1/n for n sufficiently large.

2.3.3 Power of 2 Choice

The power of 2 choice algorithm for load balancing shows that giving two random

choices instead of a uniform random placement results in an exponential improve-

ment in the maximum load [20]. Figure 2 outlines the power of 2 choices algorithm

that randomly selects two bins from the total list of bins. To determine the bin that

is selected, the algorithm checks the load of each bin. The bin with the least num-

ber of client assignments is returned.

The maximum load in the uniform random case is logn
log logn +O(1) where the

number of balls is equal to the number of bins [5]. In the two-choice algorithm, the

fullest bin with high probability has log logn
log2 +O(1) balls where the number of bins

selected randomly is 2. Increasing the number of bins ≥ 2 yields only a constant

factor of improvement. The heavily loaded case, where the number of balls strictly

increases over the number of bins, m >> n, was found to have a maximum load of
1with high probability means at least 1−O(1/n)
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Data: A list of bins bins, two randomly selected bins b1 and b2 with total
number balls, or loads, l1 and l2 respectively

Result: One of {b1,b2}
begin

b1←− random(bins)
b2←− random(bins)
l1←− load(b1)
l2←− load(b2)
if l1 == l2 then

return random(b1,b2)
/* break a tie */

else if l1 < l2 then
return b1

/* b1 is least loaded */

return b2
/* b2 is least loaded */

end
Algorithm 2: Power of Two Choices

m/n+O(log logn) [6].

2.4 Tor
One of the most widely used distributed, anonymous networks is the Tor onion net-

work. Tor is useful for avoiding traffic analysis, a form of internet surveillance, but

any anonymous network on its own is insufficient for censorship circumvention.

For example, Tor packets are identifiable from telltale signs in the format of traffic

sent to the Tor network. Additionally, these packets are easily blacklisted by cen-

sors because onion relay IP addresses in the onion network are publicly known. Tor

includes various obfuscation protocols, known as pluggable transports,

to hide distinguishing characteristics of packets from censors. These protocols are

run by Tor bridges; bridges are single-hop proxies into the Tor onion network.

Bridges are run by volunteers in a trusted proxy environment outside of the censor

boundary. Tor needs to communicate the address of a bridge to legitimate users se-

curely. This is another form of the proxy distribution problem; to distribute secret
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bridge addresses (proxies) only to legitimate users, not to censors.

A user requests bridge addresses from Tor by emailing Tor’s bridge service.

The bridge service, bridgedb, selects three bridge addresses at a time and rate

limits these requests. For example, a request from a single email address can re-

quest bridges once daily. The bridgedb data structure is a hashring where an

index into the keyspace is generated by hashing unique user information into a

subring that is rotated on a scheduled interval.2 This index gives the first bridge

address, the other two bridge addresses are the successors of the first index in the

ring. The censor can enumerate bridges one-by-one by posing as a legitimate user.

Ling, Luo, Yu, Yang, and Fu showed in [16] that Tor bridges can be enumerated

with bulk emails via the Hypertext Transfer Protocol Secure (HTTPS) protocol.

Coming up next, in Chapter 3, we’ll analyze the expected time to collect all

of the proxies using the needle algorithm in the context of the coupon collector

problem. We’ll also refer to the maximum load in the load balancing analysis.

Later on, in Chapter 4, we’ll compare the uniform random, power of 2 choices,

and Tor’s distribution mechanism with the needle algorithm in our evaluation.

2https://gitweb.torproject.org/bridgedb.git/tree/bridgedb/distributors/email/distributor.py
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Chapter 3

Needle Algorithm

We present a new algorithm, the needle algorithm, and compare it to two well-

known algorithms, uniform random and power of 2 choices, as well as Tor’s bridge

distribution scheme, in order to contrast their respective trade-offs and suitability

under differing system goals. The primary goal of the needle algorithm is to pre-

serve some proxies from within the larger list of n proxies. Another goal is to

maintain practical load balancing for the majority of the proxies. It achieves these

goals by breaking the list of proxies into sublists. It moves through the proxies

jumping from sublist to sublist, referred to as GIANTSTEPS or g. These steps iso-

late some proxies from distribution.1 The algorithm has the following parameters:

• proxies: a sorted list of proxies ordered by load

• n: the total number of proxies

• g: the number of steps around the proxy ring

• s: the number of proxies in each g step

• move: indicates a move to the next step

• px1, px2: two randomly selected proxies from within the sublist of the cur-

rent step g, sampled with replacement
1Those readers familiar with the algorithmic composition techniques of jazz chord progression

may draw a parallel from the restriction of proxies to the restriction of notes in a key change. These
are reminiscent of Coltrane’s Giant Steps [15].
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Data: proxies, n, s = bn/gc
Result: One of {px1, px2}
begin

window←− (start,end)
if move > 1 then

/* a giant step around the proxy ring */
start←− (start + s) % n
end←− (end + s) % n
move←− 0

move←− move+1
sublist←− (proxies [start,end])
px1←− random(sublist)
px2←− random(sublist)
l1←− load(px1)
l2←− load(px2)
if l1 == l2 then

return px1
/* break a tie */

else if l1 > l2 then
return px1

/* px1 is heaviest loaded */

return px2
/* px2 is heaviest loaded */

end
Algorithm 3: Needle Algorithm

The algorithm selects two proxies uniform randomly in each giant step g. Us-

ing reverse power of 2 choices, it then chooses the heavier loaded proxy and returns

this proxy to the collector. (Note that the standard power of d choices algorithm

chooses the lighter loaded proxy.) The step begins at the bottom of the list of prox-

ies and is moved step-wise around the list, eventually wrapping around, so that all

proxies have an opportunity to be selected, shown in Figure 3.1.

Some number of proxies are less likely to be selected as step g moves. For

example, the proxies in previous selections left behind are referred to as needles

because they are hidden from the current selection. Additionally, proxies that have

a lower chance of appearing in the random selection, e.g., the last few distinct

proxies to be selected, have a lower probability of appearing in any selection. As
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Figure 3.1: 5 giant steps around a ring of 20 proxies

g moves, it also unbalances the load on proxies thereby increasing the number of

selections that the censor must perform because there are more duplicate selections

(misses).

