
Qualitative Repository Analysis with RepoGrams

by

Daniel Rozenberg

B.Sc., The Open University of Israel, 2011

A THESIS SUBMITTED IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR THE DEGREE OF

Master of Science

in

THE FACULTY OF GRADUATE AND POSTDOCTORAL

STUDIES

(Computer Science)

The University of British Columbia

(Vancouver)

August 2015

c© Daniel Rozenberg, 2015

Abstract

The availability of open source software projects has created an enormous op-

portunity for empirical evaluations in software engineering research. However,

this availability requires that researchers judiciously select an appropriate set of

evaluation targets and properly document this rationale. This selection process is

often critical as it can be used to argue for the generalizability of the evaluated tool

or method.

To understand the selection criteria that researchers use in their work we sys-

tematically read 55 research papers appearing in six major software engineer-

ing conferences. Using a grounded theory approach we iteratively developed a

codebook and coded these papers along five different dimensions, all of which re-

late to how the authors select evaluation targets in their work. Our results indicate

that most authors relied on qualitative and subjective features to select their evalu-

ation targets.

Building on these results we developed a tool called RepoGrams, which sup-

ports researchers in comparing and contrasting source code repositories of multi-

ple software projects and helps them in selecting appropriate evaluation targets for

their studies. We describe RepoGrams’s design and implementation, and evaluate

it in two user studies with 74 undergraduate students and 14 software engineering

researchers who used RepoGrams to understand, compare, and contrast various

metrics on source code repositories. For example, a researcher interested in evalu-

ating a tool might want to show that it is useful for both software projects that are

written using a single programming language, as well as ones that are written using

dozens of programming languages. RepoGrams allows the researcher to find a set

of software projects that are diverse with respect to this metric.

ii

We also evaluate the amount of effort required by researchers to extend Re-

poGrams for their own research projects in a case study with 2 researchers.

We find that RepoGrams helps software engineering researchers understand

and compare characteristics of a project’s source repository and that RepoGrams

can be used by non-expert users to investigate project histories. The tool is de-

signed primarily for software engineering researchers who are interested in ana-

lyzing and comparing source code repositories across multiple dimensions.

iii

Preface

The work presented in this thesis was conducted in the Software Practices Lab

under supervision of Prof. Ivan Beschastnikh.

The user studies described in this thesis were approved by the UBC Behavioural

Research Ethics Board under the certificate H14-02474.

iv

Table of Contents

Abstract . ii

Preface . iv

Table of Contents . v

List of Tables . ix

List of Figures . xi

Glossary . xiii

Acknowledgments . xiv

Dedication . xv

1 Introduction . 1
1.1 Research questions . 5

1.2 Contributions . 6

2 Related work . 8
2.1 Selection of evaluation targets 8

2.2 Literature surveys . 9

2.3 Software visualizations . 10

3 Project selection approaches in Software Engineering (SE) literature 12
3.1 Protocol . 12

v

3.2 Codebook . 13

3.3 Results . 17

4 RepoGrams’s design and implementation 21
4.1 Design . 21

4.1.1 Visual abstractions . 23

4.1.2 Mapping values into colors with buckets 24

4.1.3 Supported interactions 27

4.2 Implementation details . 28

4.3 Implemented metrics . 29

5 Evaluation . 34
5.1 User study with undergraduate students 35

5.1.1 Methodology . 35

5.1.2 Results . 36

5.1.3 Summary . 38

5.2 User study with SE researchers 38

5.2.1 Methodology . 39

5.2.2 Results . 40

5.2.3 Semi-structured interview 44

5.2.4 Summary . 47

5.3 Estimation of effort involved in adding new metrics 47

5.3.1 Summary . 48

6 Future work . 49
6.1 Additional features . 49

6.2 Expanded audience . 50

6.3 Further evaluations . 51

7 Conclusion . 52

Bibliography . 53

vi

A Literature survey . 63
A.1 Full protocol . 63

A.1.1 Scope . 63

A.1.2 Overview . 63

A.1.3 Procedure . 64

A.2 Categories . 65

A.2.1 Notes . 67

A.3 Raw results . 67

B Undergraduate students study . 71
B.1 Slides from the in-class demonstration 71

B.2 Protocol and questionnaire . 77

B.2.1 Overview . 77

B.2.2 Questionnaire . 77

B.2.3 Demographics . 78

B.2.4 Warmup questions . 79

B.2.5 Metric comprehension questions 82

B.2.6 Questions about comparisons across projects 84

B.2.7 Exploratory question . 86

B.2.8 Open comments . 87

B.2.9 Filtering results . 87

B.3 Raw results . 87

C Software engineering researchers study 98
C.1 Protocol and questionnaire . 98

C.1.1 Procedure overview . 98

C.1.2 Study protocol . 98

C.1.3 Questionnaire . 99

C.1.4 Filtering results . 106

C.2 Raw results . 106

D Case study . 108
D.1 Results . 108

D.1.1 Overview . 108

vii

D.1.2 Raw results . 109

E License and availability . 110

viii

List of Tables

Table 3.1 SE conferences that we reviewed in our literature survey. . . . 13

Table 3.2 Selection criteria codes and frequencies from our literature survey. 15

Table 3.3 Project visibility codes and frequencies from our literature survey. 18

Table 4.1 Alphabetical list of all metrics included in the current imple-

mentation of RepoGrams. 30

Table 5.1 Main questions from the advanced user study. 40

Table A.1 Results on the initial set of 59 papers used to seed the codebook. 68

Table A.2 Results and analysis of the survey of 55 paper. 70

Table B.1 Raw results from the demographics section in the user study

with undergraduate students. 88

Table B.2 Raw results from the warmup section (questions 1–4) in the user

study with undergraduate students. 89

Table B.3 Raw results from the metrics comprehension section (questions

5–7) in the user study with undergraduate students. 90

Table B.4 Raw results from the metrics comprehension section (questions

8–10) in the user study with undergraduate students. 91

Table B.5 Raw results from the project comparison section (questions 11–

13) in the user study with undergraduate students. 93

Table B.6 Raw results from the exploratory question in the user study with

undergraduate students. 95

ix

Table C.1 Raw results from the user study with SE researchers. 107

Table D.1 Raw results from the case study to estimate the effort involved

in the implementation of new metrics. 109

x

List of Figures

Figure 1.1 The repository footprint visual abstraction 3

Figure 1.2 Repository footprints for a section of repository histories of

sqlitebrowser and postr projects 4

Figure 3.1 Frequency of the number of evaluation targets by number of

papers . 19

Figure 4.1 RepoGrams interface: (1) input field to add new projects, (2)

