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Abstract

Bitcoin is a top-ranked cryptocurrency that has experienced huge growth and sur-

vived numerous attacks. The protocols making up Bitcoin must therefore accom-

modate the growth of the network and ensure security. However, Bitcoin’s trans-

action dissemination protocol has mostly evaded optimization. This protocol is

based on flooding and though it is secure and fault-tolerant, it is also highly ineffi-

cient. Specifically, our measurements indicate that 43% of the traffic generated by

transaction dissemination in the Bitcoin network is redundant.

In this thesis we introduce a new transaction dissemination protocol called Er-

lay. Erlay is a hybrid protocol that combines limited flooding with intermittent rec-

onciliation. We evaluated Erlay in simulation and by implementing and deploying

it at scale. Compared to Bitcoin’s current protocols, Erlay reduces the bandwidth

used to announce transactions by 84% without significantly affecting privacy or

propagation speed. In addition, Erlay retains the existing Bitcoin security guaran-

tees and is more scalable relative to the number of nodes in the network and their

connectivity. Erlay is currently being investigated by the Bitcoin community for

future use with the Bitcoin protocol.
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Lay Summary

Bitcoin is a peer-to-peer electronic cash system, which operates over computers

(nodes) running Bitcoin software across the world. Those nodes exchange mes-

sages, which represent transactions (transfers of funds) as well as additional infor-

mation.

In currently deployed software, Bitcoin transactions are relayed across all nodes

via flooding, where every node notifies all its peers of a new transaction. While

this approach is robust and has fast transaction relay, it is inefficient in terms of

consumed bandwidth, because every node learns about every transaction multiple

times.

We design Erlay, a transaction relay protocol, which is more efficient than

flooding. Erlay is a combination of rapid low-fanout flooding and efficient set

reconciliation. We design and evaluate Erlay, and show that it outperforms the cur-

rent protocol and may enable better security and privacy of Bitcoin transactions in

the future.
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All of the work presented henceforth was conducted in the NSS (Networks, Sys-

tems and Security) lab in the Department of Computer Science at the University of
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Chapter 1

Introduction

Bitcoin is a peer-to-peer (P2P) trustless electronic cash system [47]. Recent es-

timates indicate that there are just over 60,000 nodes in the Bitcoin network1.

And, to keep up with the growth in the number of nodes and usage of the net-

work, the system must be continually optimized while retaining the security guar-

antees that its users have come to expect. For example, prior work has consid-

ered optimizations to Proof-of-Work [7, 61], moving payments off-chain [53], im-

proving transaction throughput by increasing the block size [5, 26, 60], as well

as optimizing block relay [13, 34, 51] and transaction representation within a

block [37]. One reason why optimizing Bitcoin is challenging is because secu-

rity is not just a theoretical concern: a wide variety of attacks have been pub-

lished [6, 8, 9, 14, 17, 18, 20, 27, 30, 33, 35, 39, 42–44, 48, 50] and the Bitcoin

software is being updated to protect against these. Therefore, any modification to

the system must carefully consider the security implications of the change.

One bottleneck in the Bitcoin network that has not received much attention is

the cost of transaction relay. A Bitcoin transaction corresponds to a transfer of

funds between several accounts. Fig. 1.1 overviews the lifecycle of a transaction in

the Bitcoin network. To be accepted by the network of nodes, a transaction must be

first disseminated, or relayed, throughout the network. Then it must be validated

and included into a block with other valid transactions. Finally, the block contain-

ing the transaction must be relayed to all the nodes. Every Bitcoin transaction must

1https://luke.dashjr.org/programs/bitcoin/files/charts/software.html
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Figure 1.1: Lifecycle of a Bitcoin transaction. In this thesis we optimize the
protocols for relaying transactions between nodes in the Bitcoin net-
work (grey box).

reach almost all nodes in the network, and prior work has demonstrated that full

coverage of the network is important for it to preserve security [57].

Today, Bitcoin relays transactions using a protocol based on flooding: every

message received by a node is transmitted to all of its neighbors. Flooding has

high fault-tolerance since no single point of failure will halt relay, and it has low

latency since nodes learn about transactions as fast as possible [38].

However, flooding has poor bandwidth efficiency: every node in the network

learns about the transaction multiple times. Our empirical measurements demon-

strate that transaction announcements account for 30–50% of the overall Bitcoin

traffic. This inefficiency is an important scalability limitation: the inefficiency in-

creases as the network becomes more connected, while connectivity of the network

is desirable to the growth and the security of the network.

Prior work has explored two principal approaches to this bandwidth ineffi-

ciency. The first is the use of short transaction identifiers (to decrease message

size) [32]. The second is to exclusively use blocks and never transmit individual

transactions [40]. Both approaches are inadequate: short identifiers only reduce the

constant factor and do not scale with the connectivity of the network, while using

only blocks will create spikes in block relay and transaction validation. We discuss

these approaches further in Section 11.

The contribution of this thesis is Erlay, a new protocol that we designed to

optimize Bitcoin’s transaction relay while maintaining the existing security guar-

antees. The main idea behind our protocol is to reduce the amount of information
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propagated via flooding and instead use an efficient set reconciliation method [45]

for most of the transaction dissemination. In addition we design this protocol to

withstand DoS, timing, and other attacks.

We implemented Erlay in a simulator as well as part of the mainline Bitcoin

node software and evaluated Erlay at scale. Our results show that Erlay makes

announcement-related bandwidth negligent while introducing a 50% latency in-

crease.