3.1 Coupon Collector Ring
One may find a parallel between the Coupon Collector Problem CCP and the prob-

lem of a censor who collects, not coupons, but proxies. Consider both the coupon

and proxy as objects in some vast space, where all of these objects have the same

chance of being selected. Each object is replaced after it is selected so that any ob-

ject may be selected multiple times. It is increasingly difficult to collect a distinct

object because most objects are selected more than once. The rarest object is the

one that occurs at the very end to complete the collection. The selection of this

very last unique object ends the game, since only the selection of distinct objects

counts towards progress in this problem.
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We can frame the needle algorithm as a CCP variant, we call this the Coupon

Collector Problem Ring (CCP-R) variant. Suppose that the coupon collector orga-

nizes collections from several different neighbourhoods. Each neighbourhood dis-

tributes a different set of coupons, and each of the coupons in each set is distinct.

The coupon collector needs to travel through all of the neighbourhoods (these are

conveniently arranged in a ring). The collector can’t magically move from place to

place and does not zigzag from neighbourhood to neighbourhood. If the collector

misses a coupon from the first neighbourhood, then he must wait until all of the

other neighbourhoods are visited before returning to collect the missed coupon.

The missed coupon is rarer than all of the previously collected coupons. It is also

rarer than all future coupons up until the point at which the collector returns to the

specific neighbourhood with the missed coupon.

In our CCP-R variant, the reverse power of 2 choices gives the collector a deci-

sion to make; he selects 2 coupons at random. If he already has more of 1 coupon

than the other, he must keep the coupon that is less rare, and return the rarer coupon

back to the store in the current neighbourhood.

There is an expected number of attempts E[X ] by the collector to collect n dis-

tinct objects. This can be extended to a censor, whose problem it is to enumerate, or

discover, all the proxies. We use E[X ] to analyze the amount of effort that it would

take a censor, on average, to enumerate all proxies. To simplify this analysis, we

do not consider the ratio of honest to malicious clients and, for now, assume there

is one malicious client, the censor. Honest and malicious client rates are examined

in Section 3.4, bystanders.

The needle algorithm is partly randomized and partly deterministic. The uni-

form random selection of 2 proxies is randomized, and the reverse power of 2

choices is deterministic. In addition, the movement of the steps is also determin-

istic. Because the steps move clock-wise around the ring, proxies are enumerated

randomly within deterministic batches. Moving the steps around the ring serves

two functions; 1) by limiting the size of proxies in a step, it squeezes the number

of possible proxies that a censor can enumerate in each assignment, and 2) some

proxies are left behind. This makes it more difficult for the censor to enumerate

a complete collection of proxies due to these rare proxies (not unlike needles in a

haystack). Restricting the size of the sublists in a step tends towards a deterministic
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enumeration of all of the proxies, so one must take care to not set too many giant

steps.

In Figure 3.2, we see how different step sizes affect the enumeration of proxies.

With one-step, the enumeration time is the slowest, because the needle proxies

must be discovered within the largest pool of size n. Enumeration time starts to

decrease with 2-steps, because the needle proxies are more likely to be selected

with a smaller pool size of n/2. The enumeration time decreases with each increase

in giant step g. The algorithm only functions as expected up to g= n/2 where there

are at least 2 proxies for each step. If there is only a single proxy in each step, as

shown in the bottom right corner, the proxies are enumerated one after the other in

n assignments, because our reverse power of 2 choices algorithm cannot function

as intended. We therefore restrict the giant step size to 1≥ g≤ n
2 so that the proxies

are never enumerated in deterministic order.

Figure 3.2: Rings of 8 proxies each with steps g=1,2,4,8
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3.2 Enumeration Analysis
Recall that the enumeration of our collection of proxies occurs when the censor

learns all of the proxies through assignment. The enumeration of proxies is mod-

eled as the complete collection of coupons. The CCP-R variant is used to calculate

the average time to collect all distinct proxies.

Parameter Name Description
n total number of proxies
g number of steps around a proxy ring
s size of proxies allocated in each step n/g
Hn harmonic number
pxi the ith proxy
pi probability that the ith proxy is enumerated
p sum probability that proxies 1 to n are enumerated
Xi random variable of assignments to enumerate the ith proxy
X random variable of sum of Xi from 1 to n
E[X ] expected time on average to enumerate all proxies

Table 3.1: Notation used in the Enumeration Analysis

There are two different, yet intertwined, flavours of probabilities in our algo-

rithm; the probability of selection and the probability of choice. The probability of

selection is uniform random and is restricted by the size of the giant step g. When

a pair of proxies is selected uniform randomly from the total collection of prox-

ies, this is referred to as the selection. When we refer to likelihood of selection,

we are talking about the probability of selection in relation to the coupon collector

problem. Because we sample proxies randomly with replacement, a proxy can be

selected twice in a pair. The probability of choice relates to the order in which a

proxy is selected as a pair. The likelihood of choice is dependent on the load of a

proxy as it affects the choice in the reverse power of 2 choices algorithm. Prob-

ability of choice is important in our analyses, particularly in the load balancing

analysis.

17



3.2.1 Algorithm Termination

We define two lemmas below that we will use to approximate upper and lower

bounds on the average enumeration time. We define the algorithm termination in

terms of the rarest proxy, the last distinct proxy that is selected, pxn. Proxy pxn has

the probability of selection = 1/n making it the rarest proxy out of all of the other

proxies. Note that this proxy must have load = 0 because it was never previously

chosen out of a selected pair. Recall that the reverse power of 2 algorithm chooses

the proxy with the highest load out of a pair of proxies. The rarest proxy can only

be chosen if it is compared against itself. The only case where this occurs (when

the proxy appears with probability of selection 1/n) is when this proxy is selected

in a pair.

Lemma 2 A pair of the rarest proxy terminates the algorithm.

Assume we have the rarest proxy pxn that has probability equal to 1/n of being

selected in the reverse power of 2 choices algorithm. Suppose that this proxy is

selected twice in a row and forms a pair. If the choice from this selected pair does

not terminate the algorithm, there must be some other proxy in the collection of n

proxies that has not yet been chosen. If this statement is true, then proxy pxn must

have a probability greater than 1/n and our initial assumption is false, leading

us to a contradiction. Therefore, the proxy with probability 1/n terminates the

algorithm if it is selected twice in a row, as a pair. In other words, the least likely,

rarest proxy must occur as a pair for the algorithm to terminate.

Lemma 3 The probability of enumerating the rarest proxy is at least 1/n2.

By Lemma 2, the needle algorithm terminates after the rarest proxy is selected

in a pair. The probability that the rarest proxy is selected is 1/n. We sample with

replacement, so the probability that the rarest proxy is selected twice in a pair, by

counting argument, is p = (1
n)(

1
n) = 1/n2.

