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Abstract

Recent networking research has identified that data-driven congestion control (CC)

can be more efficient than traditional CC in TCP. Deep reinforcement learning

(RL), in particular, has the potential to learn optimal network policies. However,

RL suffers from instability and over-fitting, deficiencies which so far render it unac-

ceptable for use in data center networks. In this paper, we analyze the requirements

for data-driven policies to succeed in the data center context. And, we present a

new emulator, Iroko, which supports different network topologies, data center traf-

fic engineering algorithms, and deployment scenarios. Iroko interfaces with the

OpenAI gym toolkit, which enables fast and fair evaluation of RL as well as tradi-

tional algorithms under equal conditions. We present initial benchmarks of three

deep RL algorithms against TCP New Vegas and DCTCP. The results show that

these algorithms are able to learn a CC policy with comparative performance to

TCP on a dumbbell and fat-tree topology. We make our emulator open-source and

publicly available: https://github.com/dcgym/iroko.

iii

https://github.com/dcgym/iroko


Lay Summary

Data centers (DCs) are essential nowadays as they provide easy access to mas-

sive computing and storage. However, managing a DC is not an easy task for a

company. Servers can send too much data at once, which leads to congestion in

an overloaded network. Operators usually use manually configured network algo-

rithms to avoid network congestion. However, manual tuning typically does not

draw out the full potential out of these algorithms.

Fortunately, DCs offer plenty data that can be analyzed and used to optimize

this process. For example, machine learning (ML), which draws insight and learns

from collected data, can help improve algorithms by finding a better configuration

than the operator.

We present a new testing platform intended to investigate the potential of ML

in solving datacenter problems. Our preliminary results show that algorithms who

know nothing about the network and learn from scratch already achieve compara-

tive performance to traditional techniques.
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Preface

At University of British Columbia (UBC), a preface may be required. Be sure to

check the Graduate and Postdoctoral Studies (GPS) guidelines as they may have

specific content to be included.
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Chapter 1

Introduction

In the past decade, the optimization of utilization, cost, and latency in datacen-

ters (DCs) has been a focal point of networking research. However, despite the

innovation potential of datacenters, congestion control (CC) algorithms and central

schedulers have remained fundamentally reactive. Most conventional algorithms

are designed to respond to micro-bursts or flow collisions as quickly as possible,

but cannot outright identify and preemptively avoid these events. Congestion con-

trol relies on human-tuned policies, which, albeit perceived as tried, tested, and

reliable, are ultimately limited in their capabilities.

Automated traffic engineering (TE) systems can give administrators the ad-

vantage of tight control over the datacenter, mitigating the effects of such queue-

buildup and bursts. Unfortunately, contemporary systems rely on human-tuned

policies and are not forward-looking when performing operations. Controllers

tackle congestion in the network by either requiring synchronous communica-

tion (e.g., receivers providing credits to senders), restricting flow admission, or

by asynchronously optimizing TE rules after suboptimal behavior has been de-

tected. These systems have been designed to operate on static and general policies

and often do not capture the complexity and volatility of datacenters. An optimal

congestion controller model should adjust its rate proactively on the premonition

of flow collision. It should not adhere to signals of explicit congestion (such as

increasing round-trip time (RTT) or loss) and instead identify traffic patterns that

indicate inbound competing traffic. Ideally, a datacenter network’s compute and
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Figure 1.1: A parking lot topology experiencing congestion.

forwarding power should be treated as a single finite resource. A global, central-

ized arbiter could then act akin to an OS scheduler, which allocates CPU time

slices to processes, and fairly distributes flows in the network. By allowing only a

safe sending rate for each participant, such a system could minimize the number of

bursts and loss.

As example of such a strategy, take the congestion scenario in Figure 1.1. In

this scenario, each switch link has a capacity of 10 Gigabit per second (Gbps). H6

sends data to H1, H4, and H5 in Period 1, which will cause these hosts to reply with

a large data stream in Period 3. In the normal case, every host is unrestricted in its

sending rate, causing congestion at the bottleneck link of the switches. Packets

are lost, latency surges and TCP’s congestion control has to kick in. In the second

scenario, an agent, which is aware of this pattern, observes the flows from H6 and

decides to act. In Period 2, it restricts the sending rate of the responsible hosts

or provides a hint to the congestion control algorithm, and optimally and fairly

allocates bandwidth. Hosts are able to send at a stable and reliable rate without

experiencing packet loss and retransmission. This increases the overall goodput1

1Goodput refers application throughput without the overhead of Transport Control Protocol

2



of the network.

We claim that to realize a scenario as described in Figure 1.1 a scheduler needs

to learn from past network information to continuously optimize its future strategy.

Given the fact that recent advancements in network programmability [35, 72] and

monitoring [32, 81] have made the collection of statistics on the order of microsec-

onds feasible, devising a policy which is drawn from data and network character-

istics instead of human intuition is possible.

Machine Learning (ML), in particular, is a potential strategy that can auto-

mate management by inferring optimal policies from past data. While ML is an

empirically-driven, black-box approach, it has shown promising results in many

network domains. Recent contributions include data-driven flow control for wide-

area networks [25], job scheduling [61], and cellular congestion control [109].

Data centers are a promising domain as many datacenter networking challenges

can be formulated as an optimization problem [94]. Adhering to the objective of

maximizing future rewards [95], Reinforcement Learning (RL), in particular, has

the potential to learn anticipatory policies. Researchers have used RL to address a

range of datacenter tasks, such as routing [11, 102], power management [96], and

traffic optimization [18].

RL is not without flaws. In fact, the field is plagued by shortcomings. RL suf-

fers from a lack of generalizability [55, 63, 79, 105, 111] and reproducibility [37].

These limitations make it an unacceptable choice for a wide array of usage in dat-

acenters, in particular traffic management, and congestion control. Datacenter op-

erators expect stable, scalable, and accurate behavior, a property which RL can

provide only after long periods of active training. Despite these limitations, RL

is progressing quickly in fields such as locomotion [99], autonomous driving [86],

and robotics [53]. These domains exhibit properties similar to datacenter control

problems: both deal with a large input space and require continuous output ac-

tions. Decisions have to be made rapidly (on the order of microseconds) without

compromising safety and reliability.
:::
Fix

:::
the

::::::::
citations

:::::
here

What these fields have, and what current datacenter research is missing, is a

platform to compare and evaluate techniques. RL benchmark toolkits such as

the OpenAI gym [15] or RLgarage (formerly RLlab) [26] foster innovation and

(TCP) retransmissions, packet headers, or acknowledgment packets.
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enforce a common standards framework. In the networking space, the Pantheon

project [108] represents a step in this direction. It provides a system to compare

congestion control solutions for wide area networks. No such framework currently

exists for datacenters, partially because topology and traffic patterns are often con-

sidered private and proprietary [9]. For data-driven algorithms, such as RL, to

be viewed as a viable, deployable tool for networking solutions, having a set of

reproducible benchmarks to compare algorithm performance is critical.

Iroko We present Iroko, a datacenter emulator that enables understanding of the

fundamental requirements and limitations of data-driven algorithms applied to dat-

acenter networks. Iroko offers a way to fairly evaluate centralized and decentral-

ized policies against conventional traffic control solutions by interfacing with the

OpenAI Gym [15] and the Mininet [56] network emulation platform. In the Iroko

emulator, all algorithms are evaluated on the basis of ”reward”, which describes

how close an algorithm is to achieving a user-defined objective. As a concrete

use-case, we apply reinforcement learning as an example of data-driven manage-

ment. Using the emulator, we introduce reinforcement learning techniques into the

networking domain. We show that, in a real-time networking environment, state-

of-the-art RL algorithms are able to learn and effectively optimize a pre-defined

policy.

In the following chapters, we first outline why a data-driven approach in data-

centers will become a necessity in the near-future (Chapter 2). We then provide the

background necessary to understand how datacenter traffic engineering and data-

driven algorithms complement each other (Chapter 3), and subsequently we show-

case the design of the Iroko emulator intended help other researchers realize this

vision (Chapter 4). We then measure Iroko’s limitations and compare the perfor-

mance of three existing, advanced RL algorithms with state-of-the-art congestion

control in different traffic scenarios (Chapter 5). We conclude with a discussion on

the challenges of data-driven networking in datacenters (Chapter 6.1) and provide

an outlook on the future of the field (Chapter 6.2).
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Chapter 2

The Case for Data-Driven
Datacenter Control

2.1 The Limits of Human-Defined Protocols.

The limits of TCP. TCP was designed to optimize traffic globally on two simple

principles: do not push more packets than the network can handle and play fair

with other participants. Correspondingly, every TCP node responds to packet loss

and assumes that others will behave accordingly. Every node is assumed to be an

independent actor, which learns of other participants and the network capacity via

indirect congestion signals in the network (e.g., packet loss). TCP’s algorithm is a

best-effort solution to globally maximize utilization under the fairness principle.

This design has not fundamentally changed over the last thirty years. Recent

research questions whether TCP can still be considered a viable option [17, 20, 25,

45]. TCP is a fundamentally reactive protocol [45]. It operates on local observa-

tions and attempts to converge globally. These two properties have fundamental

implications on datacenters. Since TCP operates only on local knowledge and

probes the network iteratively, small flows frequently fail to stabilize and never

achieve optimal bandwidth [20, 45, 76]. DC network traffic measurements have

shown that buffer overruns and small short-lived bursts are the primary factor of

loss and retransmits [3, 20, 49, 83]. Suboptimal routing and congestion control
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can quickly lead to bufferbloat and the eventual collapse of a high-load network,

requiring sophisticated buffer tuning and queue management [70].

A large branch of research centers around optimizing TCP in the datacenter.

Flow scheduling attempts to prioritize different application streams, dynamic rout-

ing entangles colliding flows and spreads bandwidth across networks. Latency-

based congestion avoidance, such Data Center TCP (DCTCP) [3], tries to detect

flow conflicts as early as possible to reduce their sending rate just-in-time. How-

ever, the substantial and noticeable increase of loss and latency in the network

already portends a problem. Overflowing queues in forwarding elements or mis-

matched hardware capabilities imply that traffic has not been optimally distributed.