In summary, this thesis makes the following contributions:

• We analyze bandwidth inefficiency of Bitcoin’s transaction relay protocol.

We do this by running a node connected to the Bitcoin network as well as

by running a simulation of the Bitcoin network. Our results demonstrate that

88% of the bandwidth used to announce transactions (and around 40% of the

overall bandwidth) are redundant.

• We propose a new, bandwidth-efficient, transaction relay protocol for Bitcoin

called Erlay, which is a combination of fast low-fanout flooding and efficient

set reconciliation, designed to work under the assumptions of the Bitcoin

network.

• We demonstrate that the protocol achieves a close to optimal combination of

resource consumption and propagation delay, and is robust to attacks. Erlay

reduces the bandwidth used to relay transactions by 48% immediately, and

allows the Bitcoin network to achieve higher connectivity to improve the

security of the network.
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Chapter 2

Background

There are 2 types of nodes in the Bitcoin network: private nodes that do not

accept inbound connections and public nodes that do accept inbound connections

(see Fig. 2.1). Public nodes act as a backbone of the network: they help new nodes

bootstrap onto the network. If a person does not want to contribute resources (e.g.,

bandwidth) to the network, then they run a private node, which only connects to the

existing public nodes. Once they joined the network, public and private nodes are

indistinguishable in their operation: both perform transaction and block validation

and relay valid transactions and blocks to their peers.

The current version of the Bitcoin transaction relay protocol propagates mes-

sages among nodes using diffusion [1], which is a variation on random flooding.

Flooding is a protocol where each node announces every transaction it receives

to each of its peers. Announcements can be sent on either inbound and outbound

links. With diffusion a peer injects a random delay before announcing a received

transaction to its peers. This mitigates timing attacks [50] and significantly reduces

the probability of in-flight collisions (when 2 nodes simultaneously announce the

same transaction over the link between them).

The protocol by which a transaction propagates between two peers is illustrated

in Fig. 2.2. When a Bitcoin node receives a transaction (peer 1 in Fig. 2.2), it ad-

vertises the transaction to all of its peers except to the node that sent the transaction

in the first place. To advertise a transaction, a node sends a hash of the transac-

tion within an inventory, or INV message. If a node (peer 2 in Fig. 2.2) hears

4



…
Private nodes [Max inbound: 0, Max outbound: 8]

…

Public nodes [Max inbound: 125, Max outbound: 8]

Figure 2.1: Private and public nodes in the Bitcoin network.

Peer	2Peer	1

INV
hash(tx)

GETDATA
hash(tx)

tx

tx	valida+on

tx

Figure 2.2: Transaction exchange between two peers.

about a transaction for the first time, it will request the full transaction by sending

a GETDATA message to the node that sent it the INV message.

We refer to the transaction-advertising portion of the protocol (all the INV mes-

sages) as BTCFlood. Since it relies on flooding, most transactions are advertised

through each link in the network in one direction (except those that are advertised

during the block relay phase). As a result, a node with n connections will send and
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receive between n and 2n INV messages for a single transaction (two nodes may

announce the same transaction simultaneously to each other).

Both public and private nodes limit the number of inbound and outbound con-

nections (Fig. 2.1). By default a private node has no inbound connections and up

to 8 outbound connections, while a public node can have 8 outbound connections

as well as up to 125 inbound connections (but the limit can be configured up to

around 1,000). Thus, as the Bitcoin network grows, the bandwidth and computa-

tional requirements to run a public node quickly increase. This is because private

nodes connect to multiple public nodes to ensure that they are connected to the

network through more than a single peer.

As a result, Bitcoin designers have focused on (1) making the running of a

public node more accessible, in terms of required bandwidth, computational power,

and hardware resources; and, (2) making public nodes more efficient so that they

can accept more connections from private nodes. Our work targets both objectives.
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Chapter 3

The problem with flooding
transactions

Flooding is inefficient. BTCFlood sends many redundant transaction announce-

ments. To see why, let us first consider how many announcements would be sent

if the protocol were efficient. Since, optimally, each node would receive each an-

nouncement exactly once, the number of times each announcement is sent should

be equal to the number of nodes.

Next, let us consider how many times an announcement is sent with BTCFlood.

By definition, each node relays an announcement on each of the links except the

one where that announceent originally arrived. In other words, each link sees each

announcement once, if no two nodes ever send the same announcement to each

other simultaneously, and more than once if they do. Therefore, in BTCFlood each

announcement is sent at least as many times as the number of links.

If N is the number of nodes in the Bitcoin network, the number of links is 8N,

because each node must make eight outbound connections. Therefore, the number

of redundant announcements is at least 8N−N = 7N. Each announcement takes

32 bytes out of 300 total bytes needed to relay a single transaction to one node.

(These 300 bytes include the announcement, the response and the full transaction

body). Therefore, if at least seven out of eight announcements are redundant (cor-

responding to 224 bytes), at least 43% of all announcement traffic is wasteful.

We validated this analysis experimentally. We configured a public Bitcoin node

7



with eight outbound connections and ran it for one week. During this time, our

node also received four inbound connections. We measured the bandwidth dedi-

cated to transaction announcements and other transaction dissemination traffic. A

received announcement was considered redundant if it corresponded to an already

known transaction. A sent announcement was considered redundant if it was not

followed by a transaction request. According to our measurements 10% of the traf-

fic corresponding to received announcements and 95% of the traffic corresponding

to the sent announcements was redundant. Overall, 55% of all traffic used by our

node was redundant.