3.2.2 Upper Bound

We use the number of singletons described in Chapter 2, Hn, directly to provide

an upper bound on the average number of pairs selected, E[X ], before all of the

proxies are enumerated. Singletons are proxies that occur only once and so have
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the lowest probability of selection. These proxies need to be paired with other

proxies that have lighter loads to ensure that they are chosen by the reversed power

of 2 choice algorithm. (They also need to appear as the first item in the pair for the

tie-breaking logic.) Most of the singleton proxies occur at the end of the selection

process, so the probability of selection for each of them is closer to 1/n than n/n.

In the worst case (for the censor), all of the singleton proxies occur at the end of

the collection. Since most of the proxies have load > 1 as n increases, there is little

chance that singleton proxies are chosen against non-singleton proxies, because

most of these non-singleton proxies have appeared numerous times already and

have higher assignment loads.

Lemma 4 The probability of collecting all of the singleton proxies is

dHne

∑
i=1

(
i

n2

)

The probability of collecting all of the singleton proxies is bounded above by

the likelihood that the singleton proxies are selected in a pair with the rarest proxy

pxn, the worst case for a censor. The rarest proxy pxn is selected with probability
1
n . The probability that some ith singleton proxy is selected in a pairing with pxn is

pi = ( i
n)(

1
n).

If we pair all of the singleton proxies with the rarest singleton proxy, pxn, we

get the probability pairs (1
n)(

1
n)+ (2

n)(
1
n)+ ...+(Hn

n )(1
n). There is no guarantee

that Hn is an integer, indeed it will not be. Fractional pairings can’t happen in our

pairings, e.g. there is no half of a proxy selected. Because we are dealing with an

upper bound, we say that the number of singleton proxies is≤dHne. In addition, we

need an even number of pairings, so dHne is rounded to an even number. Generally

stated, the probability of this pairing over all Hn singletons is:

p≤
dHne

∑
i=1

(
i
n

)(
1
n

)

=
dHne

∑
i=1

(
i

n2

)
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Now, we are ready to present the upper bound on the average number of assign-

ments before all of the proxies are enumerated. Recall that Xi is a random variable

representing the number of assignments needed to enumerate the ith proxy, there-

fore E[Xi] is the average number of assignments to collect the ith proxy. E[X ] is the

average number of assignments needed to enumerate all of the proxies. We denote

the ith proxy as pxi where the last selected, rarest proxy is pxn with probability 1/n.

The second rarest proxy is pxn−1 with probability 2/n. The first proxy selected is

px1 with probability 1.

Theorem 5 Upper bound on E[X ]≤ n2HdHne
g

Proof. We use the probability of collecting all of the Hn singleton proxies from

Lemma 4 to provide an upper bound on the average number of assignments needed

to enumerate all of the proxies, E[X ].

Like the classic CCP, this follows a geometric distribution, so E[Xi] =
1
pi

.

E[Xi] = 1/pi =
1
i

n2

=
n2

i

The expected number of assignments to find all n proxies is bounded above by

the sum of E[X1] to E[Xn], where n = dHne:

E[X ]≤
dHne

∑
i=1

(
n2

i

)

E[X ] = n2
dHne

∑
i=1

(
1
i

)

E[X ] =

(
n2
)(

HdHne

)
When giant step g is very small, the algorithm churns on a few proxies, mean-

ing that a small proportion of proxies have high loads. By dividing n proxies into

g > 1 giant steps, where each step has a sublist of size s, we make the algorithm

more load balanced. In other words, the distribution of proxies in each step is

20



smaller so the censor gets more chances to find the singletons. We rework the

upper bound to incorporate the number of giant steps g.

Figure 3.3: Worst case enumeration in 5 giant steps.

We have g giant steps and Hn singleton proxies; g divides the enumeration

time into smaller sized sublists, making it proportionally easier for the censor to

enumerate all n proxies. In the worst case (for the censor), all of the singleton

proxies are located in different steps, so all of the steps wait for the other steps’

singletons to be enumerated before the algorithm can terminate. Figure 3.3 shows

a collection of proxies with 5 giant steps. The first enumerated sublist occurs in

the top right portion of the ring (denoted (1)). The algorithm proceeds clock-wise,

moving through each sublist one by one. We divide the upper bound by the number

of steps g to obtain:

E[X ]≤
n2HdHne

g

21



3.2.3 Lower Bound

Before we present the lower bound on the average number of assignments before

all of the proxies are enumerated, we consider the probability of singleton proxies

that are very likely to be chosen. The reverse power of 2 choices relies on the load

of the proxy in order to choose a proxy from a selected pair. Consider a singleton

proxy that by definition has a lighter load because it is selected infrequently. When

this proxy is paired with some other proxy with a higher probability of selection,

the singleton proxy has less chance to be chosen, because the proxy with the higher

probability of selection has a higher chance of having more load. In other words,

this singleton proxy has both a lower probability of selection and lower probability

of choice.

We concern ourselves with a lower bound, so we would like to know the type

of scenario in which a singleton proxy has the higher probability of choice, mean-

ing that the censor is able to enumerate proxies more easily. A singleton proxy

paired with itself is guaranteed to be chosen and thus has the highest probability of

choice out of any other pairing. We would like to know the probability of a pair of

singleton proxies to appear.

Lemma 6 Singleton proxies occur in a pair with probability p≥ ∑
bHnc
i=1 ( i

n)
2

A repeated pair selection of the singleton proxies gives us the probability pairs

p = (1
n)(

1
n)+(2

n)(
2
n)+ ...+(Hn

n )(Hn
n ). The probability of the ith singleton proxy to

be chosen is ( i
n)

2. The probability of this pairing for all Hn singletons is:

p≥
bHnc

∑
i=1

(
i
n

)2

We use Lemma 6 in the following proof to obtain the lower bound on E[X ]. The

fastest enumeration of all of the proxies is to collect all of the singleton proxies

the first time that they show up in a randomly selected pair, that is, their very

first selection. We again use Hn singleton proxies, this time to bound the average

number of assignments from below. We consider cases where g≥ 1 and we change

the variable n to s because we draw from g sublists of size s.

Returning to the idea of a ring of proxies, if all of the sublists are enumerated

one directly after the other, none of the other steps are ”held up” by any of the
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Figure 3.4: Best case enumeration in 5 giant steps.

other previous steps. This means that there are no extra revolutions necessary to

enumerate the steps, as shown in Figure 3.4.