To better manage traffic, there exists a class of centralized schedulers which

can achieve close-to-optimal bandwidth utilization [2, 10, 42, 44, 76]. However,

these schedulers are still reactive in nature. The central controller responds to

signals in the network or requests by applications, which may cost valuable round-

trip latency. Often, short-term flows or bursts are unaccounted for, which, again,

causes undesirable packet loss and back-propagating congestion [45]. Ideally, a

network should always be “zero-queue”, i.e., latency will merely be induced by

propagation, not queuing delay.

While many techniques are designed to respond to micro-bursts or flow colli-

sions as quickly as possible, they are not capable of preemptively identifying and

avoiding these events [20, 45]. Any time that flows collide, packets are lost and

application goodput decreases. This problem is exacerbated by the advent of 200

and 400Gigabit Ethernet (GbE) Network Interface Card (NIC)s. Packets and con-

gestion signals propagate at a much faster rate than the end host networking stack

can respond [98]. In future datacenters, where the slowing of Moore’s Law [100]

makes CPUs a precious commodity, wasting unnecessary cycles on complicated

TCP stacks will become unacceptable.

The limits of admission control. To achieve “zero-queue”, one recent thread

of research advocates for admission-control as an alternative to the conventional

burst-and-backoff mechanism of TCP [20, 45, 76]. In a DC, nodes can be re-

stricted in behavior and arbitrarily modified, which permits substantial simplifi-

cation of enforcement and prioritization policies. Limited admission can provide
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operators with the benefit of tight control and predictability, and has been shown to

dramatically reduce volatile flow behavior [43, 76].

However, instead of tolerating queuing in the network, admission systems push

it onto servers. For example, FastPass [76], which rate limits end hosts and tightly

manages the entire datacenter network, operates synchronously in response to flow

requests. In ExpressPass [20], servers are only permitted to send after receiving

credit packets. Small packet sizes (64 bytes) and non-handshake-based transmis-

sions incur unnecessary credit waste and round-trip latency.

This unnecessary latency is partially incurred because these systems operate

conservatively and use manually designed heuristics to assign bandwidth or relax

rate-limiting. Neither traditional congestion control nor admission control algo-

rithm generalize particularly well. As discussed in Section 3, datacenters are di-

verse and exhibit domain-specific idiosyncrasies. A human-designed, general pur-

pose algorithm might perform adequate in many scenarios but is unlikely to ever

achieve optimality. This trade-off has generally been accepted, because manually

tuning policies and algorithms for a specific workload is tenuous and often plain

impossible. We require a mechanism that automates this particular challenge, for

example a policy improvement technique such as RL.

2.2 Opportunities in the Datacenter
Although datacenters present several challenges in terms of congestion control de-

sign and deployment, they are also boons for innovation. An operator has full

control over all components and can freely develop a clean-slate design and collect

data.

Policies instead of protocols. Software-Defined Networking (SDN) [30] has led

to a paradigm shift in datacenter networking research. Instead of operating on

the notion of distributed protocols SDN advocates separating the network into a

control and data plane. The data plane is a parameterizable set of primitives that

operates at high performance. The control plane “manages” these primitives by

adjusting the data-plane control interface.

SDN gives operators the ability to freely control and adapt their network ar-

7



chitecture, leading to highly customized systems and fine-grained optimization.

One such example is centralized and automated network management. A single

controller, with global knowledge, is able to automatically modify and adapt the

forwarding tables of all switches in the network. This full architectural control led

to new opportunities in the space of TCP congestion research. Datacenters can

now be managed in a centralized fashion based on global knowledge of the entire

topology, job schedules, and traffic patterns. All the complexity of the network is

opaque to the controller. It operates only on the policy defined by the datacenter

operator and the data provided from the network.

A ancillary effect of this separation is that the datacenter environment can be

treated as an optimization problem. Given the global state of the network the algo-

rithm returns an optimal solution, which is then used to correct suboptimal behav-

ior. An embodiment of such a philosophy is the Hedera [2] flow scheduler, which

treats flow collision as a multi-commodity flow problem [28] and reroutes flows to

distribute traffic more evenly.

Data in datacenters. Datacenters are a convenient venue for data collection. All

network devices, servers, and applications are under a single administrative domain

and the delay to retrieve statistics is low. While very precise measurements are

still challenging, recent work [81] has demonstrated that it is possible to observe

network statistics on a milli- to even a microsecond scale, approaching the update

delay of the TCP ACK clock [71].By precisely inferring and measuring data it may

be possible to devise a proactive mechanism that forecasts the traffic pattern of next

iteration, and adjusts admission rate for hosts accordingly.

It is unclear how predictable DC traffic truly is. Several projects have shown

that repeated patterns exist [10, 49, 65, 83, 93]. With monitoring becoming increas-

ingly precise, it may be possible to infer more accurate insights about the nature of

datacenter traffic. If, and only if, DC traffic is sufficiently predictable designing a

proactive algorithm is feasible. Machine learning, which has the capability of ex-

tracting patterns from seemingly random data can aid in this process. While the use

of online-learning algorithms for the Internet is controversial [87], Performance-

oriented Congestion Control (PCC) [25] and Remy [106] have demonstrated that

congestion control algorithms that evolve on trained data can compete with or even

8



exceed conventional, manually tuned algorithms. We agree that a local, greedily

optimizing algorithm may not be able to achieve this goal [87]. Instead, utility

needs to be maximized by leveraging global knowledge, either in a centralized so-

lution such as FastPass [76] or distributed in the form of an asynchronous message

passing solution such as PERC [45].

2.3 Data-Driven Management
We believe the next potential frontier of networking research is the design of data-

driven, holistic algorithms, which actively improve their policy via the sampling

of live data in the network. Ideally, a datacenter operator will deploy a general

purpose system, which then actively adapts to the particular domain-specific work-

loads, topologies, and idiosyncrasies. The idea of drawing from past data to pre-

pare for the future is attractive. It is particularly viable in datacenters, which are

(in theory) fully observable, exhibit specific application patterns, and operate on

recurrent tasks. We do not advocate to completely supersede tried and tested ap-

proaches. Instead we posit that by designing classical traffic engineering tech-

niques to be parameterizable and explicitly configurable it is possible to achieve

effective cross-layer optimization.

Projects such as the congestion control platform (CCP) [71], which redesigns

TCP to expose a control application programming interface (API), are a step into

the right direction. CCP allows for the implementation of any default TCP con-

gestion control algorithm, which can then be further tuned by adjusting exposed

parameters.

2.3.1 The Iroko Emulator

We investigate the potential of data-driven policies by designing an emulator, Iroko,

which expedites the prototyping and evaluation of such algorithms.

Iroko represents networking problems as an OpenAI gym [15], which acts as

an interface between the concrete reinforcement learning agents and the datacenter.

All system-specific information is abstracted away from the agent, providing flex-

ibility in data acquisition and modeling. OpenAI gyms are a common RL bench-

marking platform intended to encourage reproducibility and to allow performance

9



benchmarking of an algorithm across many different domains. Our intention is

similar. By explicitly designing the emulator as a gym we hope to lower the barrier

of entry for both data scientists and networking researchers and facilitate progress

in the design of data-driven networking algorithms. RL researchers are able to

challenge their agents in a new setting without requiring extensive domain knowl-

edge. Networking researchers, on the other hand, are able explore data-driven

networking solutions with out-of-the box algorithms and solvers.
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Chapter 3

Background and Assumptions

This chapter provides a summary on essential background in datacenter networking

and RL. It also establishes our baseline assumptions for the development of the

emulation platform. A comprehensive summary on the systems used in datacenters

can be found in Datacenter traffic control: Understanding techniques and tradeoffs

by Noormohammadpour and Raghavendra, 2018 [73]. A reader already familiar

with the fields of datacenter networking and deep RL may skip to Chapter 4.

3.1 Datacenter Networks
The most important criterion of datacenter design is cost-minimization. Operators

prefer to buy switches and standard Linux servers as off-the-shelf hardware and

maximize the utilization of the datacenter network1. A typical datacenter consists

of some number of racks that communicate over an Ethernet network. A rack is

defined as an array of several dozen hosts, all of which are attached to a Top-of-

Rack (ToR) switch. To provide connectivity between racks, ToRs are typically

linked to high-capacity spine switches. To save costs, operators frequently over-

subscribe their network. Oversubscription implies that the combined bandwidth of

hosts in a rack exceeds the total available bandwidth between racks. To compensate

for the lack of inter-cluster bandwidth, and to make their network scalable, compa-

nies such as Facebook deploy compartmentalized, autonomous pockets of servers,

1Although in practice, large companies tend to overprovision their resources
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Figure 3.1: A simplified fat-tree network.

Figure 3.2: The dumbbell scenario.

also referred to as pods [64]. Pods are managed independently and keep traf-

fic largely within the management domain. Datacenter sizes are largely bimodal,

large cloud providers run hundreds of millions machines across the globe [42, 83],

whereas many smaller businesses and conventional companies set up fewer than a

hundred [1] to at most a few thousand machines [47].

We base our design assumptions on smaller datacenters and the pod design, in

part because data-driven, centralized solutions are intractable at the scale of modern

cloud providers.
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3.1.1 Workloads

Datacenter workloads primarily depend on the datacenter type and the applica-

tions that are deployed. Datacenters can be private- or public-facing, host cus-

tomer applications, or provide general services to consumers. Common applica-

tions that run in a datacenter include MapReduce-style [24] batch-jobs, web servers

or databases serving requests, storage systems, and hosted virtual machines.

Diversity makes it difficult to generalize traffic behavior or patterns. Nonethe-

less, research literature [9, 49, 83] shows that datacenter workloads exhibit several

basic characteristics and challenges.