Higher connectivity requires more bandwidth. Given that the amount of redun-

dant traffic is proportional to the number of links, increasing the connectivity of

the network (the number of outbound links per node) linearly increases bandwidth

consumption in BTCFlood.

We modeled how the bandwidth consumption of disseminating one transaction

across the network of 60K nodes increases with connectivity. Fig. 3.1 (whose re-

sults we confirmed via simulation) shows that announcement traffic turns dominant

as the network becomes more connected.

Higher connectivity offers more security. In peer-to-peer (P2P) networks, higher

connectivity improves network security. This was demonstrated by both traditional

P2P research [3, 4] and Bitcoin-specific prior work [8, 16, 30, 39, 49].

Certain attacks become less successful if the network is highly connected [29,

39, 50]. As an example, the eclipse attack [30] has shown that fewer than 13 con-

nections would be detrimental to security of the network. As another example,

consider a recently discovered vulnerability [18] that relies on InvBlock [44]. In-

vBlock is a technique that prevents a transaction from being propagated by first

announcing it to a node, but then withholding the transaction contents for two min-

utes. With higher connectivity, this attack is easier to mitigate. For that reason,

Bitcoin literature repeatedly recommends to increase the number of connections to

make the network more robust [8, 16].

8
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Chapter 4

Protocol requirements

R1: Good scalability as the number of connections increases. Our main goal is

to design a transaction dissemination protocol that has good scalability in function

of the number of connections. This way, we can make the network more secure

without sacrificing performance.

R2: Maintain a network topology suited for a trustless environment. Bitcoin’s

premise of a trustless environment puts constraints on the design of its network.

Although imposing a structure onto a network, e.g., by organizing it into a tree

or star topology, or by using distributed hash table (DHT)-style routing, enables

bandwidth-efficient implementation of flooding, this also introduces the risks of

censorship or partitioning [39]. The topology of the network must, therefore, re-

main unstructured, and routing decisions must be made independently by every

node based on their local state.

R3: Maintain a reasonble latency. Transaction propagation delays should remain

in the ballpark of those experienced with the existing protocol. Low latency is

essential to user experience and enables better efficiency in block relay [13].

R4: Be robust to attacks under the existing threat model. Our protocol must

remain robust under the same threat model as that assumed by the existing protocol.

Similarly to Bitcoin, we assume that an attacker has control over a limited number

of nodes in the network, has a limited ability to make other nodes to connect to it,

and is otherwise unrestricted in intercepting and generating traffic for peers that it

is connected to.

10



The transaction relay protocol must not be any more susceptible to DoS attacks

and client deanonymization, and must not leak any more information about the

network topology [50] than the existing protocol.

11
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Figure 4.1: Erlay disseminates transactions using low-fanout flooding as the
first step, and then several rounds of reconciliation to reach all nodes in
the network.
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Chapter 5

Erlay design

Traditionally, P2P networks addressed inefficiency of flooding by imposing a struc-

tured overlay onto an ad-hoc topology. We refrained from structured network or-

ganizations for security reasons discussed in Section 4. Instead, our design relies

on two common system-building techniques: delay and batching.

Instead of announcing every transaction on each link, a node using our protocol

advertises it to a subset of peers – this is called low-fanout flooding. To make

sure that all transactions reach the entire network, a node periodically sends to its

peers a batch of transaction announcements that it accumulated recently, and the

peers request those transactions that are missing from their own collections. This

is called set reconciliation. Our protocol, that is comprised of low-fanout flooding

and set reconciliation (Fig. 4.1), is called Erlay.

Low-fanout flooding. The rationale behind low-fanout flooding is to expedi-

ently relay a transaction to be within a small number of hops from every node in

the network. If each transaction ends up close to every node, then reconciliation

can finish dissemination using a small number of rounds. Therefore, a key decision

in low-fanout flooding is to which peers to relay.

Set reconciliation. Set reconciliation was proposed as an alternative to syn-

chronization in distributed systems [45]. Using set reconciliation a node in a P2P

network periodically compares its local state to the state of its peers, and sends/re-

quests only the necessary information (the state difference). Set reconciliation may

be viewed as an efficient version of batching (accumulating multiple state updates

13



Bandwidth used

Latency
to reach
all nodes

Reconcilation

Flooding

Erlay

Figure 5.1: Comparison of reconciliation, flooding, and Erlay in their band-
width usage and latency to reach all nodes.

and sending them as a single message). The key challenge in practical reconcili-

ation is for the peers to efficiently compute their missing transaction state, and to

limit the exchanged transactions to just those that the other peer is missing.

Fig. 5.1 shows how Erlay attempts to find a sweet spot in terms of band-

width and latency by combining flooding, which wastes bandwidth but dissem-

inates transactions quickly, and reconciliation, which takes longer, but does not

waste bandwidth.

5.0.1 Low fanout flooding

Flooding is expensive, so we want to use it sparingly and in strategic locations. For

that reason, only well-connected public nodes flood transactions to other public

nodes via outbound connections. Since every private node is directly connected to

several public nodes, this policy ensures that a transaction is quickly propagated to

be within one hop from the majority of the nodes in the network. As a result, only

one or two reconciliation rounds are needed for full reachability (R3). According to

this, the protocol we propose may be viewed as two-tier optimistic replication [55].

To meet our scalability goal (R1), we limit the flooding done by public nodes to

eight outbound connections even if the total number of these connections is higher.