Theorem 7 Lower bound on E[X ]≥ (g)(s2)H(2)
bHnc

Proof. Using the probability of pairs from Lemma 6, we have a geometric

distribution, so we can write:

E[Xi] =
1
pi

=
1

( i
s)

2
=

(
s
i

)2

The expected number of assignments to find all n proxies is bounded below by

the sum of E[X1] to E[Xn], where n is the number of singleton proxies, n = bHnc:

E[X ]≥
bHnc

∑
i=1

(
s
i

)2

= s2
bHnc

∑
i=1

1
i2

= s2H(2)
bHnc
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Figure 3.5: Upper and Lower Bounds for the Needle algorithm, where n =
100, g = 1...50

We have g such enumerations of sublists with size s, one per each g steps,

therefore for all n proxies are bounded from below by:

E[X ]≥ (g)(s2)H(2)
bHnc

In Figure 3.5, we show the upper and lower bounds for 100 proxies with giant

steps 1 to 50. The enumeration time drops for each giant step, particularly dramat-

ically where the giant step is increased from 1 to 2. It levels out as the giant step

increases, as these increases create an increasingly deterministic enumeration.
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This concludes our discussion of bounds on the average number of assignments

to enumerate all of the proxies in the needle algorithm. In the next section, we dive

into a load balancing analysis to tell us more about how clients are assigned to

proxies.

3.3 Load Balancing Analysis
We discussed maximum load as a metric for load balancing in Chapter 2. We can-

not guarantee that the number of bins (proxies) is equal to the number of balls

(assignments), so the maximum load does not tell the whole picture. We need to

look at the least loaded and heaviest loaded extremes and find an average measure-

ment and compare this to the optimal load. The optimal load is the load of each

proxy if the system was perfectly balanced, that is, if the number of assignments

were divided evenly over the number of proxies.

Parameter Name Description
n total number of proxies
m total number of assignments in a series of trials
pxi the ith proxy
pi probability that the ith proxy is enumerated
` optimal load
u maximum load
E[X ] expected time on average to enumerate all proxies
d1 distance between px1 and px n

2

d2 distance between px n
2

and pxn

Table 3.2: Notation used in the Load Balancing Analysis

Lemma 8 Proxy loads increase linearly.

We sort the proxies by their load, or their respective numbers of assignments,

averaged over multiple trials. (Note that these are not static proxy numbers, but

proxies that are numbered by their load.) We see that the loads have a linear re-

lationship. This is because the probability of selection of the pxi proxy decreases

linearly from i= 1...n. The probability of selecting the first proxy px1 is p1 =
n
n = 1,

the probability of the second px2 is p2 =
n−1

n , pn−1 = 2/n, pn = 1/n, increasing
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linearly. This linear relationship between the probability of proxy selection is fur-

ther reinforced by the probability of choice, where the maximum loaded proxy is

always chosen over a lower load.

Lemma 9 The middle proxy, pxn/2, has the optimal load `.

Let the number of total assignments in a series of trials be m, and E[X ] be the

average number of assignments before all proxies are enumerated where m >>

E[X ]. The optimal load is ` = m/n. Proxy pxn/2 has the probability of selection

equal to p n
2
= n/2

n in the reverse power of 2 choice selection. It is n/2 more likely

to be chosen from the selection than proxies px1 to px n
2−1 and n/2 less likely to be

chosen over proxies px n
2+1. Its placement at the midway point of choice means that

it is also at the midway point of the load `.

Theorem 10 The maximum load, u, of proxy px1 is twice as big as the optimal

load, 2`, if all of the proxies are enumerated.

We know by CCP that the minimum load is at least 1 if all of the proxies are

enumerated. By Lemma 9, we see that the middle proxy px n
2

has the optimal load.

Since the proxy load has a linear relationship by Lemma 8, the distance, d1 between

pxn and px n
2

is equivalent to the distance, d2 between px n
2

and px1. px n
2

has the

optimal load and the function is increasing linearly, therefore px1 has twice the

optimal load u = 2`= (2)(m
n ).

3.4 Bystander Analysis
We integrate honest users into our analysis where previously we only included

the censor’s problem of enumerating all of the proxies. We want to know the

likelihood that a proxy has been assigned to an attacker, proxy exposure, and the

proportion of honest users, or bystanders, that are affected by proxy exposure. We

draw inferences from the load of each proxy and the probability that a client is an

attacker to evaluate bystanders in section 4.4.

We define an exposed proxy as a proxy that has at least one insider attacker

assigned at any point in time. In a single assignment of a client to a proxy, the

probability that the client is an attacker is given as pa. The total number of assign-

ments in a proxy is equivalent to its historical load h.
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Parameter Name Description
pa probability that a client is an attacker
px probability that a proxy is exposed
pnx probability that a proxy is not exposed
pb probability of bystander clients
h historical load on a single proxy
` optimal load
u maximum load

Table 3.3: Notation used in the Bystander Analysis

Lemma 11 The probability that a proxy is not exposed is (1− pa)
h.

The number of client assignments that a proxy received is equal to the historical

load h. The probability that all h of these assignments are attackers is an ”and”

relationship. We multiply the probabilities of attackers per each assignment, h

times. Therefore, the probability that all of the assigned clients on a proxy are

malicious is (pa)
h.

For a proxy to not be exposed, then it must never have had any attackers as-

signed to it. The probability that none of the clients assigned are attackers is

(1− pa)
h. Then the probability that a proxy is not exposed is the same as the

probability that none of the clients are attackers:

pnx = (1− pa)
h

Figure 3.6: Proxies px1 to px4 with honest and attacker clients.

We generalize the probability of exposure to apply to any proxy in the system

using a bound on the maximum load. This is interesting for our bystander analysis
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because we observe that the probability that a proxy is exposed more closely ap-

proaches 100% as the maximum load increases, thereby creating more bystanders.

Lemma 12 The probability that any proxy is exposed is px ≤ 1− (1− pa)
u

The height of any proxy must be less than or equal to the maximum height, u,

by definition. Without knowing the load on any individual proxy, we can say that

the likelihood that an arbitrarily selected proxy is not exposed is less than or equal

to the likelihood that the maximum loaded proxy is not exposed.

pnx = (1− pa)
h ≤ (1− pa)

u

.

Conversely, the probability that any randomly selected proxy is exposed is less

than or equal to the probability of exposure on the proxy that has the maximum

load.

px = 1− pnx

≤ 1− (1− pa)
u

The proxy that has the highest load has the highest chance of exposure. In Fig-

ure 3.6, we give an example with four proxies, px1 to px4 that have attacker clients

represented as filled circles, and honest clients shown as empty circles. There are

no bystanders in proxy px1 because it is not exposed. Proxies px2 and px3 both

have two bystanders because they each have two honest clients and the proxies are

exposed. There are three bystanders on proxy px4. We’ve shown how the max-

imum load affects the probability of assigned attackers in a proxy, now we will

compare the relationship of load balancing to bystanders.