Flow Types

A large number of varying flow2 sizes, lengths, and patterns coexist in datacen-

ters [73]. Different applications generate different flow patterns [21]. For example,

flows created by batch-jobs jobs are typically long-running and bandwidth heavy,

whereas a key-value store serves a flurry of short-lived, small requests. Large,

long-running streams of packets are referred to as “elephant flows” whereas the

short variant are called “mice flows”. Most measurements indicate that the major-

ity of flows are mice flows that transport less than 10 Kilobyte (KB) and only last

a few seconds. While there many more mice flows in a datacenter, elephant flows

consume the bulk of link bandwidth. Flow arrival patterns largely depend on the

size of the datacenter but are commonly recorded to be within a few microseconds

to 10 milliseconds.

Flow Requirements

In addition, applications and their flows may have different requirements that need

to be satisfied by traffic engineering. For example, a batch-job is typically through-

put sensitive and requires high bandwidth to operate, whereas database queries de-

pend on low-latency message delivery. Another class of flows may have to meet

strict timing deadlines. If a deadline is missed the result is rendered invalid and is

discarded. Such applications require a guarantee that, if they are cleared to send,

their data delivery will be successful. An example may be a search query, which

2A flow is identified by the ”five-tuple”: source/destination IP and port plus transport type.
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needs to complete before a given deadline or the user will be dissatisfied.

Merely measuring throughput and latency metrics often does not capture these

flow requirements and the end-to-end performance of a system. Correspondingly,

datacenter systems are often measured on the basis of the 99th percentile of flow

completion time (FCT). Averages mask the long-tail latencies that can occur due

to unstable traffic and resource usage. FCT can accurately measure the goodput

and the latency of a system.

3.1.2 Traffic Engineering

Datacenter operators rely on sophisticated traffic engineering to accommodate their

workloads and applications. Measures range from topology design, to traffic con-

trol, or flow steering and prioritization.

Topologies

Trees are the most typical topology structure in datacenters, the Fat-Tree [58] being

a particularly popular variation. Fat-trees are a three-layer Clos [22]-like topology

with multiple tree roots. A nice property of fat-trees is that they are considered to be

near-universal, meaning that they can express and support any arbitrary topology

or communication pattern with only minimal performance loss.

In a fat-tree ToR switches are connected to middle-layer aggregation switches,

which are in turn linked together via core switches. In the three-layer network,

any host will have to traverse at most five switches to reach another host (e.g.,

Fig. 3.1). Despite the high-path diversity, measurements [9] indicate that fat-trees

lose packets at every layer, with the core layer experiencing the most persistent

hot-spots.

We also model the dumbbell topology (Fig. 3.2), a simplified version of a

fat-tree network. The dumbbell topology represents an oversubscribed slice of a

fat-tree network, for example an inter-rack path. Dumbbell topologies are a popular

format to evaluate new traffic control techniques as they isolate flow collision and

fairness problems and are easy to comprehend and debug.
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Routing

Tree topologies provide path redundancy and multiple end-to-end paths for pack-

ets in the network. However, to prevent loops, outages and to balance traffic fairly,

these topologies require meticulous routing strategies. Straightforward routing in

a datacenter network is either performed either on layer three using conventional

protocols such as Open Shortest Path First (OSPF) [69], or on layer two by for-

warding based on MAC addresses only. These simple routing schemes guarantee

connectivity, but to balance traffic across links, static forwarding strategies such as

Valiant Load Balancing (VLB) [114] or Equal Cost Multi Path (ECMP) [97] have

to be deployed. Modern implementations of VLB spray flows randomly across

all possible links whereas ECMP determines per-flow forwarding decisions via

consistent hashing. Unfortunately, because these techniques operate per-flow, ran-

domness often triggers collisions of elephant flows. This causes the affected output

port to be choked, impacting all active flows on the path. Many solutions to evenly

distribute packets across the data links exist [73]. For simplicity sake, we assume

a statically configured ECMP network. Our data-driven traffic engineering plat-

form is able to support these routing strategies, but we have decided to focus on

congestion control for this particular project.

Congestion Control Challenges

Careful routing mitigates loss in networks, but cannot prevent hosts from over-

saturating popular links. To ensure that no flow is able to crowd out other par-

ticipants3, congestion control limits the rate of data entering the network. Every

congestion control algorithm aims to satisfy two fundamental requirements: Reach

a stable state for a given network matrix and allocate a fair share for each partici-

pant.

A common technique to achieve this state is to use the Additive increase/mul-

tiplicative decrease (AIMD) algorithm in TCP, which is proven to eventually con-

verge to a fair rate, given that all participants use the same technique [50]. Note the

“eventually” in this statement. In datacenters, propagation delay is extremely low

and the available bandwidth high. Every host is sending at maximum rate and small

3We consider any flow that has entered the network a participant.
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short-lived flows are competing for bandwidth with long-running elephant flows.

Datacenters face several congestion challenges, because of the highly specialized

topologies and routing techniques paired with application-driven traffic patterns.

Microbursts Most flavors of TCP have relied on slow-start and the loss-based

congestion avoidance techniques originally developed by Van Jacobson [41]. TCP

effectively operates as a burst-and-backoff protocol which quickly reaches high-

bandwidth while continuously probing the network. Unfortunately, slow start’s

bursty behavior frequently leads to a destructive pattern at switch ports, known as

”microbursts”. Microbursts cause high loss at switch links when multiple quick

burst of packets, which exceed the switches’ forwarding capacity, arrive. The sud-

den wave of flows fills up the switch buffer and causes packet loss for all flows on

the same link, detrimentally affecting stable flows by forcing them to unnecessarily

reduce their sending rate. While remediation tactics, such as traffic shaping, exist,

microbursts remain a persistent problem in today’s datacenters. In fact, measure-

ments by Zhang et al., 2017 [112] indicate that microbursts today last only several

hundred microseconds. These bursts are often not captured by standard network

telemetry but still have significant implications on the performance of congestion

control algorithms.

Bufferbloat To compensate, switch vendors have introduced big buffer switches [8]

and continuously increased the size of switch port buffers. A consequence of the

increased buffer size of switches is “bufferbloat” [33]. Bufferbloat describes a

phenomenon that occurs on switch queues that are perpetually filled with pack-

ets, which adds queuing delay to packet transmission in the network. Because

TCP uses only packet loss as congestion indicator, it does not detect this buffering

and thus does not decrease its sending rate. In wide-area networks, where large

propagation latency masked the queuing delay, this was considered acceptable. In

datacenters, however, many applications are latency-critical and require reliable

performance. Bufferbloat has led to the development of delay-based TCP algo-

rithms, which, instead of using loss, try to infer congestion signals by measuring

latency variation. The intention is to identify queuing as early as possible and
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reduce the sending rate in a timely manner.

Incast Incast refers to a bottleneck phenomenon originating from the use of ag-

gregation patterns such as MapReduce [24]. In the aggregate phase, many servers

reply to the aggregator in parallel, cause bottlenecks at the inbound link, and drown

out other flows. Because all flows flood in at once, stabilization takes a substantial

amount of time. Incast problems are highly correlated with microbursts and are

usually handled by limiting the data transfer rate at end hosts.

Datacenter Congestion Control

Delay-based algorithms are the current control mechanism of choice in datacen-

ters. Popular variants include TCP New Vegas (TCP NV), TIMELY [66], and the

DCTCP [3] algorithm. Because a public implementation of TIMELY was not avail-

able during the development of this project, we focus on the use of TCP NV and

DCTCP.

TCP NV TCP Vegas is an end-to-end delay algorithm originally developed by

Brakmo and Peterson [14]. Vegas gauges network capacity by probing the RTT of

TCP packets instead of reacting to explicit loss of packet segments. TCP Vegas

increases its sending rate more conservatively than standard TCP and recedes once

measured latency exceeds a specific threshold from the base experienced mini-

mum latency. By doing so, TCP Vegas ensures that switch queues are emptied

periodically and kept low. TCP NV is based on the original TCP Vegas and has

been optimized by Facebook to operate in datacenters with more than 10Gbps link

bandwidth. TCP NV has been contributed to the Linux kernel and is available since

version 4.8 [13].

DCTCP While delay-based congestion control performs better than standard TCP

in datacenters, it is dependent on potentially noisy RTT measurements. This flaw

becomes palpable in low-latency topologies, which have limited tolerance for vari-

ance. The minimum and current experienced RTT inferred by TCP NV is distorted

by unstable server performance due to interrupts, coalescing, slow TCP stacks, or
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high CPU load. At the speed modern NIC hardware is operating, RTT becomes an

unreliable congestion signal .

A popular alternative to end-to-end TCP is DCTCP, which requires explicit

feedback from the network. DCTCP depends on Active Queue Management (AQM)

[7] on switches, which marks excess packets that arrive over a configured queue

threshold with an Explicit Congestion Notification (ECN) tag before delivering

them. DCTCP uses the ECN tags on packets to preemptively adjust the send-

ing rate. This simple technique has seen success in datacenters and established

DCTCP as a popular datacenter protocol. In our experiments we treat DCTCP and

TCP NV as baselines.

Datacenter Scheduling

TCP algorithms are typically designed to be agnostic of flow priorities. To ad-

equately support variable sized flows and deadlines, many datacenter operators

make use of scheduling strategies. Dynamic load-balancing strategies, such as

Hedera [2], approach this problem by proposing a centralized network controller,

which identifies colliding flows and relocates them to underutilized links. Systems

such as FastPass [76] go a step further and explicitly allow network admission

only to flows that are prioritized and do not exceed the capacity threshold of the

network.

A fundamental strategy necessitated by congestion is the use of queuing disci-

plines at switch buffers. Queuing disciplines prioritize packets in the queue based

on specific characteristics. Flow and queue scheduling can highly influence the

performance of any transmission control protocol. For example, DCTCP’s per-

formance depends on the marking threshold configured on the queue management

algorithm at the switch buffer [107]. If the switch tags packets too early, DCTCP

can’t achieve optimal throughput, if packets are marked too late then DCTCP will

perform even worse than conventional TCP. Many different queuing strategies ex-

ist. We follow the advice outlined by Judd, 2015 [47] and use Random Early

Detection (RED) [31] with ECN marking at the switch when deploying DCTCP.