This way, increasing connectivity does not increase transaction dissemination cost

proportionally.
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The decision to relay through outbound connections, but not the inbound ones,

was made to defend against timing attacks [18, 50]. In a timing attack, an attacker

connects to a victim and listens to all transactions that a victim might send on

that link (the inbound connection for the victim). If an attacker learns about a

transaction from multiple nodes (including the victim), the timing of transaction

arrival can be used to guess whether a transaction originated at the victim: if it

did then it will most likely arrive from the victim earlier than from other nodes.

BTCFlood introduces a diffusion delay to prevent timing attacks. In Erlay, since we

do not forward individuial transactions to inbound links, this delay is not necessary.

So this decision favors both R3 and R4.

Transactions in the Bitcoin (BTC) network may originate both at public and

private nodes. Public nodes disseminate their transactions to a subset of public

nodes via flooding, and via reconciliation to private nodes (and the remaining pub-

lic nodes). In the protocol we propose, private nodes do not relay transactions via

flooding, so the network will learn about their originating transactions via recon-

ciliation: private nodes will add their own transactions to the batch of other trans-

actions that they are forwarding to their peer during reconciliation. Since a private

node forwards its own transactions as part of the batch, as opposed to individually,

a malicious public node is unlikely to discover the origin of a transaction (R4).

5.0.2 Set reconciliation

In Erlay peers perform set reconciliation by computing a local set sketch, as defined

by the PinSketch algorithm [19]. A set sketch is a type of set checksum with two

important properties:

• Sketches have a predetermined capacity, and when the number of elements

in the set does not exceed the capacity, it is always possible to recover the

entire set from the sketch by decoding the sketch. A sketch of b-bit elements

with capacity c can be stored in bc bits.

• A sketch of the symmetric difference between the two sets (i.e., all elements

that occur in one but not both input sets), can be obtained by XORing the bit

representation of sketches of those sets.
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These properties make sketches appropriate for a bandwidth-efficient set rec-

onciliation protocol. More specifically, if Alice and Bob suspect that their sets

largely, but not entirely overlap, they can use the following protocol to have both

parties learn all the elements of the two sets:

• Alice, Bob both locally compute sketches of their sets.

• Alice sends her sketch to Bob.

• Bob combines the two sketches, and obtains a sketch of the symmetric dif-

ference.

• Bob tries to recover the elements from the symmetric difference sketch.

• Bob sends to Alice the elements that she is missing.

This procedure will always succeed when the size of the difference (elements

that Alice has but Bob does not have plus elements that Bob has but Alice does not

have) does not exceed the capacity of the sketch that Alice sent. A key property of

this process is that it works regardless of the actual set sizes: only the size of the

set differences matters.

Decoding the sketch is computationally expensive and is quadratic in the size

of the difference. That is why, accurately estimating the size of the difference

(Section 5.0.2) and reconciling before the set difference becomes too large (Sec-

tion 5.0.2) are important goals for the protocol.

Reconciliation round

Fig. 5.2 summarizes the reconciliation protocol. To execute a round of reconcilia-

tion, every node maintains a reconciliation set for each one of its peers. A recon-

ciliation set consist of short IDs of transactions that a node would have sent to a

corresponding peer in regular BTCFlood, but has not because Erlay limits flooding.

We will refer to Alice’s reconciliation set for Bob as A and Bob’s set for Alice as B.

Alice and Bob will compute the sketches for these reconciliation sets as described

in the previous section.
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Important parameters of the protocol are: D – the true size of the set difference,

d – an estimate of D, and q – a parameter used to compute d. We provide the

derivation of these values below. First, we describe a reconciliation round:

1. According to a chosen reconciliation schedule (Section 5.0.2), Alice sends

to Bob the size of A and q.

2. Bob computes d, an estimate of D, between his B and Alice’s A (see below).

3. Bob computes a sketch of B which allows to reconcile D transactions and

sends it to Alice, along with the size of B.

4. Alice receives Bob’s sketch of B, computes a sketch of A, and XORs the two

sketches. Now Alice has a sketch of the difference between A and B.

5. If the difference size was estimated correctly, Alice is able to decode the

sketch computed in the previous step, request the transactions that she is

missing from Bob, and then advertise to Bob the transactions that he is miss-

ing. If the estimation was incorrect (sketch decoding failed), Alice will resort

to bisection (Section 5.0.2).

6. After this process, Alice updates q (see below) and clears A. Bob clears B.

Accurate estimation of D is crucial for success of reconciliation. Prior work es-

timated D using techniques like min-wise hashing [11] or random projections [24].

These techniques are complex, and we were concerned that they could end up using

more bandwidth that they save. Therefore, we resorted to a minimalistic approach,

where we estimate the size of the set difference based on just the current sizes of

sets and the difference observed in the previous reconciliation round:

d = abs(|A|− |B|)+q ·min(|A|, |B|)+ c,

where q is a floating point coefficient (derived below) that characterizes previous

reconciliation, and c is a coefficient for handling special cases.