Theorem 13 The probability of bystanders on a proxy is

pb ≤ (u)(1− pa)(1− (1− pa)
u)

Proof. Honest clients occur with probability 1− pa on any proxy. For an honest

client to be considered a bystander, there must be at least one attacker assigned to
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the proxy. We consider the other attackers on a proxy as wasted resources on the

part of the attacker.

We know from Lemma 12 that the probability that any proxy is exposed is

px ≤ 1− (1− pa)
u. If px = 0 then there are no bystanders, because the proxy is not

exposed. (In order for honest clients to be defined as bystanders, the proxy must

be exposed by at least one attacker.) Therefore, we can say that the probability

of bystanders on any proxy is less than the probability of bystanders on the proxy

with the maximum load.

pb ≤ (u)(1− pa)(1− (1− pa)
u)

We have shown that the amount of collateral damage, expressed by the prob-

ability of bystanders on a proxy, relies on the proxy load and the probability of

attackers in each assignment. There are other interesting stories to tell about the

impact of unbalancing proxy loads for proxy preservation. If we have a system

that is perfectly balanced, with all proxy loads equal to `, intuitively we suspect

that there will be more innocent bystanders b. We may reason that with lower

proxy loads, such as those held in the needle algorithm of proxies px1 to px n
2−1,

result in fewer bystanders because the likelihood of a malicious client attacker is

reduced. We may also reason that in higher loaded proxies, there is more chance

of proxy enumeration, but more wasted resources by the attacker. These musings

are examined in Chapter 4 through empirical data based on simulations of systems

using the needle algorithm, uniform random distribution, power of 2 choices, and

Tor’s bridgedb proxy distribution strategy.
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Chapter 4

Evaluation

4.1 Simulation Model

Figure 4.1: M/M/c/k with uniform random distribution

Before considering details of the simulation experiments, we formalize the sim-

ulation model and how it applies to the needle algorithm proxy distribution strategy.

The notion of static and dynamic models stems from static and dynamic routing in
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networks. Mitzenmacher redefined static and dynamic models for task allocation

and applied this to the balls and bins model [20]. In this context, a ball is a task and

a bin is a processor. The primary distinguishing features of the static model is that

there are a finite number of tasks that are assigned to processors and these tasks do

not leave. The static system model completes its execution when all of the tasks

are allocated. This model execution is generally represented in a bipartite graph.

A static model applied to the proxy distribution problem assigns a finite number of

clients to proxies in one round.

The dynamic model captures scenarios that are more realistic than what may

be represented in the static model. For example, tasks in the dynamic model may

enter and leave the system over time. In the open dynamic model, there may not be

a fixed number of tasks. The closed dynamic model allows for tasks to enter and

leave over time, but there is a fixed number of arrivals. A dynamic system does not

have a final termination time as in the static model. The advantage of a dynamic

model is that one can observe the behaviour of a system over time.

We are interested in how proxies are enumerated by a censor throughout the

system’s lifetime, so the open dynamic model suits our scenario well. Utilizing an

open dynamic model allows us to observe trends and compare different approaches

temporally. However, our clients don’t leave in the traditional sense; we assume

that once a proxy is discovered, the knowledge of a proxy cannot leave or exit.

Parameter Name Description
λh client arrival rate intensity of client arrival rate 1/λ

λa attacker arrival rate intensity of attacker client arrival rate 1/λ

n number of proxies

Table 4.1: Variables in the Simulation

In addition to the dynamic model, the queue model is a standard that suits the

problem of proxy distribution well. Mitzenmacher models the power of two choice

algorithm as an idealized process, or a queue system of infinite size, that is later

related to a finite system by bounding the error between the two [20].

Our simulation is best described as a feed-forward network of M/M/c/k queues.

This is similar to a load balancing system with a constant number of servers. How-

ever, in this scenario, the load balancer is in fact the proxy distributor that is respon-
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sible for distributing clients to proxies. Figure 4.1 shows the network queue layout

where the proxy distributor assigns clients to proxies uniform randomly, where the

arrival of clients to proxies is evenly distributed λ/n.

Clients arrive with a Poisson arrival distribution with variable λ clients per

minute. This means that, on average, one client appears at every 1/λ minutes and

we define this as the arrival intensity. In this model, we are additionally concerned

with honest and malicious client arrival rates. As the proportion of attackers in the

system increases, the arrival rate, or intensity of malicious client arrivals increases.

Each proxy has a service time that is exponentially distributed. This is not a

traditional service rate because the system assumes short-lived client connections.

The important function of the server is to keep a record of each client assignment

that can be used by the censor to discover clients in the system. In other words,

even if the client leaves the system, the censor still gains knowledge of the proxy

and may impact the client’s future connections to the known proxy, effectively

mounting a potential future blocking attack on the proxy.

Parameters. Parameters in the simulation control the rate of honest and mali-

cious client arrival intensity, the total number of proxies, and the size of the step for

the needle algorithm. These are sweeping parameters; the simulation runs across a

range of values for each parameter to produce a variety of conditions for the anal-

ysis. The analysis operates on the dependent variables such as maximum load and

the expected time to overtake the system. The variable names and descriptions are

outlined in table 4.1.

The simulator was written in Python using simpy, a discrete event based sim-

ulator.1 The evaluation uses numpy2 and matplotlib3 for data manipulation and

graphing.

4.2 Enumeration Results
Giant step analysis. We ran the needle algorithm in the simulator, with only ma-

licious attacker clients, to observe how many assignments a censor needs to enu-

merate all of the proxies. In section 3.2.2, we analyzed the giant step version of

1https://simpy.readthedocs.io/en/latest/
2http://www.numpy.org/
3https://matplotlib.org/
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Figure 4.2: Giant step enumeration comparison for 100 proxies

the needle algorithm where step size g > 1. Results are shown in Figure 4.2 for

1000 trials using 100 proxies in each experiment. The experimental results are

shown in the black, solid line. The upper and lower bounds, E[X ] ≤ (n2)HdHne
g and

E[X ]≥ (g)(s2H(2)
bHnc) respectively, are shown in dashed lines.

Table 4.2 shows the numerical data from these 1000 trials of varying step size

for 100 proxies, and the calculated upper and lower bounds.

Enumeration Comparison. We compare the four different algorithms in Fig-

ure 4.3. The y-axis shows the average enumeration time over 1000 trials where a

higher number of assignments is favourable because it takes longer for a censor

to discover all of the proxies. The x-axis shows the trials over different sizes of

n proxies. We know from the Coupon Collector Problem CCP that the uniform

random distribution of coupons results in nHn total assignments before collection.