Otherwise we rely on simple drop-tail queuing (packets at the end of the queue are

dropped).
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Utility Maximization Networks integrate various techniques, such as routing,

scheduling, or rate-limiting to optimize the flow of traffic. Each technique can

be interpreted as a different layer which controls a subset of the network, has a

limited view of state, and optimizes a local objective. This design has contributed

to the success of the Internet, but may be ill-suited for datacenters. Even subtle

parameter changes in one domain can dramatically affect others and causes sub-

optimal global behavior. For example, increasing the packet marking threshold of

RED can dramatically lower DCTCP’s congestion performance. Or a tweak in a

routing scheme, such as ECMP, may affect the total amount of flow collisions in

the network, which then has to be compensated by congestion protocols or load

balancers.

Most datacenter engineering solutions are deployed ad hoc [19]. Tools and

algorithms are tuned based on tribal knowledge and good practice instead of rig-

orous formalization. Ideally, a network should be designed and parametrized with

all layers and constraints in mind to optimize a global objective. The field of Net-

work Utility Maximization (NUM) (also referred to as “Layering as Optimization

Decomposition”) [19] has been developed to solve precisely this disconnect of in-

dividual network mechanisms and the global utility goal.

NUM views the network as the optimizer itself, puts the end-user application

needs as the optimization objective, establishes the globally optimal performance

benchmark, and offers a common set of methodologies to design modularized and

distributed solutions that may attain the benchmark [19].

In recent years, NUM has found popularity in congestion control theory. Rate

control schemes such as Remy [106], PCC Vivace [25], or Copa [6] express the

congestion control problem as an objective function. Instead of using an explicit

control window these schemes continuously infer utility from observed network

metrics and gradually adjust sending rate. Eventually, the algorithms converge to a

strategy that performs best in the given network environment.

Our network emulator is inspired by this very idea of defining and solving an

objective function. In particular, we believe that, because of its approximation

capabilities, RL can serve as a viable solution to design traffic engineering appli-

cations that span across multiple layers and efficiently solve the NUM problem.
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Figure 3.3: The typical reinforcement learning process.

3.2 Reinforcement Learning
We specifically investigate the potential of reinforcement learning heuristics in the

datacenter setting. The fundamentals in this section are primarily drawn from the

introductory book by Sutton and Barto [95].

Machine Learning Reinforcement Learning is a subclass of ML. Broadly speak-

ing, ML refers to a class of algorithms capable of inferring a mathematical model

by ingesting large amounts of data. Most use-cases are formulated as an optimiza-

tion problem, in which the algorithm minimizes a loss function that describes the

difference between the predicted and actual result. In the most common form of

ML, supervised learning, the algorithm ingests a training set (a subset of the full

available data) and performs gradient descent [51] until the loss has decreased to an

acceptable value or all data has been sampled. The goal of an ML algorithm is to

learn a distribution that most accurately classifies given input data while avoiding

”overfitting”, i.e., learning a mathematical model that merely describes the set of

data the algorithm has processed. The ideal ML algorithm generalizes to data it

has not been trained on from merely observing a small sample set.
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3.2.1 The Reinforcement Learning Problem

RL can be motivated by the conditional sub-domain of behavioral psychology. RL

mimics an agent that is conditioned to adapt to an unknown environment. Instead

of minimizing the loss, the agent improves its behavior by receiving a reward from

its outputs. It does so by “stepping” through the environment. In each step, the

agent observes the current state, performs an action, and receives a reward. The

function output of an RL algorithm is considered an action whereas the reward

function is provided by the environment. Fig. 3.3 shows the typical cycle. Actions,

which lead to a desired outcome are rewarded positively whereas wrong behavior

is penalized by the reward function. The goal is to learn a policy that maps optimal

actions for a given input state.

Although RL is often compared to mammalian perception and behavior, it is

purely data-driven and operates best in data-rich environments. A datacenter can be

viewed as such an environment and can be designed to provide RL algorithms with

the information they need to maximize varying objectives. A particular challenge

of RL is that the algorithm output may influence the subsequent sampling of data.

This property is modeled as a form of a Markov Decision Process (MDP). A RL

MDP contains the following components:

1. The initial state: s0.

2. A set of possible states the environment or agent can be in: S = s0,s1, ...,sm.

3. A of possible actions an agent can execute: A = a0,a1, ...,an.

4. A transition model which returns the next likely state under a specific action:

T (s,a,s′).

5. A reward function which describes the benefit gained from reaching a certain

state : R(s).

Actions are selected on the basis of the policy π(s), which maximizes the reward

for the agent for a given state. The state-value function Vπ(s) describes the ex-

pected reward for the current state under a specific policy. This function makes use

of the Bellman Equation, which introduces the discount factor γ ∈ [0,1]. γ denotes

the preference of the agent to prioritize future rewards over immediate reward. The

overall value function can be denoted as Vπ(s) = E[∑∞
t=0 γ trt |s0 = s], which esti-

mates the total reward until a terminal or cut-off state is reached. Complementary
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to the state-value function, the Q-function Q(s,a) defines the expected future re-

ward given a state s and an action a. The optimal value function V ∗is often defined

as the aggregate of the optimal Q-function Q∗ for all states: V ∗=max
a

Q∗(s,a). The

Q-function defines the utility of a state-action pair, which then allows the construc-

tion of a policy based on the highest Q returns. In essence, the Q-function defines

the value of an action in a state, whereas the policy π(s) defines which actions

to pick. Since both functions are complementary, two fundamental techniques to

improve the behavior of a RL agent exist: Value Iteration and Policy Iteration.

Value Iteration Value Iteration, also known as Q-learning, is an off-policy al-

gorithm, meaning it does not depend on a pre-defined policy in order to choose

a transition function. In Q-learning, the agent begins with an arbitrary, fixed pol-

icy π and will generate an optimal policy π∗ in parallel. It does this by selecting

the predetermined Q-function value as the next action, which may be unreliable

or useless. Over time, Q-learning improves the agents second Q-function Q∗ by

observing the effects of the first policy. It uses the following update function:

Q(st ,at)← (1−α) ·Q(st ,at)︸ ︷︷ ︸
old value

+ α︸︷︷︸
learning rate

·

learned value︷ ︸︸ ︷(
rt︸︷︷︸

reward

+ γ︸︷︷︸
discount

· max
a

Q(st+1,a)︸ ︷︷ ︸
estimated optimal value

)
Q(st ,at) is updated based on the newly experienced reward and the former esti-

mated return, eventually approximating an ideal Q-function Q∗ and overall policy

π . The original Q-function Q and policy π do not change.

Deep Q-Networks If the state-space is too large, function approximators such

as neural networks are used. However, neural nets are known to behave errati-

cally in reinforcement learning due to the assumption of independent and iden-

tically distributed (i.i.d) samples. RL problems are often highly variable which

leads to instability between training episodes. As a mitigation tactic, Deep Q-

Networks (DQNs) [67] are introduced. In addition to using a convolutional neural

net to model the state-action space, DQNs leverage experience replay [95] as a sta-

bilization mechanism. Experience replay collects a buffer of historical transition

models and randomly inserts the transition values during the Q-update function.
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Any historical transition may influence the future action selection, thus averaging

the behavior distribution overall and mitigating the occurrence of local minima or

divergence. The sample set more closely resembles an i.i.d. distribution.

Secondly, in every state-action update the algorithm trains a target network in-

dependently of the actual update function for several update epochs. This guaran-

tees that an update to Q(st ,ai) does not immediately impact updates to Q(st+1,a).

If the model is at risk of diverging or oscillation, this method establishes a potential

buffer to stabilize. It can be considered a hybrid off-policy approach as the policy

is only improved every N-steps.

Policy Iteration Instead of improving the Q-function, Policy Gradient (PG) meth-

ods optimize the policy function directly and learn a stochastic policy function

πθ (a|s) with respect to the weights θ . Actions are sampled from a distribution

instead of being picked on the basis of their utility. A policy gradient algorithm

generally uses gradient ascent to infer the best values of θ , i.e., the policy, that

maximize the expected reward return. PGs are commonly used in environments in

which the transition model is unavailable and the true value of actions is unknown

(also known as model-free RL). The value for a given action has to be inferred

by continuously probing and re-evaluating the policy. To do so, PG agents of-

ten use Monte-Carlo (MC) methods to learn a policy. MC randomly samples data

points to infer a probability distribution and observe properties about a given, ini-

tially unknown scenario. The stochastic approximation returns an action, which is

likely to be most rewarding and is able to handle even highly continuous and large

state-spaces. This makes policy gradients particularly attractive for use in data-

centers, where the policy and state-transition matrix are largely undecipherable by

humans and must be inferred. PG methods can provide an approximation which

accurately describes traffic behavior and may help in finding optimal actions in a

highly stochastic environment.

3.2.2 REINFORCE

REINFORCE [95] is a basic instantiation of a policy gradient. REINFORCE uses

MC sampling to generate random state transitions and is thus also known as MC
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Policy Differentiation. The pseudocode of Algorithm 1 details the exact steps of

one episode. In line six, the values of θ are updated proportional to the probability

α of the action and the reward rt . The higher the reward, and the lower the prob-

ability of the action, the more the policy is skewed towards the taken action in the

next episode. Note how the policy gradient REINFORCE optimizes towards the

likelihood of taking an action, whereas Q-learning improves the utility of taking an

action. Eventually, good actions will have an increased likelihood to get sampled

in future iterations.

We use REINFORCE as a baseline in our experiments. Its sampling policy es-

sentially approaches random choice, which causes high variance in policy updates

and ultimately leads to instability. If REINFORCE is able to perform well, the im-

plication is that the environment does not represent a challenging enough problem

to warrant more sophisticated approaches.