Indeed, the difference between two sets cannot be smaller than the difference

in their sizes. To avoid costly underestimations, we add the size of the smaller
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BISEC

SUMMARY
sketch(B/2, d)

BobAlice

INIT
|A|, q

SUMMARY
sketch(B, d)

BobAlice
RECONCIL_DIFF
missing1, missing2

TX
missing1

GETDATA
missing2

TX
missing2

BobAlice

Set A Set B

Attempt to find difference:
diff, fail = recon(sketch(A), sketch(B))

if (fail) then
    run Protocol Reconcile-Bisec
else run Protocol DiffExchange

Estimate difference:
d = estimate(|A|, |B|, q) Remove from missing2 txns 

received from other peers
since start of this exchange

Try to find difference
diff1, fail1 = recon(sketch(A/2), sketch(B/2))
diff2, fail2 = recon(sketch(A-A/2), sketch(B-B/2))

if (fail1 OR fail2) then
    run Original protocol in Fig. 3
else run Protocol DiffExchange

Protocol 
Reconcile-Init

Protocol 
DiffExchange

Protocol 
Reconcile-Bisec

Figure 5.2: Reconciliation protocol with correct difference estimation
(Reconcile-Init, followed by DiffExchange). And, reconciliation pro-
tocol with incorrect difference estimation (Reconcile-Init, followed by
Reconcile-Bisec). In case reconciliation fails during Reconcile-Bisec,
reconciliation falls back to Bitcoin’s current exchange method (see
Fig. 2.2).

set normalized by q, and a constant c = 1, which prevents estimating d = 0 when

|A|= |B| and q ·min(|A|, |B|) = 0.

The coefficient q characterizes earlier reconciliation, so before the very first

reconciliation round it set to zero. At the end of a reconciliation round, we simply

update q based on the true D that we discovered during the round, by substituting

D for d in the above equation, dropping c and solving for q:

q =
D−abs(|A|− |B|)

min(|A|, |B|)
This updated q will be used in the next reconciliation round. We compute q in

this way, because we assume that every node in the network will have a consistent

optimal q.

Reconciliation is a fertile ground for DoS attacks, because decoding a sketch

is computationally expensive. To prevent these attacks, in our protocol the node

that is interested in reconciliation (and the one that has to decode the sketch) ini-

tiates reconciliation (Alice, in our example). Bob cannot entice Alice to perform

excessive sketch decoding.
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Reconciliation schedule

Every node initiates reconciliation with one outbound peer every T seconds. Choos-

ing the right value for T is important for performance and bandwidth consumption.

If T is too low, reconciliation will run too often and will use more bandwidth than it

saves. If T is too high, reconciliation sets will be large and decoding set differences

will be expensive (the computation is quadratic in the number of differences). A

large T also increases the latency of transaction propagation.

A node reconciles with one peer every T seconds. Since every node has c

outbound connections, every link in the network would, on average, run reconcil-

iation every T · c seconds. This means that the average reconciliation set prior to

reconciliation would contain T · c ·T X rate transactions, where T X rate is the global

transaction rate. This also means that during the interval between reconciliations

every node would receive T ·T X rate transactions.

We use a value of 1 second for T in Erlay. With this setting, and the current

ratio of private to public nodes, every public node will perform about eight rec-

onciliations per second. Given the current maximum Bitcoin network transaction

rate T X rate of 7 transactions/s, the average difference set size for this protocol is 7

elements. We evaluate our choice of parameters in Section 8.

Bisection for set difference estimation failure

Our set reconciliation approach relies on the assumption that an upper bound for

the set difference between two peers is predictable. That is, if the actual difference

is higher than estimated, then reconciliation will fail. This failure is detectable by a

client computing the difference. An obvious solution to this failure is to recompute

and retransmit the sketch assuming a larger difference in the sets. However, this

would make prior reconciliation transmissions useless, which is inefficient.

Instead, Erlay uses reconciliation bisection, which re-uses previously transmit-

ted information. Bisection is based on the assumption that elements are uniformly

distributed in reconciliation sets (this may be achieved by hashing). If a node is

unable to reconstruct set difference from a product of two sketches, the node then

makes an additional reconciliation request, similar to the initial one, but this re-

quest is applied to only a fraction of possible messages (e.g., to transactions in the
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Figure 5.3: Bisection is enabled by the linearity of sketches

range 0x0–0x8). Because of the linearity of sketches, a sketch of a subset of trans-

actions would allow the node to compute a sketch for the remainder, which saves

bandwidth.

However, this approach would allow to recover at most 2d differences, where

d is the estimated set difference in the initial step. Even though bisections are not

limited to one and may be applied consequentually without loosing efficiency, in

our implementation, after a reconciliation step failure, we allow only one bisection

with a new overall estimate 2d (see Fig. 5.3). The bisection process is illustrated

in protocol Reconcile-Bisec in Figure 5.2.

If bisection fails, then Erlay falls backs to the original INV-GETDATA protocol

(Fig. 2.2) and applies it to all of the transactions in two sets being reconciled.
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Chapter 6

Implementation details

In this section we describe low-level design decisions required to implement Erlay

and increase its bandwidth efficiency (R2) and make it robust to collision-based

denial of service (DOS) attacks (R4).

Library implementation. We created a C++ library with 3055 lines of code

(LOC)1, that is an optimized implementation of the PinSketch [19] algorithm. We

benchmarked the library to verify that set reconciliation would not create high

computational workload on Bitcoin nodes. Fig. 6.1 shows the decoding perfor-

mance on an Intel Core i7-7820HQ CPU of our library (PinSketch) as compared

to CPISync [58]2 for varying difference sizes3. Our library has sub-millisecond

performance for difference sizes of 100 elements or fewer. As we will show later

(Fig. 8.3) this performance is sufficiently fast for the differences we observe in

practice (in simulation and in deployment).

We used this library to build a reference implementation of Erlay as a part of

the Bitcoin Core software, which we evaluate in Section 9.