button to select the metric(s), (3) a repository footprint corre-

sponding to a specific project/metric combination. The color

of a commit block represents the value of the metric on that

commit, (4) the legend for commit values in the selected met-

ric(s), (5) zoom control, (6) button to switch block length rep-

resentation and normalization mode, (7) buttons to remove or

change the order of repository footprints, (8) way of switching

between grouping by metric and grouping by project (see Fig-

ure 4.4), (9) Tooltip displaying the exact metric value and the

commit message (truncated), (10) metric name and description 22

Figure 4.2 All six combinations of block length and normalization modes 24

Figure 4.3 Examples of legends generated from buckets for the Languages

in the Commit, Files Modified, and Number of Branches metrics. 25

xi

Figure 4.4 RepoGrams supports two ways of grouping repository foot-

prints: (a) the metric-grouped view facilitates comparison of

different projects along the same metric, and (b) the project-

grouped view facilitates comparison of the same project along

different metrics. 27

Figure 5.1 RepoGrams showing the repository footprints as it was during

the user study with undergraduate students, question 5. 37

Figure 5.2 RepoGrams showing the repository footprints as it was during

the user study with SE researchers, question 4. 41

Figure 5.3 RepoGrams showing the repository footprints as it was during

the user study with SE researchers, question 5. 41

Figure 5.4 RepoGrams showing the repository footprints as it was during

the user study with SE researchers, question 6. 42

Figure 5.5 RepoGrams showing the repository footprints as it was during

the user study with SE researchers, question 7. 43

Figure 5.6 RepoGrams showing the repository footprints as it was during

the user study with SE researchers, question 8. 43

Figure 5.7 RepoGrams showing the repository footprints as it was during

the user study with SE researchers, question 9. 44

xii

Glossary

SE Software Engineering

VCS Version Control System

CVS Concurrent Versions System

LoC Lines of Code

TA Teaching Assistant

ACM Association for Computing Machinery

ICSE International Conference on Software Engineering

MSR Working Conference on Mining Software Repositories

FSE International Symposium on the Foundations of Software Engineering

ASE International Conference on Automated Software Engineering

ESEM International Symposium on Empirical Software Engineering and Mea-

surement

xiii

Acknowledgments

First and foremost I would like to thank my supervisor, Dr. Ivan Beschastnikh, for

constantly pushing me forward. I am grateful to Dr. Gail C. Murphy and Dr. Marc

Palyart who have both played a part as important as Ivan’s or mine in this work.

I would also like to thank our colleagues from Saarland University: Fabian

Kosmale, Valerie Poser, Heiko Becker, Maike Maas, Sebastian Becking, and Marc

Jose for developing the initial versions of RepoGrams.

In addition, I convey my sincerest thanks to the 112 people who participated in

and piloted our two user studies.

Finally, no acknowledgment section would be complete without thanking my

labmates in both the SPL (Software Practices Labs) and the NSS (Networks, Sys-

tems, and Security) lab where I spent most of my time due to the presence of

windows which the SPL lacked.

This work was supported by NSERC and by the UBC Computer Science de-

partment.

xiv

Dedication

SoSwI’vaD vavwI’vaD je. . .

. . . tuqmaj quvmoHjaj QeD ghItlhvam.

To my parents. . .

. . . who support and encourage me in more ways than one.

xv

Chapter 1

Introduction

Software Engineering (SE) researchers are increasingly using open source project

information stored in centralized hosting sites, such as GitHub and Bitbucket, to

help evaluate their ideas. Researchers who developed a tool or method as part of

their research can evaluate them on artifacts from software projects in these cen-

tralized repositories, e.g., source code, execution logs, social meta-data. GitHub

alone hosts tens of millions of projects, has about 9 million registered users and is

one of the top 100 most popular websites in the world [9, 42]. Although there have

been recent studies that take advantage of this enormous availability by evaluat-

ing artifacts from hundreds or thousands of projects from such repositories in their

evaluations [17, 52], most studies rely on just a handful of evaluation targets that

were picked manually by the researchers. We conducted a literature survey of 114

papers from major SE conferences, 65 papers of which evaluated their research

with 8 or fewer evaluation targets, in part because of the detailed analysis needed

for the questions being asked. For these studies the availability of projects has a

flip side: although it became easier to access artifacts of software projects for use

in evaluations, researchers now need a strategy for selecting the project or projects

whose artifacts they will use in the evaluation of their tool or method.

To understand the existing project selection strategies we reviewed in detail

55 recently published SE papers and found that most of them relied on qualitative

features of the evaluation targets that were selected. For example, consider two

studies published at the Foundations of Software Engineering (FSE) 2012 confer-

1

ence in which the authors selected projects for their evaluation in ad hoc ways.

The first study focused on detecting insecure component usage [37]; the authors

describe their selection strategy as follows: “we have analyzed [six] applications

using widely-used components (such as the IE browser components and the Flash

Player)”. The paper does not clarify elsewhere why the authors selected these six

specific applications. By failing to report the reasons that these applications were

selected over any others, we the readers can only make educated guesses against

which metrics of software projects this tool’s usefulness generalizes. e.g., whether

the tool is useful when applied to software projects with a diverse number of pro-

gramming languages, set of build tools, varying team sizes.

In another study from FSE 2012, the authors developed new approaches to

summarize bug reports [40]. For their selection strategy, the authors relied on prior

work and access to an internal IBM product: “We conducted our experiments on

two subjects. The first subject . . . was obtained from [34]. . . . The second subject

was obtained from IBM DB2 team.” Here, the rationale for selecting the subject

DB2 is unclear. Moreover, it is not clear if the subject DB2 has added value over

the subjects from prior work (e.g., whether or not it is substantially different in

terms of bug reporting practices).

In our literature survey we found that SE researchers rarely state explicitly

whether they employed a strategy to select evaluation targets, with notable excep-

tion in papers that evaluate the same targets as related works. It is therefore likely

that researchers find evaluation targets in an haphazard manner and cannot report

on their selection process. Based on these findings we believe that SE researchers

could benefit from a tool designed to select appropriate software projects for their

evaluations. Prior work has proposed new metric-based approaches to selecting

diverse projects for research evaluation [45]. We add a different dimension to this

perspective by proposing a tool to help support the existing qualitative selection

practices in the SE community.

We designed, implemented, and evaluated a new tool, called RepoGrams. Re-

poGrams supports researchers in comparing and contrasting source code reposito-

ries of multiple software projects and helps them in selecting appropriate evaluation

targets for their studies. Our evaluations, comprising of a literature survey of SE

2

papers, two user studies, and one case study, demonstrate that RepoGrams is useful

to SE researchers who are interested in assessing and comparing the development

activity of multiple software projects.

Figure 1.1: The repository footprint visual abstraction

A B C

Length : commit size

Block : commit

Time

Project :

Color : commit metric value

A key feature of RepoGrams is its ability to compactly present information

about the history of the source code of multiple software projects in a way that is

(1) relevant to a researcher’s task, and (2) simplifies comparison. RepoGrams ac-

complishes this by computing user-selected (or user-implemented) metrics on soft-

ware repositories. These metrics use artifacts in the Git repository (e.g., number of

Lines of Code (LoC) changed in a commit, the commit author, the branch in which

the commit occurred) to compute either scalar or discrete values. RepoGrams then

visualizes the metric values using the repository footprint visual abstraction (Fig-

ure 1.1). A repository footprint (footprint for short) represents all the individual

commits from a software project’s source code repository as a sequence of blocks,

one block per commit.