Algorithm 1 REINFORCE

1: Input: A differentiable policy parametrization π(a|s,θ)
2: Initialize policy parameter θ randomly
3: for t = 1,2, . . . ,T do
4: Generate a state-action trajectory: πθ :S0,A0,R1,S1,A1, . . . ,ST

5: rt ← reward return from step t
6: θ ← θ +αγ trt∇θ lnπθ (At |St)
7: end for

3.2.3 Deep Deterministic Policy Gradient (DDPG)

Continuous Control While DQNs were able to model settings with high-dimensional

state spaces, they were unable to pick sensible actions when facing continuous,

high-dimensional action spaces. For example, agents in physical environments

have to sample from an unbounded range of fine-grained output values to oper-

ate in a precise fashion. This limitation also applies to rate-control in datacenters,

which may range from mere bits-per-second to GB of throughput. While it is theo-

retically possible to discretize the actions, the degrees of freedom quickly leads to

a curse of dimensionality and an action-space explosion [59].
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Algorithm 2 The DDPG algorithm.

Randomly initialize critic network Q(s,a|θ Q) and actor µ(s|θ µ) with weights
θ Q and θ µ .
Initialize target network Q′ and µ ′ with weights θ Q′ ← θ Q, θ µ ′ ← θ µ

Initialize replay buffer R
for episode = 1, M do

Initialize a random process N for action exploration
Receive initial observation state s1
for t = 1, T do

Select action at = µ(st |θ µ)+Nt according to the current policy and explo-
ration noise
Execute action at and observe reward rt and observe new state st+1
Store transition (st ,at ,rt ,st+1) in R
Sample a random minibatch of N transitions (si,ai,ri,si+1) from R
Set yi = ri + γQ′(si+1,µ

′(si+1|θ µ ′)|θ Q′)
Update critic by minimizing the loss: L = 1

N ∑i(yi−Q(si,ai|θ Q))2

Update the actor policy using the sampled policy gradient:

∇θ µ J ≈ 1
N ∑

i
∇aQ(s,a|θ Q)|s=si,a=µ(si)∇θ µ µ(s|θ µ)|si

Update the target networks:

θ
Q′ ← τθ

Q +(1− τ)θ Q′

θ
µ ′ ← τθ

µ +(1− τ)θ µ ′

end for
end for

To handle such a class of problems, Deterministic Policy Gradients (DPGs) [91]

can be used. DPGs are capable of representing continuous action spaces as one co-

hesive policy and iterate over the state space, thus reducing the amount of required

computational power dramatically. DPGs traditionally rely on an Actor-Critic (AC)

model.

AC is considered a decoupling technique that splits a reinforcement system into

an action-selection and action-evaluation component. Actors are any type of RL

techniques, which actively improve the policy based on new action-value informa-
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tion. In general, the actor computes a full policy based on a policy gradient method

whereas the critic uses Q-learning to guarantee an off-policy Q-value improvement.

DPG is limited in its ability to represent complex or perception-based state

spaces. This causes it to become unstable and slow in high-dimensional state

spaces. To be able simulate movement and physical environments, Lillicrap, Hunt,

et al., 2017 [59] developed the Deep Deterministic Policy Gradient (DDPG). DDPG

uses two neural nets as the actor and critic and combines the model with experience

replay and as well as the periodical buffering of Q-functions to guarantee stability.

Algorithm 2 describes the implementation of DDPG. DDPG is a combination

of DQN and DPG. Drawing from DQN, it uses experience replay and updates tar-

get values based on sampled transitions. The algorithm buffers target values in the

replay buffer R to prevent quick divergence caused by the use of neural networks.

The actor-critic model introduced by DPG is intended to handle the large state

space and prevent divergence. The actor decides on an action deterministically on

the basis of an approximation function µ(st |θ µ). This also affects the computation

of the target yi which is now updated on the basis of µ(si+1|θ µ ′), i.e., the action

chosen by the buffered target actor for state si+i. The critic itself attempts to min-

imize the sum of least-squares and updates its target weights θ Q correspondingly.

Afterwards, the actor modifies its policy following the critic’s updated action-value

function Q(s,a|θ Q). As a last step, the buffered weights for the actor and critic

function are “softly updated” using a regularization parameter τ . This smoothing

ensures that the algorithm remains stable and does not drastically change actions

after an update.

Due to its alleged properties of being able to model highly complex, continuous

environments and act deterministically, we chose DDPG as a representative state-

of-the-art algorithm for value-iterators.

3.2.4 Proximal Policy Optimization (PPO)

Trust Region Policy Optimization A major challenge for PGs is the estimation of

the gradient step size. A step size that is too small will lead to slow improvement.

On the other hand, if the step size is too large, the agent is likely to “fall of a cliff”,

i.e., it will get stuck in a local minimum. For example, in a datacenter it may be
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hard to recover from an erroneous traffic update that causes congestion.

Trust Region Policy Optimization (TRPO) [88] is a technique that ensures that

every gradient update is within a reasonable range while still ensuring continuous

improvement. The core of TRPO is the use of Kullback-Leibler divergence [54],

which computes the distance between two probability distributions. If the dis-

tance between the old and new policies is too large before an update, TRPO will

smoothen the gradient update and ensure that the new θ parameters do not cause

divergence. An important property of TRPO is the guarantee of monotonic im-

provement. Any update to the policy is proven to improve over the old parameter

space. This makes TRPO particularly attractive for environments in which even

minor changes can lead to high penalties (suboptimal system states).

A major constraint of TRPO is its computational cost and complexity, limiting

its usability in more complex scenarios. PPO [90] has been designed as a practical

alternative and is typically viewed as a more scalable version of TRPO that retains

its monotonic behavior. In essence, PPO clips the update function if the step size

violates a predefined boundary.

PPO vs DDPG We use both PPO and DDPG as sample RL algorithms in our em-

ulator evaluation. Our intuition is that the algorithms will learn to adapt in the data-

center environment, as both are designed for tasks that exhibit complex continuous

action and state spaces. A major difference between PPO and DDPG is that PPO

operates on-policy whereas DDPG uses Q-learning to improve off-policy. An on-

policy algorithm typically exhibits higher variance because the policy is updated

every step and may require more samples to improve. In addition, because PPO

does not use experience replay like DDPG, spare rewards may cause it to stall. On

the other hand PPO is more robust than DDPG due to its monotonic improvement

guarantee in stochastic environments. Outliers will not skew the policy.
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Chapter 4

The Iroko Emulator

4.1 Emulator Design
A key feature of Iroko is its extensible and modular design. The Gym is assembled

by combining a set of core tools, including a network topology, a traffic gener-

ator, datacenter monitors, and the OpenAI Gym interface (see Figure 4.1). The

emulator’s flexibility allows it to support centralized arbiters as well as decen-

tralized, host-level approaches. For example, in a congestion control scenario,

decentralized agents could be traditional TCP algorithms, such TCP New Ve-
gas! (TCP New Vegas!), whereas centralized agents might be RL algorithms. The

emulator can also implement hybrid deployments, which constitute multi-agent

systems [94]; one agent may be a rate-limiting arbiter, the other could configure

routing. Together, these agents optimize towards a common goal. In designing

Iroko we are particularly concerned about supporting the following four require-

OpenAI Gym Platform

Traffic Generator Traffic Pattern

Decentralized Policy Agents

DCTCPPCCTCP FOO ...

Centralized Policy Agents

DDPGPPOREINFORCE ...

Fat Tree

Dumbbell

Parking Lot Topology

...

MonitoringBandwidth

Port Queues

Reward

...

Figure 4.1: Architecture of the Iroko Gym.
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ments:

(1) Arbitrary topologies and traffic patterns: As outlined in Section 3, datacen-

ters are highly diverse. To be effective, Iroko needs to be able to support most

common types of topologies and traffic patterns.

(2) Low CPU Utilization: To approximate mid-tier datacenters, Iroko has to scale

to several hundreds of hosts on a modern commodity server. This mandates that

all the core components of the emulator are lightweight and CPU-efficient. We can

not waste disk space, memory, or CPU cycles.

(3) Flexible monitoring: Data-driven networks rely on periodic sample collection.

The platform has to provide a set of tools and APIs that allow a user to dynamically

assemble a state matrix and infer system properties. In addition, the monitoring

needs to be light-weight and fine-grained to capture the majority of events during

emulation.

(4) Algorithm Support: The emulator interface should be generic enough that

reinforcement learning, optimization solvers, or decentralized algorithms can be

fairly compared on the same platform. This requires an API that is common-

purpose enough to interface with any of these approaches. Fortunately, the openAI

Gym interface satisfies this requirement.
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Listing 1 A policy interacting with the Iroko Gym.

from dc_gym.factories import env_factory

def test_run(config, policy, n_steps):

# Create the testing environment

dc_env = env_factory.create(config)

# Initialize the environment

obs, reward = dc_env.reset()

# Step through the environment for n steps

for epoch in range(n_steps):

# Sample a random available action

action = policy.compute(obs, reward)

# Perform the action

# Retrieve reward and observation

obs, reward = dc_env.step(action)

# All done, tear down the environment

dc_env.close()

4.1.1 The Gym Interface

Our emulator primarily draws from the OpenAI Gym API to ensure compatibility

with modern RL algorithms. Figure 1 shows a simple policy interacting with an

Iroko Gym. The env factory module uses the configuration file to assemble

a Gym consisting of a topology, traffic pattern, state matrix, reward function, and

action enforcement. The environment is then initialized via the reset() call,

which creates the virtual environment and starts traffic generation. The call also

returns an initial state matrix and reward. After initialization, the policy proceeds

to step through the environment, picks an action every iteration, and observes

the result and reward. The policy is free to ignore any variable provided by the

environment. For example, decentralized TCP does not use observation, action,

or reward, but the system still collects metrics on the theoretical reward the policy
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achieves.

4.1.2 Network Emulation

We use the Mininet [56] real-time network emulator to construct and deploy net-

work topologies. Mininet generates a virtual network topology using the network

emulation facilities provided by the Linux kernel [36]. In Mininet, each “host”

runs in its own isolated network namespace but otherwise uses the default Linux

application binary interface (ABI). The hosts are connected via Open vSwitch [78],

a common high-performance software switch. The emulator comes with a set of
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Table 4.1: A sample flow pattern.

Source Destination Port Start (s) Length (s) Flow Size (Byte) Reps Flow Gap (s)

H1 H3 80 0.0 0.0 1000000 inf 0.0
H1 H4 80 15.0 15.0 inf 10 1.0

pre-defined topologies that can be imported by the Gym. New topologies can eas-

ily be added. Each topology defines a set of available traffic patterns that can be

used by the Gym to generate testing traffic.