We see that the uniform random distribution of Tor’s bridgedb follows a simi-

lar enumeration. We use the regular power of 2 choices algorithm to show how a

more optimal load balancing algorithm results in faster enumeration [27]. In the

upcoming section, we’ll take a closer look at the load balancing properties of each

of these algorithms.
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Sublist (s) Step (g) Upper Bound Experiment Lower Bound
100 1 40000 20619 12500
50 2 20000 10718 6250
33 3 13333 7763 4083
25 4 10000 6738 3403
20 5 8000 5869 2722
16 6 6667 4800 2091
12 8 5000 3850 1568
10 10 4000 3537 1424
8 14 2857 2839 1276
5 20 2000 1987 712
4 25 1600 1683 569
2 50 800 788 285
1 100 400 100 100

Table 4.2: Experimental results for 100 proxies over 1000 trials

Figure 4.3: Number of assignments before enumeration for each algorithm
for n=10 to 100 proxies.
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4.3 Load Balancing Results
Recall that in the analysis, Lemma 9 in section 3.3 stated that pxn/2 has the optimal

load. In the experiments shown in Figure 4.4, we ran the needle trials until all of the

proxies were enumerated and then kept running the trials until twice the number

of enumeration time. We see that the load balancing is divided into two halves

centred around the optimal load. We also note that the maximum load for each of

the experiments is no more than 4% of the total load.

Figure 4.4: Needle Load Balancing until all proxies are enumerated twice for
n = 60,100,200,500.

We wish to observe and compare the load balancing tendencies of each of the

four algorithms. The x-axis in Figure 4.5 orders all of the proxies by their respec-

tive loads. The y-axis shows the percentage of the total load that each proxy holds.

We ran each algorithm for 5000 assignments with a total of 100 proxies.

A distinguishing feature of each algorithm is their varying degree of even dis-
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tribution of assignments to proxies. The power of 2 choices algorithm gives the

most evenly balanced distribution. The uniform random distribution results in the

next best load balancing. Tor’s mechanism is less balanced than uniform random

but more balanced than the needle algorithm. The needle algorithm results in the

worst load balancing.

Figure 4.5: Load balancing results for each algorithm for n=10 to 100 proxies
and 5000 assignments each.

4.4 Bystander Results
Load balancing and the proportion of attackers directly affect the number of by-

standers. Bystanders are those honest clients that still receive service in the pres-

ence of malicious clients. For the experiment in Figure 4.6, we run all of the

algorithms so they each have 5000 assignments and the probability that a client is

malicious is 50%. We sort the proxies by their loads in increasing order and plot
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the numbers of malicious clients assigned to each proxy, from lowest loaded proxy

to highest loaded.

Figure 4.6: Comparison of Malicious Clients over 5000 assignments with
50% attackers in the system.

We see from the results of this experiment that the number of malicious clients

increases with load in all of the algorithms. The power of 2 choices algorithm has

the flattest distribution of malicious clients, meaning that proxies are enumerated

the quickest thus creating the highest number of enumerated proxies over all of the

algorithms, as we discussed in the enumeration analysis in section 3.2.

When we consider the number of bystanders, we make the assumption that the

censor chooses to block the top half of the proxies. These are the proxies that are

determined as the most popular proxies. Figure 4.7 shows the total number of

bystanders that receive service in each algorithm, assuming that the most heavily

loaded n/2 proxies are blocked; that is, the rightmost n/2 proxies in Figure 4.6.

The steep slope in the needle’s load balancing for the least heavily loaded, leftmost
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n/2 unblocked proxies, allows for a small number of proxies to be preserved, while

stacking higher loads onto the remaining proxies. It also serves to distinguish the

rightmost proxies as more popular than the others, in a sense serving up these

proxies to be blocked as expected collateral damage.

Figure 4.7: Total number of bystander clients in the least popular proxies.

We’ve shown that by unbalancing the load on the proxies in the needle algo-

rithm, we are still able to service as many or more bystander clients than in the

uniform random, power of 2 choices, and Tor’s bridgedb mechanism.

4.5 Comparison
We consider enumeration, load balancing, and bystander analyses of the four algo-

rithms in order to contrast their respective trade-offs and suitability under differing

system goals. Table 4.3 outlines the three metrics that we consider in this the-

sis. We indicate with checkmarks 3 where the algorithm is well suited, double

checkmarks indicate that it is very well suited. A single X mark 7 shows that the

algorithm is unsuitable, a double 7 is used when we consider the algorithm to be

completely unusable for a purpose.
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Enumeration Load Balancing Bystanders
power of 2 choices 77 33 33

uniform random 7 3 7

Tor’s bridgedb 7 3 7

needle 33 77 33

Table 4.3: Comparison chart of the 4 algorithms

The power of 2 choices algorithm provided the best load balancing, and so

would be appropriate for systems where this is a concern. However, it is enumer-

ated very quickly.

Uniform random distribution and Tor’s bridgedb distribution perform simi-

larly, and so we consider their respective trade-offs in the same vein. They provide

a slower enumeration time than the power of 2 choices algorithm due to their un-

even load balancing. The number of bystanders is also slightly lower than the other

algorithms.

The needle algorithm gives the slowest enumeration of all the algorithms; this

attribute is beneficial to allocation of proxies in a distribution system. It is not

suitable for systems that require even load balancing. (It is unbalanced to a large

degree but not so much that it is unusable.) It services as many bystanders as the

power of 2 choices algorithm, but without the drawback of fast enumeration. In the

context of proxy distribution under our censorship threat model, we consider this a

benefit.
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Chapter 5

Related Work

Censorship resistance systems CRS are composed of two parts; 1) communication

establishment, or handshake, needed to join the CRS, and 2) the conversation stage

where the actual information is exchanged between the client and the censored

site. In SOK: Making sense of censorship resistance systems [14], categorizations

of different types of CRS are outlined based on the system’s approach to these two

functions.

There are two main approaches to communication establishment in censorship

resistance systems; resource scheduling and allocation approach, and the trust-

based approach. Resource scheduling and allocation fight a losing battle to dis-

tribute proxies under a censorship threat model where proxies are continuously

blocked. Proxies need to be birthed or placed into reserve in order to keep up

with the censor’s blocking rate. The advantage of these schemes is that they are

lightweight and easy to implement.

The goal of trust-based proxy distribution is to mitigate blocking by building

trust between honest users of the system and the proxy distributor. They achieve

this by distinguishing honest clients from malicious clients. We outline systems

and techniques that fall under a similar censorship threat model as our own, where

the censor is omnipotent and blocks proxies based on information gained by posing

as an honest user.