The blocks are laid out left-to-right in temporal order. In Figure 1.1 the com-

mit represented by block A was committed to the repository before the commit

of block B, and both were committed before commit of block C. Other than this

strict ordering of the commits, the footprint does not reveal any more information

regarding time. i.e., we cannot know how much time passed between the commits

represented by blocks A and B based on their position.

3

A block’s color and length represent the corresponding commit’s value in the

selected metric, and a user-selected mode respectively. One example of a block

length mode is a linear correspondence between the commit’s size in terms of LoC

changed and each block’s length.

Visual information is processed differently in the human mind. The visual

system provides a high-bandwidth channel that processes information in parallel,

compared to verbal information that is processed serially [43]. This allows users

of the tool to comprehend the presented information faster than they would if the

information was represented verbally or numerically.

Figure 1.2: Repository footprints for a section of repository histories of
sqlitebrowser and postr projects

12-13

0-1 2-3 4-5 6-7

8-9 10-11 14-16

sqlitebrowser:
postr:

metric: number of concurrent branches

legend:

For example, Figure 1.2 shows the repository footprints of two projects: a

sqlitebrowser [7] footprint (top) and a postr [5] footprint (bottom). In this

example the metric is Number of Branches, a metric that counts the number of

active concurrent branches at the time a commit was introduced. From this fig-

ure we can make two observations: (1) in contrast to postr, sqlitebrowser

progressively uses more concurrent branches over time. We can see this by ob-

serving the footprints left to right: the footprint for sqlitebrowser becomes

darker and it eventually has as many as 14–16 concurrent branches. In contrast,

the footprint for postr does not change its color and remains in the range of 4–5

concurrent branches. (2) sqlitebrowser’s footprint contains commits that are

significantly larger than those in postr. We can see this by comparing the length

of the commit blocks between the two footprints.

4

A researcher might want, for example, to study why some development teams

change the way they use branches over time. This researcher can use RepoGrams

to identify different patterns of branch usage and select projects with repository

footprints that exhibit irregular patterns to perform an evaluation on. If most of the

projects in this researcher’s scope were to exhibit a steady increase in the number

of branches over time, our researcher might choose those projects whose reposi-

tory footprints exhibit different patterns. e.g., remain steady over time, alternate

between a low and a high number of branches, remain at a constant number until

the project’s half-point and then increases steadily.

While designing RepoGrams we were inspired by the promises of mining Git

repositories as discussed by Bird et al. [13], such as Promise 2: “Git facilitates

recovery of richer project history through commit, branch and merge information

in the DAGs of multiple repositories.” We use the abundance of data and meta-

data recorded by Git to provide a rich framework for the various metrics that Re-

poGrams can visualize. We also took the perils they described into account when

implementing specific metrics, some of which we detail in Section 4.3.

RepoGrams’s goal is to allow SE researchers to characterize and select a di-

verse set of evaluation targets, especially when their approach or perspective in-

volves the analysis of project evolution. RepoGrams can help researchers strengthen

claims to generality of their evaluated tool or method, and show that their tool does

indeed support this diverse set of projects. RepoGrams also allows the research

community to easily infer that the claims of past papers do indeed support a di-

verse set of projects by sending the repository URL of the software projects that

were used to evaluated a paper to RepoGrams and inspecting the resulting reposi-

tory footprints using relevant metrics.

1.1 Research questions
We developed RepoGrams to help SE researchers answer complex questions about

repository histories to help them select evaluation targets. To help understand if

RepoGrams serves this purpose, we posed the following research questions:

• RQ1: Can SE researchers use RepoGrams to understand and compare char-

acteristics of a project’s source repository?

5

• RQ2: Will SE researchers consider using RepoGrams to select evaluation

targets for experiments and case studies?

Before approaching the first two research questions we wanted to know if Re-

poGrams could be used by non-SE experts to investigate project histories, leading

us to pose this third research question:

• RQ3: How usable is the RepoGrams visualization and tool?

During a user study we performed with SE researcher, many of them mentioned

the need to define custom metrics in a visualization tool such as RepoGrams. We

thus posed the following fourth and final research question:

• RQ4: How much effort is required to add metrics to RepoGrams?

We investigate these questions in Chapter 5.

1.2 Contributions
We make the following contributions:

• We report on a qualitative study of 55 papers from six major SE conferences

in 2012–2014 to understand how SE researchers select project-based evalu-

ation targets for their papers. Our results indicate that (1) most papers select

projects based on qualitative metrics that are subjective, (2) most papers use

8 or fewer evaluation targets, and (3) there is a need in the SE research com-

munity for tool support in understanding project characteristics over time.

• Based on our qualitative study we designed and implemented RepoGrams, a

web-based tool to analyze and juxtapose the evolution of one or more soft-

ware projects. RepoGrams supports SE researchers in exploring the space

of possible evaluation targets and is built on an extensible, metrics-based,

visualization model that can be adapted to a variety of analyses. RepoGrams

is free software, making it easily available for others to deploy and use.

6

• We evaluated RepoGrams with two user studies. We conducted a user study

with 74 fourth year undergraduate students. We found that RepoGrams can

be used by non-SE experts to investigate project histories. In another user

study with 14 active SE researchers from the Mining Software Reposito-

ries (MSR) community we determined that they can use RepoGrams to un-

derstand and compare characteristics of a project’s source repository.

• Finally, we evaluated the effort involved in adding six new metrics to Re-

poGrams in a case study with two software developers. We found that our

study participants learned how to add their first new metric, and later add

two more metrics, all within less than an hour for each metric.

The rest of this thesis is organized as follows. Chapter 2 lists related work.

Chapter 3 describes the literature survey that we conducted. Chapter 4 discusses

the design and implementation of RepoGrams. Chapter 5 describes the evaluation

of RepoGrams with two user studies and a case study. Chapter 6 discusses ideas for

future work, and finally Chapter 7 concludes the thesis. There are five appendices.

7

Chapter 2

Related work

In this section we present past work related to the one presented in the rest of

this thesis. We split these works into categories: Section 2.1 lists works related to

the methods that SE researchers employ when selecting evaluation targets for their

empirical studies, Section 2.2 presents the literature survey which we discuss in

Chapter 3, and finally Section 2.3 lists some of the relevant related work in the vast

field of software visualizations.

2.1 Selection of evaluation targets
The problem of helping SE researchers perform better empirical evaluations has

been previously considered from three different angles. First, there are ongoing

efforts to curate high-quality evaluation targets in the form of bug reports [8, 51],

faults [36], source code [60], etc. Such database artifacts promote scientific re-

peatability and comparison between proposed techniques. Second, researchers

have developed tools like GHTorrent [30], Lean GHTorrent [31], Boa [24], Met-

ricMiner [56], and the Orion search engine [15] to simplify access to, filtering, and

analysis of projects hosted in large repositories such as GitHub. These tools make

it easier to carry out evaluations across a large number of projects. Finally, recent

work by Nagappan et al. has proposed improvements for sampling projects [45].