Why Mininet? We chose Mininet over discrete event simulators such as ns-3 [82]

or Omnet++ [103] because of its ability to approximate real network behavior. Dis-

crete simulators do not capture the burstiness, interrupts, and idiosyncrasies of the

kernel and hardware stack. Simulated protocols often have to undergo substantial

revision before they can be deployed [74]. In contrast, systems running on top of

Mininet use real OS components and applications. An application that successfully

runs on the emulator can be ported to actual hardware more easily than an abstract

protocol optimized for a simulator. While Mininet is entirely virtual and is limited

in its ability to generalize datacenter behavior, it provides an environment most

similar to real datacenters. Mininet already has been effectively used as platform

for larger emulator frameworks [23, 77] and can also be scaled across machines

using systems such as Maxinet [104]. Our other intention is to craft a challenging

environment for algorithms. Any policy that performs well in our emulator has the

potential to succeed in real scenarios.

4.1.3 Traffic Patterns

Because the emulation platform does not include any type of datacenter applica-

tion by default, we synthesize datacenter traffic. However, generating real network

traffic is a challenging task. A traffic generator in the system has to be lightweight

as well as capable of supporting diverse traffic matrices and virtual interfaces. Un-

fortunately, many traffic generators do not meet all three of these requirements. For

example, iPerf [27] and Netperf [40] are CPU-efficient and support virtual inter-

faces but are capable of generating only static flows. TRex [39] and WARP17 [48],
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on the other hand, are expressive, but have limited support for virtual interfaces

and consume a lot of CPU cycles.

We use a modified traffic generator (Goben [101]). At the beginning of a train-

ing episode, the generator is launched on all datacenter hosts. Each host is fed with

a flow matrix inspired by the Hedera [2] benchmark and the default Mininet traffic

generator. Table 4.1 contains an example. Host 1 constantly sends 1 Megabyte

of traffic to Host 3. After 15 seconds, Host 1 starts a second flow to Host 4

which lasts about 15 seconds and is repeated 10 times with a gap of one second

between each flow. Not shown: Both inter-flow and inter-packet gaps can also be

randomized to introduce jitter.

Note that the flow generators are a complementary feature of the emulator,

intended for microbenchmarks. They are unnecessary if real application mac-

robenchmarks are performed.

4.1.4 Network Monitoring

One of the core design principles is to run the Gym asynchronously of the hosts,

policy enforcers and data collectors (see Figure 4.2).

Monitoring is handled by the State Collector, which assembles information in

a state matrix and records data for evaluation. The State Collector launches a pro-

cess per monitor and initializes a memory map shared between all child processes.

The state processes independently collect metrics from the network and atomically

update their shared memory region per user-configured collection interval. When

the policy agent requests a state update, the Gym selects features from the memory

region based on a pre-configured index and converts the values into a compati-

ble input matrix. This asynchronous design guarantees that both state and policy

can be computed independently and minimizes the propagation latency of network

updates.

The current Gym configuration defines which monitoring tools are launched.

The Iroko Gym can support any software native to the Linux kernel. However,

to keep CPU utilization as low as possible, and to provide very fine-grained mea-

surements, we developed custom tools that provide a dedicated query API for the

agent.
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We currently focus on the monitoring of interfaces. We have implemented

monitors that record interfaces statistics, sending and receiving bandwidth, and the

active flows in the network.

4.2 Use Case: A Congestion Control Gym
We developed a proof-of-concept OpenAI Gym, which models the bufferbloat

problem in datacenters. The Gym is kept simple and explicitly focuses on the

congestion control layer. The goal is to reduce switch interface queues, as they

indicate congestion and inefficient flow distribution. The only possible action per

step is to adjust the allowed output bandwidth of each host interface. In essence,

any RL agent interacting with this Gym has the objective function of centrally ap-

proximating a congestion control scheme that outperforms traditional competitors.

4.2.1 Centralized Control

We opted for centralized management of the datacenter, which requires a global

view of the network state. A central autonomous arbiter can manage nodes based

on its current optimal network model. It periodically queries switches or hosts to

update its global view and executes actions based on this information. It learns by

observing the network state feedback and continuously updates its action policy.

The central, managed approach has several advantages. Firstly, the controller acts

as a propagator of global optimal information, which it can disseminate across the

network in the form of actions and sending rate policies. Secondly, the agent acts

as an interface between the RL algorithm and the data center. Concrete datacen-

ter information is abstracted away from the algorithm, providing flexibility in data

acquisition and modeling. Thirdly, the major concern of signaling latency delay of

central scheduling systems is mitigated by operating asynchronously and predic-

tively. This is especially true for reinforcement learning algorithms, which select

output values based on their anticipated utility trajectory, a scheme that follows the

proactive congestion control school of thought [45].
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4.2.2 Defining the Environment State

A fundamental challenge is to formalize what the algorithm ”observes”, i.e., how

its environment represented. The available options of data acquisition in a DC are

copious, ranging from simple switch statistics, to application flows, job deploy-

ment monitoring, or even explicit application notifications. The agent can predict

localized surges of traffic from an incoming job request or flow pattern and execute

anticipatory actions to soften the impact. Ideally, the central controller should have

knowledge about all activities in the data center to infer traffic correlations. This

may be infeasible due to constraints in security as well as hardware monitoring.

We focus on the transport layer. The agent remains independent of higher

layer applications and operates only based on its view of the global datacenter.

Iroko deploys monitors that collect statistics from switches in the network and

store them as an d×n traffic matrix. The matrix models the datacenter as a list of

n ports with d network features. Theoretically, it is possible to query for switch

buffer occupancy, packet drops, port utilization, active flows, RTT. End-hosts can

provide metrics in goodput, latency, jitter, and individual loss. In this scenario, the

agent uses only switch buffer occupancy per interface1 and the measured delta per

iteration. Queue length is a discrete value and can be inferred as quickly as RTT,

making it an equivalent congestion signal metric. We use the Linux Netlink [85]

API to update the state matrix on the scale of microseconds, which is sufficient to

sample the majority of queues and DC flows [18, 83, 112].

4.2.3 The Agent Actions

As discussed in Section 3 common options to mitigate congestion include admis-

sion control [20, 76], load-balancing of network traffic [2, 10], queue manage-

ment [7, 34], and explicit hardware modification [3, 5]. As TCP is inherently a

self-regulating, rate-limiting protocol, we focus on admission control as a tool to

moderate excessive traffic in the simulator.

Admission control can be expressed in varying granularity, from the flow to the

switch-level. Ideally, the agent would model every single flow in the network to

guarantee an optimum. This, however, is infeasible, as accounting for short bursty

1We assume that switches in a real datacenter are capable of reliably providing these statistics.
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flows and isolated transmissions (a substantial port of flows in datacenter [49, 83])

would increase the management complexity of the controller dramatically. Instead,

this system rate-limits on a per-interface basis, and provides each host with a min-

imum guarantee of safe transmit. Instead of operating on the full bandwidth pro-

vided by the interface, a host is just able to send on a subset. The controller guar-

antees that the host will not experience latency increases or loss on this subset.

The host itself still retains the capability to optimize flows locally, and spreads

bandwidth allocation per flow based on demand or priority.

In an ideal instantiation of a DC under this system, packet-loss will only rarely,

if ever, occur, with minimal impact on network utilization.

Implementation

The control scheme specifies the percentage of maximum allowed bandwidth each

host can send. We represent this action set as a vector ~a ∈ Rn of dimensions equal

to the number of host interfaces. The Gym converts the agent output to the ap-

propriate action range. We have found hyperbolic tangent normalization to be the

most effective normalization technique:

anorm← (tanh(ai)+1.0)/2.0∗ (amax−amin)+amin ∀ i ∈ hosts (4.1)

The converted actions represent a percentage allocation and are multiplied by the

interface bitrate bwmax:

bwi← anorm ∗bwmax ∀ i ∈ hosts (4.2)

The policy enforcer receives this input and sends control packets to each host in the

network. Each host runs a token bucket traffic shaper accessible via netlink which

controls the interface bitrate.

4.2.4 Congestion Feedback

The Iroko emulator allows the definition of arbitrary reward functions based on

the provided input state. Choosing an appropriate reward function is crucial for

the agent to learn an optimal policy as mismatched reward can lead to unexpected
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behavior [57]. A naive model would simply involve giving a positive reward when

a reduction in queue length is measured, but this can lead to a sub-optimal policy;

no queues can occur if no data is sent. A related concern is the credit assignment

problem: It is unclear if actions and not random chance (e.g., a host being shut off,

changes in sending patterns, etc.) caused the buffer reduction.

We follow a common trade-off model, inspired by recent work on TCP CC

optimization [93]:

R← ā/amax︸ ︷︷ ︸
action reward

− 2︸︷︷︸
weight

∗ ā/amax ∗ (max
i

qi/qmax)︸ ︷︷ ︸
queue penalty

(4.3)

This equation prevents switch queues while trying to find the optimal band-

width allocation for each host. In the equation, action reward is the average band-

width allocation for each host on a percentage range from 0 to 1. It is the only

positive feedback, incentivizing to raise its action output to maximize through-

put. We selected a reward parameter that is independent of the network state to

guarantee that the agent’s objective function does not depend on current network

utilization.