Note that other types of anonymous systems, such as Vuvuzela [24], Dissent

[8], and Freenet [7], are concerned with maintaining levels of anonymity in order
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to prevent an adversary from learning about messages from a sender to a receiver.

The highest level of anonymity in these systems is a third axis where one cannot

tell that a user is communicating with any other user [23]. The adversary in the

proxy distribution problem under a censorship threat model is vastly stronger than

in general anonymity systems. The goal of CRS is to obfuscate evidence that a user

is in the system at all, as well as to hide the activity of the user within said system.

5.1 Resource Scheduling and Allocation
Tor’s Bridge Distribution. Tor bridges are private relays or proxies used for cen-

sorship circumvention. Tor bridge IP addresses and fingerprints are distributed out

of band using registered email or through a captcha site on the Tor blog. Tor’s

BridgeDB authority distributes up to 3 new bridge IPs and corresponding finger-

prints to clients based on a hashring uniform distribution. Bridge requests are rate

limited by a centralized bridge distributor. Despite these efforts, censors in China

have discovered and blocked most of the bridges given through the public distri-

bution channels. Bridge enumeration attacks are possible using bulk emails via

HTTPS [16]. Tor uses a fingerprint as a shared secret scheme to thwart active prob-

ing, however this can’t prevent bridge discovery using a delayed insider attack [10].

TorBricks. The TorBricks [28] design distributes proxies in groups to guar-

antee a maximum number of rounds until all honest users can connect to a proxy

server after some number of retries. It relies on exponential growth in the number

of proxies in order to provide these guarantees of a logarithmic number of rounds.

A caveat in this system is, if there are no unblocked proxies in the current group,

then the algorithm requires that a unique bridge be allocated per each user.

While this approach allows for adaptive adjustment to a proportion of attack-

ers in the system, it requires a great deal of resources. For example, if a CRS had

enough proxies to give one out per each user, we would not have the problem of

proxy distribution since we could hand out private proxies. If we have private prox-

ies, then no attacker could discover an honest user’s proxy because users would not

have to share.
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Fighting Censorship with Algorithms. Mahdian [17] studies proxy distribu-

tion as an algorithmic problem and gives bounds on the number of proxies required

to provide service to clients, some of whom are adversaries. He includes a theo-

retical analysis of bounds for the number of proxies needed to survive an insider

attack. His theorems use k-union-free families of sets, probabilistic methods, and

extremal set theory to give lower and upper bounds.

Mahdian’s scheme creates two sets of users, trusted and suspicious, and dis-

tributes keys based on the user’s membership in one of these two sets. Users are

divided into these sets based on their association with compromised keys; they are

moved from the trusted group to the suspicious group. Fresh keys are only handed

out to trusted users. This adaptive model bounds the number of keys that an ad-

versary can compromise thus providing guarantees for the user with respect to the

expected total number of keys required to give every legitimate user access.

In Mahdian’s model, a key represents a servlet or proxy server. His scheme

assumes a known number of malicious users and there are no bounds on the number

of clients a proxy can serve. While maintenance of keys is usually relatively simple

in practice, the logistics of proxy server maintenance is more involved. It is an

impractical assumption that keys (representing proxies) can be distributed to an

unlimited number of users without significant overhead.

Mahdian’s algorithm distributes an increasing number of keys to users in order

to reduce the risk posed by a growing number of adversaries. This does not address

the case where adversaries are controlled by the same entity, such as a censor. For

example, it does not take into consideration the enumeration attack. This attack is

further exacerbated by the reuse of keys, as opposed to the removal of suspect keys.

5.2 Trust-based Allocation
Proximax. The main goal of the Proximax [18] reputation-based system is to

maximize the yield of a proxy resource, where yield is the number of user-hours

per day before a proxy is blocked, calculated as the product of usage and lifetime.

Each proxy resource is advertised on multiple channels. This novel use of a channel

relies on a fast flux technique that piggybacks on Domain Name System (DNS)

42



infrastructure. Proximax registers multiple proxies to the same domain name and

load balances them based on their current utilization and resource risk parameter.

The usage and risk of a proxy resource is the sum of the risk of each of the chan-

nels where it is distributed. Resource risk is calculated as a maximum likelihood

estimate of blocking - it is only an approximation because resources are advertised

on multiple channels, and the risk per channel cannot be sampled directly. In other

words, when a proxy is blocked, there is no way to detect the specific channel that

caused the block and so it is difficult to tease out channel from proxy risk.

All proxies will eventually be discovered in proxy distribution, so Proximax

adds a trust scheme to delay censor discovery. Registered users build up their

reputation score and invite new users, handled by a registration system. The reg-

istration system allocates proxies that have higher risk to lower reputation scores.

They widely disseminate the location of low risk proxies in order to maximize

their yield. This leads to the potential of rapid enumeration attacks, where the best

proxies are enumerated in quick succession.

Proximax’s trust scheme is likely to be thwarted by colluding insider attackers

where registered users build up reputation to invite other users, as it does not work

well in a delayed blocking attack. Furthermore, the risk approximation may not

be particularly useful because if there is only a single attacker assigned to a proxy,

and with the reasonable assumption that all attackers are controlled by the same

censor entity, then this proxy has the same likelihood of being blocked as a proxy

to which several insider attackers are assigned.

rBridge. rBridge [25] is a trust-based reputation system for a Tor bridge dis-

tributor that addresses insider attacks, minimizes user wait time for an available

proxy, and preserves privacy of client assignment information. The rBridge dis-

tributor computes user reputation based on the uptime of bridges to which a user

is assigned. A payment system allows users to buy unblocked bridges to prevent

repeated blocks. They show rBridge’s user-hours served is at least one order of

magnitude more than Proximax and that thirsty hours of users waiting for a proxy

is minimized. This is mainly achieved by making sure that the overall rate of new

bridges outpaces the rate of proxy blocks, and by reserving half of their bridge

resources for future invitations.
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A significant contribution of rBridge’s design is their privacy preserving scheme

using anonymous credentials to build trust, invite users, and obtain signed creden-

tials. Restricting proxy assignments can lead to user fingerprinting as there are

unique combinations of proxies tied to a single user. Previous work in pseudony-

mous credentials and oblivious transfer methods don’t work well in proxy systems

because an attacker can still infer client assignments based on behaviour after a

proxy is blocked. rBridge hides bridge assignment from even the distributor by en-

abling the proxy assignments to be written and updated by users. They take extra

measures to maintain integrity using anonymous credentials, one-time tokens and

secrets that cannot be forged owing to zero knowledge proofs and blind signatures.