Their notion of sample coverage is a metrics-based approach for selecting and re-

8

porting the diversity of a sample set of SE projects. Unlike these three strands

of prior work, we designed RepoGrams to support researchers in better decision

making when it comes to selecting evaluation targets.

RepoGrams is designed to assist with research that evaluates software targets.

However, SE researchers perform studies spanning the entire life-cycle of the SE

process, using other types of data sources. For example, de Mello et al. [21] pro-

pose a framework for a more rigorous selection strategy when choosing human

subjects for user studies, such as interviews or developer surveys.

2.2 Literature surveys
The work closest in methodology to our literature survey in Chapter 3 (albeit with

different goals) is the literature survey by Hemmati et al. [33] which considers 117

research papers from MSR 2004–2012. They perform a grounded theory analysis

to identify best practices prevalent in the MSR community across four high-level

themes, including data acquisition and replication. Borges et al. [16] conducted a

study of 891 papers from SE venues to discover which mechanisms are applied by

researchers to support their empirical studies by reviewing the text and citations of

each paper.

Collberg et al. [50] explored the repeatability of the research described in 601

papers from Association for Computing Machinery (ACM) conferences and jour-

nals, focusing on research that was backed by code. Ghezzi et al. [27] developed

SOFAS, a platform devised to provide software analyses and to combine them into

analysis workflows, aimed primarily at the MSR community in order to create

replicable empirical experiments. To motivate their work they surveyed 88 papers

that described empirical studies from MSR 2004–2011 conference. Siegmund et

al. [55] performed a literature survey of 405 papers from SE conferences to get

an overview of the current state of the art regarding discussions about validity and

threats to validity in papers which include empirical research. Our literature review

differs in its focus on how and why SE researchers selected the evaluation targets

in their studies.

Jedlitschka et al. [35] review past guidelines for reporting study results in SE

papers and propose the adoption of a unified standard. Among other matters, they

9

discuss the need to report on the sampling strategy that was used to select the

experiment’s subjects. Sampling strategies are the main feature which we extracted

in our literature survey.

2.3 Software visualizations
RepoGrams builds on a broad set of prior work on visualization of software evo-

lution [23] and software metrics [41]. The focus of prior visualization work is on

novel visualizations to support developers, managers, and other stakeholders in the

software development process. The target population in our work on RepoGrams

is the SE researcher community. We now overview the most relevant work from

this space.

Novel visualizations span a broad range: Revision Towers [59] presents a vi-

sual tower that captures file histories and helps to correlate activity between files.

GEVOL [18] is a graph-based tool for capturing the detailed structure of a pro-

gram, correlating it against project activity and showing how it evolves over time.

Chronos [54] assists developers in tracking the changes to specific code snippets

across the evolution of a program. RelVis [48] visualizes multivariate release his-

tory data using a view based on Kiviat diagrams. The evolution matrix [38] sup-

ports multiple metrics and shows the evolution of system components over time.

Chronia [28] is a tool to visualize the evolution of code ownership in a reposi-

tory. Spectographs [66] shows how components of a project evolve over time and

like RepoGrams extensively uses color. Other approaches to visualizing software

evolution are further reviewed in [20]. Other such tools are surveyed by Storey

et al. [57] in their work to define a framework for visualization tools that support

awareness of human activities in software development. Some key features that dif-

ferentiate RepoGrams from this rich prior work are its focus on commit granularity,

avoidance of assumptions about the repository contents, support for comparison of

multiple projects across multiple metrics, and a highly compact representation.

A more recent effort, The Small Project Observatory [39], visualizes ecosys-

tems of projects. Complicity [46] is another web-tool that focuses on visualizing

various metrics on software ecosystems, allowing users to drill down to a single

project repository or observe the entire ecosystem. The tool’s main view visualizes

10

ecosystems on a scatter plot, and the users can set various metrics on five different

dimensions: x/y coordinates, width/height or box, and color of box. RepoGrams

differs from these two works in its emphasis on a single unifying view for all met-

rics and a focus on supporting SE researchers.

Another set of related work proposes tools to visualize certain software metrics.

Some of these metrics are similar to the ones we have implemented in RepoGrams

(Table 4.1). In contrast with this prior work our goal with RepoGrams is to support

SE researchers. Additionally, RepoGrams is designed to support multiple metrics

and to unify them within a single repository footprint visualization abstraction.

ConcernLines [61] is a tool to visualize the temporal pattern of co-occurring

software concerns. Similarly to RepoGrams it plots the magnitude of concerns on

a timeline and uses color to distinguish high and low concern periods. RepoGrams

can be extended with a metric that counts concerns expressed in commit messages

or in code comments. Fractal Figures [19], arguably the tool most visually similar

to RepoGrams, visualizes commit authors from software repositories in Concurrent

Versions System (CVS), using either one of two abstractions. RepoGrams’s repos-

itory footprint abstraction is similar to Fractal Figures’ abstraction called TimeLine

View, which assigns a unique color to each commit author and lays all commits as

colored squares on horizontal lines. Similarly to RepoGrams, each horizontal line

represents a single software repository, and progression from left to right repre-

sents the passage of time. RepoGrams includes support for multiple metrics based

on the artifacts exposed by the source repository, and we included a metric that

assigns a unique color per author.

Visualization techniques in other domains bear relevance to RepoGrams. Chro-

mograms [65] and history flow [63] are technique to visualize editor activity in

Wikipedia. Chromograms uses color blocks arranged in a sequence but differs

in its focus on a single metric to map text into colors. History flow resembles

Seesoft [25] with the additional dimension of time. Begole et al. use actograms

to visualize human computer activity [11]. In actograms a sequence of colored

blocks denote activity over time. However, actograms capture activity over real-

time while RepoGrams’s focus is on capturing the sequence, and actograms is not

designed for studying software activity.

11

Chapter 3

Project selection approaches in
SE literature

To understand how SE researchers select software projects to act as the evaluation

targets for their studies, we conducted a survey of recent papers published in SE

venues. We used a grounded theory approach, which is an inductive methodology

to construct theories through the analysis of data [58]. This chapter is organized

as follows: in Section 3.1 we describe the protocol that we followed during this

literature survey. In Section 3.2 we describe the final version of the codebook

that we developed, in Section 3.3 we summarize the results. The full protocol,

codebook, and raw results are listed in Appendix A.

3.1 Protocol
We started by reviewing a subset of research papers from large SE conferences that

include research tracks where authors describe tools or methods that operate on

software projects. We chose 30 and 29 random research-track papers from ICSE

2014 and MSR 2014, respectively. In reading these papers, we considered the

selection strategy employed by the authors of each paper for choosing evaluation

targets (if any) based on the text in the paper. We then iteratively derived a code-

book (a set of codes, or categories) to characterize these strategies. Further, we

considered the number of evaluation targets and which artifacts were studied by

these papers.