Short identifiers and salting. The size of a transaction ID in the Bitcoin protocol

is 32 bytes. To use PinSketch [19], we have to use shorter, 64 bit, identifiers. Using

fewer bits reduces the bandwidth usage by 75% (R2), but it also creates a proba-

bility of collisions. Collisions in transaction relay is an attack surface, because a

1https://github.com/sipa/minisketch
2https://github.com/trachten/cpisync
3We omit other library benchmarks due to limited space.
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Figure 6.1: The decode time of our library (PinSketch) as compared to
CPISync for varying set difference sizes.

malicious actor may flood a network with colluding transactions and fill memory

pools of the nodes with transactions which would be propagated and confirmed in a

very slow manner. Thus, we want to secure the protocol against such attacks (R4).

While collisions on one side of communication are easy to detect and handle,

collisions involving transactions on both sides may cause a significant slowdown.

To mitigate this, we use different salt (random data added to an input of a hash-

function) while hashing transaction IDs into short identifiers.

The salt value is enforced by the peer that initiates the connection, and per

Erlay’s design, requests reconciliation. Since the peer requesting reconciliation

also computes the reconciliation difference, the requestor peer would have to deal

with short IDs of unknown transactions. Since salt is chosen by the requestor, re-

using the same salt for different reconciliations would allow him to compare salted

short IDs of unknown transactions to the IDs received during flooding from other

peers at the same time.

Low-fanout diffusion delay. Bitcoin flooding mitigates timing attacks [50] and

in-flight collisions by introducing a random delay into transaction announcements.

For timing attacks Bitcoin assumes that an attacker connects (possibly, multiple

times) to the node (or takes over a fraction of outbound connections of the node).

In a low-fanout model, this attack is not feasible, because transactions are flooded
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through outbound connections only.

In-flight collisions are also not possible in the case of low-fanout relay through

only outbound links, because transactions are always announced in the same direc-

tion of a link.

Considering these arguments and to reduce latency, Erlay has a lower random

diffusion interval. Instead of using Toi = 2 seconds for outbound connections and

Tii = 5 seconds for inbound, Erlay uses Toi = 1 seconds for outbound.

Reconciliation diffusion delay. Even though in Erlay timing attacks by observing

low-fanout flooding are not feasible, an attacker would be able to perform them

through reconciliations. To make timing attacks through reconciliations more ex-

pensive to perform, we enforce every peer to respond to reconciliation requests

after a small random delay (in our implementation, it is a Poisson-distributed ran-

dom variable which is on average Tri = 3 seconds) and rate-limit reconciliations

per peer. This measure would make Erlay better than BTCFlood in terms of with-

standing timing attacks.

Our measure in Erlay has the same idea as in flooding/low-fanout diffusion,

however, having the ratio Tii/Toi higher makes timing attacks less accurate, because

during Tii (the average time before an attacker receives a transaction) a transaction

would be propagated to more nodes in the network.

We chose the interval of 3 seconds because a lower interval would make Erlay

more susceptible to timing attacks than Bitcoin, and a higher interval results in a

high latency.
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Chapter 7

Evaluation methodology

In evaluating Erlay we focus on answering the following three questions:

1. How does Erlay compare in latency (the time that it takes for the transaction

to reach all of the nodes) and bandwidth (number of bits used to disseminate

a transaction) to BTCFlood?

2. How do the two parts of Erlay (low-fanout flooding and reconciliation) per-

form at scale and with varying number of nodes?

3. How do malicious nodes impact Erlay’s performance?

We use measurement results from two sources to answer the questions above.

First, we use a simulator to simulate Erlay on a single machine. Second, we im-

plemented Erlay in the mainline Bitcoin client and deployed a network of Erlay

clients on the Azure cloud across several data centers (Section 9).

Simulator design. Our simulation was done with ns3. We modified an open-

source Bitcoin Simulator [28] to support transaction relay. The original simulator

had 9663 LOC; we modified 9948 LOC.

Our simulator is based on the INV-GETDATA transaction relay protocol (see

Section 2). It is parameterized by the current ratio of public nodes to private nodes

in the Bitcoin network and the transaction rate based on the historical data from

the Bitcoin network (on average, 7 transactions per second). To simulate the dif-
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ferent ratios of faults in the network by introducing Black Hole nodes (nodes which

receive messages, but do not propagate transactions further).

However, our simulator does not account for the resource-wise heterogeneous

setting, the block relay phase, the joining and leaving of nodes during the transac-

tion relay phase (churn), and we do not consider sophisticated malicious nodes.

The propagation latency measured for BTCFlood by our simulator matches the

value suggested for the validation of Bitcoin simulators [22], and our measured

bandwidth matches our analytical estimate.

Topology of the simulated network. We emulated a network, similar to

the current Bitcoin network, since inferring the Bitcoin network topology is non-

trivial [50]. In our simulation we bootstrap the network in 2 phrases: (1) public

nodes connect to each other using a limit of 8 outbound connections, then (2) pri-

vate nodes connect to 8 random public nodes.

Unless stated otherwise, our simulation results are for a network of 6,000 pub-

lic nodes and 60,000 private nodes (this is the scale of today’s network1). In each

experiment we first used the above two steps to create the topology, then we re-

layed transactions for 600 seconds (on average, 4,200 transactions generated from

random private nodes).

1https://bitnodes.earn.com/ https://luke.dashjr.org/programs/bitcoin/files/charts/software.html
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Chapter 8

Simulation results

In this section we demonstrate the measured properties (latency, bandwidth con-

sumption, and security) of Erlay and compare these to BTCFlood.