Queue penalty is a weighted action-dependent penalty calculated based on the

largest queue in the network. The maximum observed queue utilization on a range

from 0 to 1 is subtracted from the action reward. The higher the average action

output the higher the penalty. We use a fixed weight factor of 2, which ensures that

the penalty dominates the reward. This model encourages a lower action output

when queues in the network are high. Once queuing has decreased to near zero,

high action output becomes rewarding again. Ideally, agents eventually converge

to a rate which maximizes throughput without incurring high latency.
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Chapter 5

Preliminary Experiments

The emulator has to be reliable, fair, and must generate results that are at least

approximate to real-world behavior. We run several tests to assess the current

benchmarking properties of the platform. More specifically, we had the follow-

ing questions in mind while designing the experiments:

1. Does the emulator satisfy the scalability requirement?

2. Does the Gym accommodate state-of-the-art RL algorithms?

3. How well does a purely data-driven solution perform?

4. How do different bandwidths affect Iroko’s performance?

5.1 Scalability Tests
Since Mininet operates in real-time and uses general purpose Linux tools, it does

have scalability limitations. We design a simple load-generation scenario to iden-

tify constraints. We start out with a dumbbell topology that has four hosts con-

nected using two switches and a single 10 Megabit (Mb) link1 (Figure 3.2). Hosts

on one side are sending constant 10 Megabit per second (Mbps) traffic to the hosts

on the opposite side, causing congestion on the central link. With each iteration

we increase the stress on the emulator server by doubling the number of Mininet

hosts. We run two variants of this experiment. In the first version, all interfaces are

1We use 10 Mb as the default size because it is low enough to alleviate CPU burden while still
allowing comparable networking benchmarks.
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Figure 5.1: Emulator Scalability Test.

limited to 10 Mbps, in the second we remove the limiting constraint but continue to

push 10 Mbps from the hosts. We run the experiments on two different machines:

A conventional Linux server with 8 cores (2x Intel Xeon E5-2407) and 32Giga-

byte (GB) of RAM (M1) and a computationally powerful 60-core (4x Intel Xeon

E7-4870) machine with 512GB of RAM (M2). Both machines run Ubuntu 18.04

with a Linux 4.15.0-34 kernel. We modify the default security configurations (see

Appendix 2 ) to bypass hard limits on the number of file descriptors and process

forks.

Figure 5.1 show the results of the scalability benchmark. Aggregate throughput

increases exponentially up until 2048 hosts, at which point both machines hit their

limit. M1 ran out of OS resources and terminated prematurely. M2 was able to

complete the experiment, but the throughput diminished. The results indicate that

even on machine M1, the emulator can scale to around a 1024 hosts, meeting the

initial scalability target. A limitation of the experiments is that we scaled up only
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Figure 5.2: Algorithm performance in the 10Mbps TCP dumbbell scenario.

the number of hosts and not switches. The sending rate is also limited to 10 Mbps,

an extremely low output rate for modern networks. We intend to investigate the

scalability potential of more complex topologies in further experiments.

5.2 Gym Tests
The second set of experiments evaluates the properties of Gyms developed on top

of the platform. We run the bufferbloat Gym described in Section 4.2 and bench-

mark several TCP and RL algorithms with it.

Ray We use the Ray project [68] to deploy RL algorithms. Ray is a distributed,

high-performance computing framework developed by the Berkeley RISELab. Ray

is specifically intended for production-ready RL by facilitating the end-to-end de-
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Figure 5.3: Last 10% RTT average in the 10Mbps TCP dumbbell scenario.

sign of RL applications. Using Ray, RL algorithms can first be trained and tuned in

large-scale, distributed OpenAI Gym simulations and then, once they are stable and

accurate enough, deployed in serving mode onto many machines. This property is

attractive for datacenters where a central RL policy may have to be scalable and op-

erate in a fault-tolerant distributed fashion. Another attractive feature of Ray is its

extensive and mature RL library. By adopting Ray we can examine state-of-the-art

RL algorithms with little to no overhead in the Gym environment.

5.2.1 Setup

We compare the performance of the three previously established deep RL algo-

rithms: REINFORCE, PPO, and DDPG. We run the asynchronous, high-throughput

versions of PPO (APPO) and DDPG to generate actions as quickly as possible. As
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competitors, we also run scenarios which use DCTCP and TCP NV only and mea-

sure the amount of reward these schemes achieve. We use the standardized Ray

implementations of the three deep RL algorithms and flatten the collected state

into a fully connected neural network architecture (similarly to [18] and [61]).

Although choosing appropriate hyper-parameters can drastically affect algo-

rithm performance [37], we leave tuning to future work. For the TCP algorithms

we use the kernel modules provided by the Linux kernel version 4.15.0-342. We

configure AQM ECN marking to be very aggressive to make DCTCP perform in

an optimal fashion. The full configuration details of all algorithms and hardware

specifications of the setup are available in the appendix.

5.2.2 Experiments

We reuse the same dumbbell topology described in Section 5.1. A trivial and fair

solution to this scenario is an allocation of 5 Mbps for each host pair. This serves as

a baseline comparison and gives empirical evidence on the behavior of a classical

CC scheme viewed through the lens of a reinforcement policy.

Dumbbell Tests We run each policy three times for 1,000,000 timesteps using

TCP and UDP as the underlying transport protocols. TCP’s flow control already

acts as a decentralized CC agent, which is a potential factor in confounding the

contribution of the policy learned by the RL algorithm. User Datagram Proto-

col (UDP) does not have flow control and is not reliable, which isolates all conges-

tion management to the RL algorithm. We measure the change in average reward,

the bandwidth each host receives, and the queue buildup and packet drops on the

network links. We also record the total RTT experienced by each host and truncate

the average to the last 10% of measured data to get a snapshot of the “trained” sys-

tem. Each timestep takes approximately 100 microseconds to several milliseconds,

subject to the algorithm in use.

High-Throughput Tests We were interested in the effects of using different band-

width on the algorithm performance. We reran the dumbbell scenario pushing 1

2DCTCP was considered buggy before the 4.9 kernel [12].
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Figure 5.4: Algorithm performance in the TCP 1-GbE dumbbell scenario.

Gbps instead of 10 Mbps. Another major difference is the queue size of each inter-

face. Instead of a 400 KB queue size we use the 4 Megabyte (MB) queue size as

specified by Wu et al., 2012 [107]. We ran the test once for 1,000,000 iterations.

Fat-Tree Tests We also investigate APPO’s performance in a more complex sce-

nario. We run the algorithms for 5,000,000 timesteps on a 1-GbE fat-tree topology

with 16 hosts and 20 switches in total. We generate a Hedera-like [2] hotspot pat-

tern, which causes bottlenecks on several links in the network.

Results
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Dumbbell Tests Figures 5.2 and 5.3 plot the results of the TCP settings. We

min-max normalize the measurements and apply running mean smoothing to the

timestep curve. For clarity we also omit REINFORCE from the graphs. It failed to

perform better than PPO, which suggests that the scenario is challenging enough to

warrant more complex RL techniques. The algorithms perform equivalent or even

better in the UDP scenario. We focus on the optimization over default TCP.

Overall, the graphs demonstrate that the agents are able learn with this Gym.

Both DDPG and APPO rapidly minimize the queuing in the network. This is also

reflected in the RTT measurements, which demonstrate that both DDPG and APPO

achieve lower latency than DCTCP. TCP NV severely underperformed. This is not

surprising considering it has been optimized for networks with bandwidth higher

than 1Gbps. We are assuming that, because TCP NV calculates its expected rate

based on the packets in-flight, it overestimates bandwidth in long-running, low-

throughput streams and eventually the congestion window overflows.

Unfortunately, the minimization of queuing comes at a high cost of bandwidth

for the RL policies. Although the algorithms are rewarded for high action outputs,

they remain conservative in order to minimize the penalty of incurring congestion.

This implies that the algorithms quickly learned a rewarding, but suboptimal al-

location. DDPG in particular is disappointing, it converges to a minimal setting,

which gives adequate reward but essentially chokes all hosts in the network. This

indicates that tuning of the reward function or DDPG itself is needed.

High-Throughput Tests The result show that the difference in queue size and link

bandwidth has a major effect on all the algorithms. TCP NV performs performs

much better at the rates it has been originally optimized for and even detects subtle

changes in queue size. APPO also achieves great results and even approaches the

throughput of TCP NV and DCTCP. This time, DDPG initially performs well but

then suddenly collapses in throughput.

Fat-Tree Tests The fat-tree UDP results (Fig. 5.5) show interesting algorithm

behavior. APPO optimizes its policy and outperforms both TCP NV and DCTCP

in throughput while minimizing queues. The experiment stopped before the algo-
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Figure 5.5: Algorithm performance in the UDP fat-tree incast scenario.

rithm was able to fully converge. We are investigating the reason for this behavior,

however, overall, these results indicate that there is significant potential for data-

driven rate-limiting algorithms in contentious, congestion environments.

Discussion

There is indeed a major difference in performance for different types of band-

widths, likely caused by subtle differences in buffer sizes and marking thresholds.

We also believe that at 10 Mbps the token bucket rate-limiting mechanism we use

is ill-suited for the type of control we require. A more fine-grained window adjust-

ment or pacing technique such as Carousel [84] could give us better stability and

more deterministic algorithm performance.

Interestingly, it seems that using the stochastic PPO in conjunction with TCP
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performs the best in both minimizing queue length and maximizing reward. Poli-

cies such as PPO are estimated to work better in stochastic environments [37]. DC

environments and TCP in particular exhibit stochastic characteristics (e.g., wildly

varying throughput or unstable flow behavior), which may explain the good per-

formance at even low step counts. We hypothesize that because of DDPG’s deter-

ministic nature and use of the greedy Q-function, it prefers to pick actions which

guarantee reward. In the case of a stochastic networking environment where queues

are penalized, this mean that setting bandwidth low yields higher reward overall.

For a complete picture of the actual performance, it is likely necessary to mea-

sure the average FCT and the 99% latency spikes which measure the stability of

the control scheme. We leave these measurements as future work.
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Chapter 6

Concluding Remarks

6.1 The Limitations of Data-Driven Networking
Moving towards an autonomously managed DC, raises concerns about the feasi-

bility of such a system. In this section, we discuss some of the challenges.

6.1.1 Telemetry

Effective policy improvement depends on the quality and freshness of the feedback

it receives. This requires efficient telemetry which streams in traffic statistics to

the central monitor from all the participating systems. Recent advancements in

SDN and programmable switches aim to provide flow monitoring statistics without

introducing too much overhead [29].

Even though the technology has grown enough to make data collection easier,

we do not yet have a good estimate on how much information needs to be collected.