12

Table 3.1: SE conferences that we reviewed in our literature survey.

Conference Year # papers
(of 55)

Foundations of Software Engineering (FSE) 2012 10
Mining Software Repositories (MSR) 2012 5
Automated Software Engineering (ASE) 2013 5
Empirical Software Engineering and Measurement (ESEM) 2013 5
International Conference on Software Engineering (ICSE) 2013 10
Mining Software Repositories (MSR) 2013 10
Foundations of Software Engineering (FSE) 2014 10

Next, using this initial codebook, three more researchers from University of

British Columbia (UBC) joined to iterate on the codebook by reading and dis-

cussing a random set of 55 research track papers from six SE conference proceed-

ings in the years 2012–2014 (either five or ten papers from each conference). The

surveyed conferences are summarized in Table 3.1.

We met several times to discuss between five and ten papers from one or two

conferences at each meeting. Our discussions frequently caused us to update the

codebook. By the end of each meeting, we derived a consensus on the set of codes

for the discussed papers. As part of the meeting we also re-coded the previously

discussed papers when changes to the codebook required doing so.

3.2 Codebook
The final version of the codebook includes the following five dimensions. We

coded each paper in each of these five dimensions with the exceptions of papers

that received the IRR code in the selection criteria dimension, as described below.

• Selection criteria. The type of criteria that the authors used to select projects

for evaluation targets in a given paper. The resulting codes from this dimen-

sion are summarized in Table 3.2). For example, the code DEV stands for

“Some quality of the development practice was required from the selected

evaluation targets. This quality does not necessarily have to be a unique

feature, it could be something common such as the existence of certain data

sets, usage of various aid tools such as an issue trackers, etc.” Hence we

13

applied this code to those papers whose authors explained that the develop-

ment process of the evaluation targets in the described research exhibited a

particular process or used a particular set of tools that the authors deemed

necessary for their evaluation.

• Project visibility. Captures the availability of project data, particularly the

availability of the project artifacts, that were used in the paper (e.g., whether

it is available online as open source, or is restricted to researchers through an

industrial partner). The resulting codes from this dimension are summarized

in Table 3.3.

• Analyzes features over time. A binary dimension (yes or no) to determine

whether the authors analyzed project features over time or whether a single

static snapshot of the project data was used.

• Number of evaluation targets. The number of distinct evaluation targets used

in the paper’s evaluation. Note that we recorded the number of targets that

the authors claim to evaluate as some targets can be considered to be a single

project or many projects. For example, Android is an operating system with

many sub-projects: one paper can evaluate Android as a single target, while

another paper can evaluate the many sub-projects in Android.

• Evaluated artifacts keywords. Encodes the artifacts of the evaluation targets

used in the paper’s evaluation (e.g., source code, issues in an issue tracking

system, runtime logs).

In our study we found multiple cases in which more than one selection crite-

ria code was applicable. For example, some papers relied on two distinct sets of

projects (e.g., one set of projects was used as training data for some tool while an-

other set of projects was used for evaluating that same tool). We therefore allowed

multiple selection criteria codes for one paper. Table 3.2 lists the selection criteria

codes, and the number of times each code was applied in the set of 55 papers that

the four co-authors coded.

14

Table 3.2: Selection criteria codes and frequencies from our literature survey.

Code Description
#

papers
(of 55*)

QUA
The authors used informal qualities of the evaluation targets

in their selection process. e.g., qualities such as age, code-

base size, team composition, etc. The qualities are not de-

fined strictly and there is no obvious way to apply a yes/no

question that determines whether a new evaluation target

would fit the selection criteria.

18

Example: “We have analyzed applications using widely-

used components (such as the IE browser components and

the Flash Player) and evaluated how our chosen reference

programs and test subjects differ in terms of policy config-

urations under various workloads. Table 1 gives the de-

tailed information on the analysis of the IE browser com-

ponents” [37]

DEV
Some quality of the development practice was required from

the selected evaluation targets. This quality does not neces-

sarily have to be a unique feature, it could be something

common such as the existence of certain data sets, usage of

various aid tools such as an issue trackers, etc.

17

Example: “For this study we extracted the Jira issues from

the XML report available on the Apache Software Founda-

tion’s project website for each of the projects.” [49]

REF
References an existing and specific source of evaluation tar-

gets, such as another paper that has evaluated a similar tech-

nique/tool on a repository.

17

Example: “We evaluate our technique on the same search

gold set used by Shepherd et al.” [68]

Continued on next page. . .

15

. . . Continued from previous page

Code Description
#

papers
(of 55*)

DIV
The authors mention diversity, perhaps not by name, as one

of the features of the selected evaluation targets.
9

Example: “In this study, we analyze [. . .] three software

systems [. . .] [that] belong to different domains” [67]

ACC
The authors had unique access to the evaluation targets, such

as a software that is internal to the researching company. Not

always explicit but sometimes implied from the text.

2

Example: “The case organization had been developing

a telecommunications software system for over ten years.

They had begun their transformation from a waterfall-like

plan-driven process to an agile process in 2009.” [32]

MET
Random or manual selection based on a set of well-defined

metrics. There is a well defined method to decide whether

a new given project would fit the selection criteria. MET

can be used for selection artifacts, but it must also provide

constraints that also (perhaps implicitly) select the projects.

1

Example: “. . . we created a sample of highly discussed pull

requests . . . We defined ”highly discussed” as pull requests

where the number of comments is one standard deviation

(6.7) higher than the mean (2.6) in the dataset, filtering out

all pull requests with less than 9 comments in the discus-

sion.” [62]

UNK Papers that do not provide an explanation of the selection

process. This code is exclusive, and cannot be applied to the

same set of evaluation targets if other codes were applied to

that set.

2

Continued on next page. . .

16

. . . Continued from previous page

Code Description
#

papers
(of 55*)

IRR Papers that are irrelevant to our focus: evaluation does not

use projects or does not analyze repository information.

This code is exclusive, and cannot be applied to a paper if

other codes were applied to that paper.

15

* Number of papers does not add up to 55 since multiple codes can be applied to each paper.

3.3 Results
The raw results of this literature survey are listed in the Appendix at Section A.3.

We proceed to summarize these results.

Among the 55 papers coded by all four researchers, we used a code other than

IRR on 40 (73%) papers. In the rest of this report we consider these 40 relevant

papers as our global set.

Based on Table 3.2 we find that the three top selection criteria codes — QUA,

DEV, and REF — had almost identical frequency at 18, 17, and 17 papers each

(45%, 43%, and 43% respectively). That is, to select their evaluating targets the SE

papers we considered relied on (1) qualitative aspects of the projects, (2) particular

development practices, and (3) targets from previously published research. We

found that 28 papers (70%) were coded with QUA and/or DEV. These two codes

show that the majority of authors perform an ad-hoc selection of evaluation targets.