In addressing the delayed blocking attack, they note that invitation tickets are

randomly distributed over all users, so there is a chance that the corrupt user may

not receive a ticket. Since tickets cannot be transferred, it is no more likely that

an attacker receives a ticket than an honest user. However, they do not provide

analysis given that even just one corrupt user is more than enough to block a proxy,

therefore an assignment of a proxy to a single attacker is more significant than as-

signment to an honest user.

5.3 Routing
Routing users through decoy paths as a mechanism to discover proxies is a vastly

different approach to the proxy distribution problem and handshake used in cen-

sorship resistance systems. Essentially, this approach solves the issue of censors

posing as honest users and blocking proxies because censors do not want to block

the decoy paths. This is because there would be too much collateral damage as the

decoy paths are heavily used and it is difficult to tell if users are accessing blocked

sites from the decoys. The barrier to implement these solutions, however, is that

they require a large commitment from either Content Delivery Networks (CDN) or

Internet Service Providers (ISP) to build the decoy paths and to maintain the net-

work that provides the anonymous handshake.

Telex. This CRS uses destination obfuscation via decoy routing at Telex sta-
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tions that are end-to-middle proxies located in their own network infrastructure

[26]. Sessions between users and Telex have special tags to direct them through

to censored sites. These proxies are built into the network with involvement from

local ISP that must deploy Telex stations on paths between networks under censor

control and blocked destinations.

Domain Fronting. An elegant way to circumvent censors is through domain

fronting, where a user is routed through a legitimate intermediary, such as a CDN

[9]. These intermediaries are used to rendezvous with Tor and cannot be detected

by a censor because the CDN’s network is beyond the censor boundary. Domain

fronting is the most reliable way to perform the rendezvous handshake and recently

it is the only protocol that works in China [4]. However, we see that major CDN

like Google and Amazon no longer support domain fronting. Microsoft’s Azure

cloud is a temporary fix as there is no formal agreement between Microsoft and

Tor to support domain fronting in the future.

5.4 Related Approaches
The following works aren’t directly related to the problem of censorship circum-

vention. However, their analysis of resource allocation is closely tied to the coupon

collector analysis in this thesis. Their lightweight distribution under a different

threat model also relates to and inspired our approach.

Coupon Collector and Power of d Choices. The Power of d Choices was

analyzed for the generalized form of the coupon collector problem in [27]. This

includes the case where a collector wants to collect m out of n total coupons. The

collector selects d coupons out of the total collection and chooses the least heavily

loaded (or least collected) coupon in each draw. This benefits the collector because

duplicate coupons are discarded. They show that the expected number of draws to

collect m out of a total of n coupons is (n logn)/d +(n/d)(m1) log logn+O(mn).

Although this is opposite from our reverse power of 2 choice algorithm, and far

more complex in its analyses, it is a useful counterpoint to our goal of delaying
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enumeration, as the goal here is to enable the coupon collector to collect coupons

as quickly as possible.

Proxisch. Proxisch [13] is an application of a scheduling algorithm for proxy

distribution in web crawling applications. Although Proxisch is intended for dis-

tributed web crawling, the proxy server selection mechanism has a similar goal

shared by the proxy distribution problem; to reduce the risk of assigning high risk

proxies to clients. This work estimates the reliability of proxies based on a relia-

bility calculation and uses queuing theory to organize proxies by their respective

reliability factors.

To model the life of a proxy, they use an exponential distribution based on the

life of an ideal lamp. They show in their simulations that the actual life span of

some proxy servers is close to the exponential distribution. This leads to the cal-

culation of an optimal update period for cycling proxies among processes. They

compare their result to a polling scheduling solution that illustrates higher suc-

cessful service rates within shorter time periods for their solution. Their resource

scheduling algorithm approach is similar to a randomized proxy selection based on

attributes of proxies, such as time, reputation, or credits because it orders proxies

based on criterion. This is a move away from more complex, monolithic designs

favouring proxies that earn standing over time within the system.

It’s not possible to directly translate this solution into the problem addressed in

this thesis, since modeling the lifetime of a proxy server does not directly translate

to the motivations of a powerful censor that can cut the lifetime of a proxy at any

time. However, this work does provide useful hints for how one may approach a

lightweight proxy distribution design.
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Chapter 6

Discussion

6.1 Future Work
Blocking behaviour. The simulation can easily extend to model different forms

of blocking behaviour by a censor. The parameters for a blocking rate process

are coded in the simulation although these were not utilized in the simulation nor

analyzed for the evaluation.

Proxies joining and leaving. A more realistic version of the simulator is to run

the experiments with some proxies joining and leaving. This would provide more

data on how the needle algorithm preserves new proxies, rather than only dealing

with proxies that are created at the same time.

Service times. The simulation was not fully utilized to analyze classic prob-

lems like Quality of Service. It would be particularly interesting to examine how

non-needle proxies are able to handle the larger loads in a real system.

Tor integration. The needle algorithm could be run inside of the Tor BridgeDB

codebase to validate the simplicity of the algorithm’s approach. It would require

a different method of client assignment because Tor uses hashes of IP addresses

and does not store load or assignment information in the same way that the needle

algorithm requires for its operation.
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Chapter 7

Conclusion

Our work has the same goal as many proxy distribution systems; to provide service

to clients in a hostile environment with practically an omnipotent censor entity.

Our trust-less, elegant approach to proxy distribution relies on essentially hiding

needle proxies in distribution rounds.

Building trust requires storage of user behaviour over time. Within anonymous

systems, the assumption that a system itself can be trusted to store this informa-

tion is an extremely complex topic, both technically and ideologically. It may be

argued that any proxy system provides some measure of anonymity guarantees

because many users are aggregated onto single proxies. However, there exists a

fundamental distrust of any proxy distribution system that persists user informa-

tion.

Many trust-based systems are proposed yet few are adopted in practice. Sim-

pler systems such as lightweight proxy distribution and decoy routing are adopted

widely, and it may not only be a result of their implementation simplicity. Perhaps,

the foundation of trust-based systems goes against the ethos of anonymity. As our

privacy concerns grow, we look for more varieties of systems with demonstrable

privacy guarantees that align with our privacy needs. The wider the adoption of

such systems, the more privacy guarantees we can give. The more honest users in

the system, the less of an impact that attackers can have. It requires the effort of

everyone to hide vulnerable parties in the crowd. If we volunteer our resources and

participate in the privacy community, it is possible.
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