8.0.1 Relay bandwidth usage

To verify that Erlay scales better than BTCFlood as the number of connections per

node is increased, we varied the number of outbound connections per node and

measured the bandwidth used for relaying transactions.

We report the average relay bandwidth cost relatively to b (the size of a trans-

action announcement in bits). Table 8.1 shows the results. In the table, both

BTCFlood and Erlay numbers are from simulation experiments.

Erlay achieves a cost below b for connectivity of 8 because of the use of short

IDs during set reconciliation. This is because BTCFlood announces transactions

on every link in the network, so its relay bandwidth increases linearly with the con-

nectivity. By contrast, with higher connectivity of the network, bandwidth in Erlay

grows significantly slower than in BTCFlood. This higher connectivity allows for

better security of the overall system.

Transaction announcements in overall bandwidth. To demonstrate that Er-

lay’s announcement optimization impacts overall bandwidth, we measure the band-

width consumed by a simulated network to relay transactions with BTCFlood and

Erlay. Fig. 8.1 plots the results for simulations in which every node establishes

8 connections. Erlays’s announcement bandwidth is just 12.5% of the relay band-
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Table 8.1: The average bandwidth cost of relaying one transaction to one
node in the Bitcoin network with BTCFlood and Erlay. b is the announce-
ment size in bits.

Connectivity BTCFlood Erlay
8 8b 0.93b

16 16b 1.12b
24 24b 1.23b
32 32b 1.36b
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Figure 8.1: Average bandwidth cost of relaying a transaction in a network of
60,000 nodes with outbound connectivity of 8.

width, while for BTCFlood the announcement bandwidth is 44.7%.

Breaking down Erlay’s bandwidth usage. To further understand Erlay’s

bandwidth usage, we broke it down by the different parts of the protocol: low-

fanout flooding, reconciliation, post-reconciliation announcements.

Table 8.2 lists the results. The table shows that about a third of the bandwidth

is used by low-fanout flooding, while reconciliation accounts for the bulk of the

bandwidth. The post-reconciliation INVs account for a small fraction of Erlay’s

bandwidth.
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Table 8.2: Breakdown of bandwidth usage in Erlay.

Erlay component Bandwidth %
Low-fanout flooding 54%

Reconciliation 32%
Bisection 0.7%
Fallback 4.3%

Post-reconcile. INVs 9%
Total 100%

Set reconciliation effectiveness. To understand the effectiveness of Erlay’s

set reconciliation, we measured how often reconciliation or the following bisection

protocol fail. Fig. 8.2 reports the results aggregated from one of our simulation runs

with 60,000 nodes. The end-to-end probability of reaching fallback is below 1%.

Since bisection does not introduce additional bandwidth overhead (while fallback

does), the overall reconciliation overhead is low.

Since every reconciliation round requires a set difference estimation, we mea-

sured the distribution of the estimated difference sizes. Fig. 8.3 demonstrates that

set difference depends on transaction rate. This is expected: for the same recon-

ciliation intervals, a higher transaction rate would result in both reconciling parties

receiving more transactions and would lead to a larger set difference. This depen-

dency between set difference and transaction rate allows accurate set difference

estimation. Fig. 8.2 illustrates that Erlay’s estimate is correct 96% of the time.

For the cases where Erlay over-estimates and the initial reconciliation fails, the

resulting bandwidth overhead constinutes 9% of the overall bandwidth.

In our library benchmarks the decode time for a sketch containing 100 differ-

ences is under 1 millisecond (Fig. 6.1). Thus, the computational cost of operating

over sketches with the distribution in Fig. 8.3 is negligible.

8.0.2 Relay latency

To analyze latency we ran simulation experiments while changing the total number

of both private and public nodes. In these experiments we kept constant the ratio

between private and public types of nodes at 10 : 1 (this is the ratio in today’s

Bitcoin network). Fig. 8.4 plots the average latency for a single transaction to
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Figure 8.2: Finite state machine of the protocol in Fig. 2.2 annotated with
transition percentages observed in our experiments.

reach all nodes for Erlay and BTCFlood. Erlay has a constant latency overhead on

top of BTCFlood that is due to its use of batching. However, this overhead is just 2

seconds and changes at approximately the same rate with the number of nodes as

BTCFlood’s latency. We could further reduce Erlay’s per transaction latency, but

at the cost of higher bandwidth usage.

Latency under faulty condition We also evaluated Erlay’s latency in a simple

adversarial setting. For this we simulated a network in which 10% of the public

nodes are black holes and measured the time for a transaction to reach all the nodes.

While it is difficult to outperform the robustness of BTCFlood, an alternative pro-

tocol should not be dramatically impacted by this attack.

According to our measurements, while the slowdown with BTCFlood in this

setting is 2%, the slowdown with Erlay is 20%. We believe that this latency in-

crease is acceptable for a batching-based protocol. We have ideas for heuristics

that might be applied to mitigate black-hole attacks and make Erlay less suscepti-

ble. For example, a node might avoid reconciling with those outbound connections

that regularly provide the fewest new transactions.
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Chapter 9

Reference implementation results

We implemented Erlay as part of Bitcoin Core. For this we added 584 LOC, not

including our PinSketch library. We used a network of 100 Azure nodes located

in one data center, running a reference implementation of our protocol integrated

in Bitcoin Core node software, to evaluate Erlay in deployment. We generated and

relayed 500 transactions, all originating from one node with a rate of 7 transactions

per second. We compared the average latency and bandwidth of Erlay versus Bit-

coin’s current implementation. Table 9.1 summarizes our results. According to our

measurements, Erlay introduced a latency increase of 2.66 seconds, while saving

44% of the overall node bandwidth.