When analyzing which artifacts were evaluated we found that 21 (53%) of the 40

papers evaluated the targets’ source code or related artifacts such as patches or code

clones. We propose that a tool that assists authors with the selection process of their

evaluation target should inquire into informal metrics on both source code related

artifacts of the projects themselves, and on artifacts relating to the development

process of the projects.

Based on Table 3.3 we see that the vast majority of authors, at 36 papers (90%),

prefer to run their evaluation on publicly available artifacts, such as the source code

of open source projects. Industrial collaborations are a minority at 5 papers (13%).

17

Table 3.3: Project visibility codes and frequencies from our literature survey.

Code Description # papers
(of 55)*

PUB
Projects were selected from a publicly available repository.
Most likely open source, but not necessarily. Others can
download the source code, binary, and/or data and run the
evaluation themselves.

36

Example: “In this work, we analyze clone genealogies con-
taining Type-1, Type-2, and Type-3 clones, extracted from
three large open source software systems written in JAVA,
i.e., ARGOUML, APACHE-ANT, and JBOSS.” [67]

IND
Industrial/company project. A collaboration with an indus-
trial partner where the authors use their project. e.g., a com-
pany that performs research (e.g., Microsoft Research, Or-
acle Labs) and uses in-house projects. Can be an explicit
mention of industrial partner (“we worked with Microsoft”)
or a mention of a proprietary project.

5

Example: “In our work, we applied four unsupervised ap-
proaches [. . .] to the problem of summarization of bug re-
ports on the dataset used in [34] (SDS) and one internal
industrial project dataset (DB2-Bind)” [40]

CON
Project that the authors have complete control over, e.g., a
new project from scratch solely for the purpose of the study,
student projects.

2

Example: “We conducted three different development
projects with undergraduate students of different duration
and number of participating students.” [22]

UNK When no details on the projects’ visibility was given 1
IRR When the selection criteria is IRR 15

* Number of papers does not add up to 55 since multiple codes can be applied to each paper.

18

There can be several reasons why most authors choose to run their evaluations on

publicly available artifacts, e.g., reproducibility of the evaluation, the community’s

familiarity with the evaluation target, ease of access to the data. Our tool should

therefore focus on assisting authors in filtering potential evaluation targets out of

vast repositories of public software projects, such as GitHub.

We also found that 16 papers (40%) analyzed their evaluation targets over time,

indicating that many researchers are interested in studying changes over time and

not just a snapshot. Our tool should have the capacity to consider temporal infor-

mation about software projects.

Figure 3.1: Frequency of the number of evaluation targets by number of pa-
pers

Finally, considering all 114 total surveyed papers (both in the initial seeding

process of the codebook and the joint coding process), we found that 84 papers

(74%) performed an empirical evaluation on some artifacts of software projects

(i.e., non-IRR), and 63 of these 84 papers (75%) evaluated their work with 8 or

fewer evaluation targets. See Figure 3.11 for the frequency of the number of eval-

1For one paper it was unclear whether the authors evaluated 2 or 3 targets. In this chart it was
counted as 3. One paper was not included in this chart since it neglected to mention the final number
of evaluation targets.

19

uation targets by number of papers. Evaluations of entire large datasets are not

as common as evaluations involving only a handful of targets. Our tool should

support authors in small scale evaluations.

As mentioned in Chapter 2, some tools exist that are designed to assist re-

searchers with the selection of large-scale sets of evaluation targets (i.e., hundreds

or even hundreds of thousands), such as GHTorrent [30]. However, we found that

the vast majority of SE researchers prefer to evaluate their work on small, manu-

ally curated sets. One might wonder why most SE researchers prefer working with

smalls sets of evaluation targets. We found no direct answer to that question during

our literature survey. However, having read these 55 papers we came up with the

following two hypotheses: (1) in most papers we found that the authors require an

in-depth analysis of each target to answer their research questions. These analyses

are often manual processes which would not be possible were they analyzing thou-

sands of evaluation targets. These questions do not gain from quantity but rather

from the quality of the analysis. Working with a larger set will often increase the

amount of busywork that the authors perform. (2) testing for diversity is difficult as

its measure depends on the chosen metrics. A set of 8 evaluation targets might be

considered diverse according to hundreds of different metrics, and another set of

thousands of evaluation targets might be considered to lack diversity according to

those same metrics. Hence, adding more evaluation targets to the set will not nec-

essarily increase the SE community’s confidence that the evaluated tool or method

satisfies validity or claims to generalizability. Both of these hypotheses deserves

further study, such as a survey of SE researchers.

Overall through this literature study we found that the process by which SE

researchers choose their evaluation targets is often haphazard and rarely described

in detail. This process could be supported by a tool designed to help SE researchers

characterize and select software repositories to use as evaluation targets. Such

a tool could also help the broader SE community better understand the authors’

rationale behind a particular choice of evaluation targets.

20

Chapter 4

RepoGrams’s design and
implementation

Based on the results of our literature survey we set out to create RepoGrams, a

tool to understand and compare the evolution of multiple software repositories.

RepoGrams is primarily intended to assist SE researchers in choosing evaluation

targets before they conduct an evaluation of a tool or a method as part of their

research projects. RepoGrams has three key features, each of which is grounded

in our literature survey. First, RepoGrams is designed to support researchers in

project selection. RepoGrams supports comparison of metrics for about a dozen

projects (75% of papers evaluated their work with 8 or fewer evaluation targets).

Second, it is designed to present multiple metrics side-by-side to help characterize

the software development activity in a project overall (70% of papers used infor-

mal qualities to characterize their evaluation targets). Third, RepoGrams captures

activity in project repositories over time (we found that 40% of papers consider

software evolution in their evaluations) In the rest of this chapter we explain Re-

poGrams’s design and implementation.

4.1 Design
We designed RepoGrams as a client-server web application, due to the convenience

of use that such platforms provide to end users. Figure 4.1 shows a screenshot of a

RepoGrams session with three added projects and two selected metrics.

21

Figure 4.1: RepoGrams interface: (1) input field to add new projects, (2) but-
ton to select the metric(s), (3) a repository footprint corresponding to a
specific project/metric combination. The color of a commit block repre-
sents the value of the metric on that commit, (4) the legend for commit
values in the selected metric(s), (5) zoom control, (6) button to switch
block length representation and normalization mode, (7) buttons to re-
move or change the order of repository footprints, (8) way of switching
between grouping by metric and grouping by project (see Figure 4.4),
(9) Tooltip displaying the exact metric value and the commit message
(truncated), (10) metric name and description

RepoGrams is designed to support the following workflow: the user starts

by importing some number of project repositories. She does this by adding the

projects’ Git repository URLs to RepoGrams (1 in Figure 4.1). The server clones1

these Git repositories and computes metric values for all the commits across all of

the repositories. Next, the user selects one or more metrics (2 in Figure 4.1). This

causes the server to transmit the precomputed metric values to the client to display.

The metric values are assigned to colors and the interface presents the computed

project repository footprints to the user (3 in Figure 4.1) along with the legend

for each metric (4 in Figure 4.1).