In our current model, we only sample few interface statistics. Incorporating more

information can improve the policy to make much better predictions. For example,

job scheduling or concrete end-host statistics such as FCT or RTT.

The list of scalability concerns is numerous and present when using a central

agent. Since we are collecting data at per-interface granularity, the total amount

of data collected could potentially blow up. The central controller could become a

bottleneck in terms of network throughput as well as processing data on time. Since

we are continuously training the model, the amount and frequency of data collec-
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tion is also limited by how fast the controller can process the data. The approach

we took is to look only at snapshots of the state space in the network topology,

which reduces the frequency of data collection at the cost of losing some infor-

mation. Deployment in a large scale will require multiple controllers co-operating

each other. Distributed machine learning is a viable strategy to reduce the cost of

model computation. FastPass [76] faces a similar problem as we do. They propose

multiple approaches like hierarchical controller architecture. Recent developments

on using TPUs[46] for training machine learning models looks promising. Systems

such as AuTO [18] attempt to mitigate this limitation by introducing a fast and slow

decision path. We consider these limitations to be a fundamental trade-off in the

development of a network agent.

6.1.2 Robustness

An ideal data-driven scheme needs to handle all the traffic changes in the network.

A wrong prediction can have huge repercussions and could potentially cost mil-

lions of dollars. One caveat of RL is that the agent is learning by doing. It is

impossible to build an infallible agent that also improves continuously. However,

it is possible to design a more robust system and make mispredictions rare or less

harmful. For example, failure scenarios such as partitions and outages are a per-

sistent aspect of datacenter operation which can substantially impact the agent.

Machine, routers, and link failures in data centers are frequent, but not common

enough for the model to learn how to react to those situations.

One approach would be to use the multi-agent architecture proposed in [94].

Instead of training one single agent that can handle all situations, the responsibility

is divided among multiple agents each trained for handling separate situations, a

form of ensemble learning. Unfortunately, training multiple models is a tedious

undertaking and success depends on many factors. Frameworks such as Ray, with

ample support for tuning, parallel training, and end-to-end production pipelines,

can ease this process.

Before deployment, the agent is likely pre-trained using off-policy learning and

observing network traffic. However, even when training for several months, it is

not guaranteed that the algorithms will have observed and processed every possible
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networking event. Adversial examples in autonomous driving are a good example

how to break a model with only small changes to the input environment [16]. This

again raises the question what type of input state space matrix is reliable enough to

ensure robustness and predictable behavior. The , unlike a routing reinforcement

agent, a congestion control agent has only minimal abilities to impact the network

(if the minimum guarantees are honored). At worst, it may cause nodes to straggle

by limiting their sending rate too heavily.

A second approach to circumvent this problem is to to pre-train models by

using imitation learning [115]. Imitation learning algorithms first observe expert

(e.g., TCP) behavior and infer a baseline policy, which can then be optimized.

6.1.3 Model Definition

One of the major challenges in modeling a machine learning problems is to iden-

tify the right abstraction. Finding the best RL model for traffic management is a

challenging research problem. We explored several techniques, but the potential

number of combinations is nearly infinite. Optimizing for queue length is merely

a potential target for a predictive agent. Defining which features, actions, and ob-

jective function work in the networking space requires extreme scrutiny. Both the

opaqueness of neural networks and the volatility of network communication pro-

hibit full understanding what parameters to tweak and which model to adjust.

Deep learning has shown success, but at a high cost. Until the agent has con-

verged to a successful model, it may take millions of episodes and dozens of hours

of computing. AlphaGo Zero [92] played 4.9 million games over three days on

specialized hardware (TPUs). Rainbow [38], a more efficient framework, requires

approximately 18-million game frames to learn how to play simple games. The

time needed to bootstrap such a framework, and its lack of ability to change in

volatile environments, can potentially be a impeding factor on its practicability.

Efforts to reduce the amount of required iterations and samples exist, but they

may be limited by the sample-inefficient nature of neural networks [60]. We have

not tried other, simpler RL approaches such as linear policy gradients or radial

basis functions [75]. As baseline, we intend to also implement simpler, easier

understandable models and compare their performance to the complex neural net
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architectures. One potential, more advanced, method we are considering is a linear

policy gradient developed by Rajeswaran, Aravind, et al., [80].

As we noted in the beginning, deep RL has significant problems in repro-

ducibility and success rate [62]. We have yet to observe deterministic success

in our experiments. This could be due to many reasons, such as bugs in the imple-

mentation or a confusing state and reward model. It is unclear, which change could

let to a functional model. For example, the replay buffer can significantly affect

the performance of a deep RL model [113].

Another constraint is the domain we are working in. Networks alone are al-

ready complex systems, with rippling effects and slow momentum. Changes do

not apply immediately and positive effects are often only seen many iterations

later. This makes is hard to assign reward properly and may prevent the agent

from understanding the environment.

A fruitful thread of research are NUM and network calculus approaches [110].

Both domains attempt to concretely define and standardize utility and properties of

congestion control, which can be used by machine learning algorithms as precise

objective function.

6.2 Outlook
Deploying a data-driven technique such as RL in the DC remains challenging. The

tolerance for error is low and decisions have to be made on less than a millisecond

scale. Compared to a TCP algorithm on a local host, the agent has to cope with

significant delay in its actions. The chaotic, opaque nature of networks makes

appropriately assigning credit for actions almost impossible.

Rewards, actions, and state can be mix-and-matched arbitrarily. There is no

indication or theoretical insight if a particular combination will be successful. The

fact that traffic has to be evaluated in real-time leads to slow prototyping and agent

learning curve. Optimizing a network of a mere 16 hosts already is an arduous

task. Each node is an independent actor with unpredictable behavior.

Nonetheless, our initial results are encouraging. In the dumbbell tests, the

agents can quickly learn an optimal distribution policy, despite the volatility of

the network traffic. PPO even performs comparable to the highly engineered TCP
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baselines. We intend to continue the work on our benchmarking tool and focus on

improving the emulator performance and stability. We are looking into using meta-

information such as job deployments, bandwidth requests by nodes, or traffic traces

as additional state information. We also plan to extend the range of reward models,

topologies, traffic patterns, and algorithms to truly evaluate the performance of RL

policies. Iroko is an open-source project available at https://github.com/dcgym/

iroko.
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.1 Appendix
Calculating the ECN marking threshold
We calculate the DCTCP marking threshold based on the Bandwidth Delay Product

(BDP). We follow the specifications outlined by Alizadeh, et al., 2017 [4]. Our

measured system RTT is approximately a 100 microseconds, which translates to

0.0001 seconds. The marking threshold is set to 17% of the BDP:

ecndctcp = bwmax ∗0.0001︸ ︷︷ ︸
bandwidth delay product

∗0.17 (1)

Parameter Dumbbell 10Mbit Dumbbell 1Gbit Fat-Tree 1Gbit
Network Configuration

Queue Size 400 KB 4MB 4MB
Hosts 4 4 16
Switches 2 2 20
Switch Interfaces 6 6 80
State Matrix 6×2 6×2 80×2
Action Matrix 1×4 1×4 1×16

RED ECN Thresholds
Limit 400 KB 4 MB 4 MB
Bandwidth 10Mbit 10Gbit 10Gbit
Avg Pkt Size 1500 1500 1500
Min Marking 3000 17000 17000
Max Marking 100000 1000000 1000000
Burst 23 229 229
Marking Prob. 0.1 0.1 0.1

Environment
Operating System Ubuntu 18.04.2 LTS
Kernel 4.15.0-46
Ray Version 0.7.0-dev2
Mininet Version 2.3.0d5
Python Version 2.7.15rc1

Table 1: Experiment-specific configurations.
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Listing 2 Security Configuration for scalability tests.

echo "* soft nofile 1048576" >> /etc/security/limits.conf
echo "* hard nofile 1048576" >> /etc/security/limits.conf
echo "* soft nproc unlimited" >> /etc/security/limits.conf
echo "* hard nproc unlimited" >> /etc/security/limits.conf
echo "* soft stack unlimited" >> /etc/security/limits.conf
echo "* hard stack unlimited" >> /etc/security/limits.conf
echo "kernel.threads-max = 2091845" >> /etc/sysctl.conf
echo "kernel.pty.max = 210000" >> /etc/sysctl.conf
echo "DefaultTasksMax=infinity" >> /etc/systemd/system.conf
echo "UserTasksMax=infinity" >> /etc/systemd/logind.conf
sysctl -p
systemctl daemon-reload
systemctl daemon-reexec

Listing 3 The rate control function instrumented at each host.

void ctrl_set_bw(void *data) {
uint64_t tx_rate, factor;
ctrl_pckt *pkt;

/* Calculate the burst factor based
on the Linux timer HZ (100) */
factor = 10e6 / (100 * 8);
/* Convert payload to control packet structure */
pkt = (ctrl_pckt *) data;
tx_rate = pkt->tx_rate / 8;
/* Set tbf qdisc burst and rate */
rtnl_qdisc_tbf_set_limit(fq_qdisc, tx_rate);
rtnl_qdisc_tbf_set_rate(fq_qdisc, tx_rate, factor, 0);
/* Update the qdisc on the interface */
rtnl_qdisc_add(qdisc_sock, fq_qdisc, NLM_F_REPLACE);

}

66



Hyperparameter Value
DDPG

θ 0.15
σ 0.2
Target network update frequency Every update
τ 10−3

Use Prioritized Replay Buffer True
α 0.6
β 0.4
temporal difference ε 10−6

Optimizer Adam [52]
Actor Learning rate 10−4

Critic Learning rate 10−3

Weight decay coefficient 10−6

Critic Loss function Square loss
PPO

Use GAE [89] True
GAE Lamda 1.0
KL coefficient 0.2
Train batch size 1000 (4000 for fat tree)
Mini batch size 128
Optimizer Adam [52]
Learning rate 10−5

Value function coefficient 1.0
Entropy Coefficient 0.0
Clip parameter 0.3
Target Value for KL 0.01

REINFORCE
Learning rate 10−4

Optimizer Adam [52]

Table 2: Configurations for all algorithms.
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