As in our simulations, Erlay has a higher latency but lower bandwidth cost,

confirming our original design intent (Fig. 5.1).
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BTCFlood Erlay
Base cost (MB)
(TX+GETDATA)

12.78 12.75

Other messages (MB) 1.06 1.1
Announcement cost (MB) 17.79 2.70
Latency (s) 1.34 4.46

Table 9.1: Prototype measurements collected from a 100-node deployment
comparing the latency and bandwidth of the BTCFlood in the reference
implementation against our Erlay implementation.
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Chapter 10

Discussion

Reconciliation-only relay. We believe that a reconciliation-only transaction re-

lay protocol would be inherently susceptible to timing attacks that could reveal

the source of the transaction. Unlike flooding, in reconciliation delays cannot be

applied per-direction but rather per-link. Therefore, BTCFlood’s diffusion delay

cannot be used in reconciliation.

Compatibility with Dandelion. Dandelion is an alternative transaction re-

lay protocol introduced to improve the anonymity and robustness to adversarial

observers in Bitcoin [23]. Erlay is complimentary with Dandelion: Erlay would

replace the fluff phase in Dandelion.

Backward compatibility. Only about 30% of Bitcoin nodes run the latest

release of Bitcoin Core1. Therefore, Erlay must be backwards compatible. If not

all the nodes use Erlay, then Erlay may be activated per-link if both peers support

it.

Timing attacks from public nodes. Erlay’s design is more robust to timing

attacks from private sybils [18, 29]. Robustness to timing attacks from public

nodes remains an open questions. Both BTCFlood and Erlay use faster relay to

public nodes and slower relay to private nodes. But Erlay’s slower reconciliation

could be abused by public nodes to more easily identify transactions originating

from private nodes. With higher node connectivity this attack becomes expensive,

but a general solution remains as future work.

1https://luke.dashjr.org/programs/bitcoin/files/charts/security.html
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Chapter 11

Related Work

Prior studies of Bitcoin’s transaction relay focused on information leakage and

other vulnerabilities [23, 50], and did not consider bandwidth optimization. We

believe that our work is the first to introduce a bandwidth-efficient, low-latency,

and robust transaction relay alternative for Bitcoin. Erlay is designed as a minimal

change to Bitcoin (584 LOC), in contrast with other proposals that optimize Bitcoin

more deeply [21].

Short transaction identifiers. One solution to BTCFlood’s inefficiency is to use

short transaction identifiers. There are two issues with this solution. First, this

only reduces bandwidth cost by a constant factor. In our simulation we found

that short identifiers would reduce redundant traffic from 43% to 10%. But, with

higher connectivity, redundancy climbs back up faster than in does with Erlay.

The second issue with short IDs is that they would make the system vulnerable

to collision-related attacks and requires a new per-node or per-link secure salting

strategy.

Blocksonly setting. Bitcoin Core 0.12 introduced a blocksonly setting using which

a node does not send or receive individual transactions; instead, the node only

handles complete blocks. As a result, blocksonly has no INV message overhead.

In the blocksonly case, nodes will have to relay and receive many transactions at

once. This will increase the maximum node bandwidth requirements and cause

spikes in block content relay and transaction validation

Reconciliation alternatives. Prior work has also devised multi-party set reconcil-
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iation [10, 46]. This approach, however, has additional complexity and additional

trust requirements between peers. We believe that the benefits of such an approach

are not substantial enough to justify these limitations.

In addition, reconciliation-based techniques usually provide bandwidth-efficiency

under the assumptions where most of the state being reconciled is shared [13, 51].

Prior P2P research. Structured P2P networks are usually based on a Distributed

Hash Tables (DHTs), in which every peer is responsible for specific content [41].

In these networks research has explored the use of topology information to make

efficient routing decisions [12, 54, 56, 59]. This design, however, makes these

protocols leak information about the structure of the network and makes them less

robust to Byzantine faults; though limited solutions to Byzantine faults in this set-

ting have been explored [15, 25].

The trade-off between latency and bandwidth efficiency is well-known in P2P

research. Kumar et. al. identified and formalized the trade-off between latency

and bandwidth [36], and Jiang et. al. proposed a solution to achieve an optimal

combination of these properties [31]. However, the solution was not designed for

adversarial settings.

Prior work also proposed feedback-based approaches to flooding [2, 52]. How-

ever, we believe that to work efficiently (have a horizon larger than 1), this work

would have unacceptable information leakage.
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Chapter 12

Conclusion

Bitcoin is one of the most widely used P2P applications. Today, Bitcoin relies

on flooding to relay transactions in a network of about 60,000 nodes. Flooding

provides low latency and is robust to adversarial behavior, but it is also bandwidth-

inefficient and creates a significant amount of redundant traffic. We proposed Erlay,

an alternative protocol that combines limited flooding with intermittent reconcilia-

tion. We evaluated Erlay in simulation and with a practical deployment. Compared

to Bitcoin’s current protocols, Erlay reduces the bandwidth used to announce trans-

actions by 84% while increasing the latency for transaction dissemination by 50%

(from 4s to 6s). Erlay allows Bitcoin nodes to have higher connectivity, which will

make the network more secure. We are actively working to introduce Erlay into

Bitcoin Core’s node software.
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