1In Git nomenclature, “cloning” is the process of copying an entire Git repository with all its
history and meta-data to the local machine.

22

RepoGrams currently requires that researchers manually add repositories that

they already know, and base their selection on those. We discuss one idea to over-

come this limitation in Section 6.1.

4.1.1 Visual abstractions

We designed several visual abstractions to support tasks in RepoGrams, these are:

• Repository footprint. RepoGrams visualizes one or more metrics over the

commits of one or more project repositories as a continuous horizontal line

that we call a repository footprint, or footprint for short. (Figure 4.1 shows

six repository footprints, two for each of the three project repositories). The

footprints are displayed in a stack to facilitate comparison between project-

s/metrics. A footprint is composed of a sequence of commit blocks. Re-

poGrams serializes the commits across all branches of a repository into a

footprint using the commits’ timestamps.

• Commit block. Each individual commit in the Git repositories is repre-

sented as a single block. The user selects a mode that determines what the

width of the block will represent (see next bullet point). The metric value

computed for a commit determines the block’s color (see last bullet point).

• Block width. The length of a each commit block can be either a constant

value, a linear representation of the number of LoC changed in the commit,

or a logarithmic representation of the same. We also support two normal-
ization variants:

– project normalized. All lengths are normalized per project to utilize the

full width available in the browser window. This mode prevents mean-

ingful comparison between projects if the user is interested in contrast-

ing absolute commit sizes. The footprints in Figure 4.1 use this mode

– globally normalized. Block lengths are resized to be relatively compa-

rable across projects.

All six possible combinations are demonstrated in Figure 4.2.

23

• Block color. A commit block’s color is determined by a mapping function

that is defined in the metric’s implementation. This process is described in

detail in Section 4.1.2.

Figure 4.2: All six combinations of block length and normalization modes

Modes Repository footprints

Fixed
Globally

Project

Linear
Globally

Project

Logarithmic
Globally

Project
Each cell contains two repository footprints that represent two artificially

generated projects. The top repository footprint is of a repository with 6 commits
in total, having 1, 2, 3, 4, 5, and 6 LoC changed. The bottom repository footprint
is of a repository with 5 commits in total, having 1, 2, 4, 8, and 16 LoC changed.

4.1.2 Mapping values into colors with buckets

The computed values for each commit in each metric is mapped to a specific color

with a buckets metaphor. For each metric we map several values together into a

bucket as described below, and each bucket is assigned a color. Thus, the process

of assigning a color for a commit block is to calculate the commit’s value in the

metric, match that value to a bucket, and color the commit block based on the

bucket’s matching color. The addition of a new repository to the view can cause

some buckets to be recalculated, which will cause computed values to be reassigned

and commit blocks to be repainted a different color.

A legend of each mapping created by the this process is displayed next to each

selected metric (4 in Figure 4.1). For example, the second metric shown in Fig-

ure 4.1 is author experience. Using this example we can see that the most expe-

rienced author in the sqlitebrowser repository committed between 383–437

24

commits in this repository, as can be seen in the latest commits of that project

(left-most commit blocks). In contrast, no author committed more than 218 com-

mits in the html-pipeline repository, and no author committed more than 382

commits in the postr project.

Figure 4.3: Examples of legends generated from buckets for the Languages
in the Commit, Files Modified, and Number of Branches metrics.

Figure 4.3 contains examples of three more legends, representing buckets that

were generated from three metrics: Languages in the Commit, Files Modified, and

Number of Branches. The buckets change automatically to match the repositories

that were added by the user. RepoGrams currently supports three types of buckets:

• fixed buckets the metric has 8 buckets of predefined ranges. For example,

the commit message length metric uses this bucket type. Buckets of these

type do not change when new repositories are added. In the case of the

commit message length metric the bucket ranges are <[0–1], [2–3], [4–5],

[6–8], [9–13], [14–21], [22–34], [35–∞)>. Thus, two commit having 4 and

50 words in their commit message will be matched to the 3rd and 8th bucket,

respectively, and their commit blocks will be colored accordingly.

An important benefit of fixed buckets is that adding or removing repositories

from the view will not change the color of other repositories’ commit blocks.

On the other hand, outliers will be bundled together in the highest valued

bucket. For example, a commit with a message length of 50 words will be

bundled with a commit with a message length of 10,000 words due to the

aforementioned fixed ranges.

The bucket colors for this type are ordered. They follow a linear progression

such as increasing brightness on a single hue or a transition between two

different hues.

25

• uniform buckets the metric has up to 8 buckets of equal or almost equal size,

based on the largest computed value for that metric across all of the repos-

itories. The buckets cannot always be of equal size due to integer division

rules. For example, the languages in the commit metric uses this bucket type.

If the highest value across all repositories is 7 or 12 then the bucket ranges

are <{0}, {1}, {2}, {3}, {4}, {5}, {6}, {7}> or <[0–1], [2–3], {4}, [5–6],

[7–8], {9}, [10–11], [12–13]>, respectively.

The distribution of ranges within these uniform buckets changes whenever

the maximal value of a commit in the metric changes with the addition or

removal of a repository to the view. Since the visualization is not stable the

same color can represent one value at some point and another value after

adding a new repository to the view. Whether this is an advantage or a disad-

vantage is up to the researcher. A more obvious disadvantage of this bucket

type is that outliers can skew the entire visualization towards one extreme

values. For example, if all commit values are within the range 1–10 except

one commit with a value of 1,000, then using uniform buckets will cause

all commits except the outlier to be placed in the lowest bucket, colored the

same. We discuss potential solutions to this issue in Chapter 6.

The bucket colors for this type are also ordered. Some metrics use a slightly

modified version of this bucket type, such as having a separate bucket just

for zero values and 7 equal/almost equal buckets on the remaining values, or

starting from 1 instead of 0. These modifications are exposed in the legend.

• discrete buckets unlike the other two bucket types which deal with assigning

numeric values from a linear or continuous progression of values to buckets,

the discrete bucket types deal with discrete values. e.g., the commit author

metrics assigns each unique commit author its own unique bucket.

The bucket colors for this type are categorical. Each bucket in this type has

a completely different color to facilitate differentiation between the discrete

values. The number of discriminable colors is relatively small, between six

and twelve [43]. A metric that uses this type should limit the number of

discrete values to twelve. This is not always possible. For example, a project

repository might have hundreds of developers. Without a scheme to bundle

26

these developers together into shared buckets the commit author metric will

have to display hundreds of colors. Solutions to this issue are metric-specific.

Figure 4.4: RepoGrams supports two ways of grouping repository footprints:
(a) the metric-grouped view facilitates comparison of different projects
along the same metric, and (b) the project-grouped view facilitates com-
parison of the same project along different metrics.

Project 1 :
Metric A

Metric B

Project 2 :

Project 1 :
Project 2 :

Metric A :
Project 1

Project 2

Metric B :

Metric A :
Metric B :

(a) Metric-grouped view (b) Project-grouped view

4.1.3 Supported interactions

The RepoGrams interface supports a number of interactions. The user can:

• Scroll the footprints left to right and zoom in and out (5 in Figure 4.1)

to focus on either the entire timeline or a specific period in the projects’

histories. In projects with hundreds or thousands of commits, some com-

mit blocks might become too small to see. By allowing the user to zoom

and scroll we enable them to drill down and explore the finer details of the

visualization.

• Change the block length mapping and normalization mode (6 in Fig-

ure 4.1) as described in Section 4.1.1. The different modes emphasize dif-

ferent attributes, such as the number of commits or the relative size of each

commit.

27

• Remove a project or move a repository footprint up or down (7 in Fig-

ure 4.1). By rearranging the repository footprints a user can visually derive

ad-hoc groupings of the selected project repositories.

• Change the footprint grouping (8 in Figure 4.1) to group footprints by

metric or by project (see Figure 4.4). The two modes can help the user

focus on either comparisons of metrics within each project, or comparisons

of projects within the same metric.

• Hover over or click on an individual commit block in a footprint to see the

commit metric value, commit message, and link to the commit’s page on

GitHub (9 in Figure 4.1). This opens a gateway for the user to explore the

cause of various values, such as when a user is interested in understanding

why a certain commit block has an outlier value in some selected metric.

4.2 Implementation details
RepoGrams is implemented as a client-server web application using a number of

open source frameworks and libraries, most notably CherryPy [2] and Pygit2 [6] on

the server side and AngularJS [1] on the client side. The server side is implemented

mostly in Python, while the client side, as with all contemporary web application,

is implemented in HTML5, CSS3, and JavaScript.

For convenience of deployment, RepoGrams can generate a Docker image that

contains itself in a deployable format. Docker is an open platform for distributed

applications for developers and system administrators [3] that enables rapid and

consistent deployment of complex applications. By easing the deployment process

we empower researchers who are interested in extending RepoGrams’s functional-

ity to focus exclusively on their development efforts.

Each metric is implemented in two files. The first file is the server side imple-

mentation of the metric in Python. This file declares a single function, the name of

which serves as the metric’s machine ID. The function takes one argument, a graph

object that represents a Git repository, where each vertex in the graph represents a

commit in that repository and contains commit artifacts. e.g., the commit log mes-

sages, the commit authors. The graph object has a method to iterate all the commit

28

nodes in temporal order. The function returns an ordered array containing the com-

puted value for each commit in the temporal order of the commits. The second file

is the client side implementation of the metric in JavaScript. This file declares

meta-data about the metric: its name, description, icon, colors, and which mapper

function the metric uses. It also defines a function to convert the raw computer

value to human readable text to display in the tooltip (9 in Figure 4.1).

Some metrics might require a new mapper function. These are defined simi-

larly by adding a single JavaScript file to the mapper directory in the application.

A mapper is an object with two functions: updateMappingInfo and map. The

function updateMappingInfo takes as argument an array with all the raw val-

ues returned from the server. It then calculates any changes to the buckets and

returns true or false to indicate whether the buckets were modified at all. The func-

tion map takes as arguments a raw value as calculated by the server and a list of

colors from the metric and returns the color that is associated with the equivalent

bucket based on the work performed by updateMappingInfo earlier.

For a metric to be included and activated in a deployment of RepoGrams it

must be registered in the Python base package file (init .py) of the metrics

directory. By allowing deployers to modify which metrics are included we can

support specific uses for RepoGrams that only require a subset of the existing met-

rics. Chapter 6 discusses an example of such a case for using RepoGrams as an

educational tool.

4.3 Implemented metrics
As of this writing, RepoGrams has twelve built-in metrics. We list them in alpha-

betical order in Table 4.1 and describe them after the table. The Bucket column lists

the type of mapping function used to assign a color to a metric value, as described

earlier in Section 4.1.2. The Info column lists the type of information exposed in

this metric. The metrics that we have developed so far can be categorized according

to the kind of information they surface:

• Artifacts information. e.g., computed values using the source code

• Development process information. e.g., computed values about commit times

• Social information. e.g., who the commit author was

29

The Dev. column lists who developed this specific metric. This is either the

original development team (Team) that developed RepoGrams’s earlier versions,

or one of two developers (Dev1 or Dev2) who developed metrics in a controlled

settings to estimate the effort involved in adding a new metric to RepoGrams. This

experiment is described in Section 5.3. The LoC column in the table represents

the lines of code involved in the server-side calculation of a metric. Client-side

code is not counted as it mostly consists of meta-data. The Time column lists the

amount of time spent by a developer to add the metric. This was not counted for

the original team since the development of these metrics was not conducted in a

controlled setting.

Table 4.1: Alphabetical list of all metrics included in the current implemen-
tation of RepoGrams.

Name Bucket Info Dev. LoC Time

Author Experience Uniform Social Dev2 8 26 min

Branches Used Discrete Development Team 5 —

Commit Age Fixed Development Dev1 7 48 min

Commit Author Discrete Social Dev1 34 52 min

Commit Localization Fixed Artifacts Team 13 —

Commit Message Length Fixed Development Team 6 —

Files Modified Fixed Artifacts Dev2 6 42 min

Languages in a Commit Uniform Artifacts Team 15 —

Merge Indicator Uniform Development Dev2 5 44 min

Most Edited File Uniform Artifacts Team 11 —

Number of Branches Uniform Development Team 47 —

POM Files Uniform Artifacts Dev1 6 30 min

It should be noted that these metrics are in no way comprehensive and usable

for all researcher and research purposes. RepoGrams’s power comes not from its

current set of metrics, but rather from its extensibility (as described in Section 4.2).

Half of the metrics listed above were created during the experiment described in

Section 5.3.

30

It is possible that these existing metrics will eventually create a bias among

researchers regarding the selection process. However, as there is currently no tool

designed for the same purpose as RepoGrams, we believe that the inclusion of these

metrics is an improvement over the current state of the art in which researchers

do not currently base their selection on evidence. Mitigating this potential bias

remains a problem for future researchers.

We proceed to describe each metric. For each metric we also provide an exam-

ple that exhibits why researchers might care about this metric.

• Author Experience. The number of commits a contributor has previously

made to the repository. For example, a researcher interested in studying

developer seniority across software projects can use this metric to choose

projects that exhibit different patterns of author experience. e.g., similar

between developers vs. skewed for a minority of developers in the team. This

metric was added based on a suggestion by one of the participants in the SE

researchers study. See Section 5.2.3

• Branches Used. Each implicit branch [13] is associated with a unique color.

A commit is colored according to the branch it belongs to. For example,

a researcher interested in studying whether projects exhibit strong branch

ownership by individual developers can correlate this metric with the Com-

mit Author metric.

• Commit Age. Elapsed time between a commit and its parent commit. For

merge commits we consider the elapsed time between a commit and its

youngest parent commit. For example, a researcher interested in exploring

whether a correlation exists between the elapsed time that separates com-

mits, and the likelihood that the latter commit is a bug-introducing commit,

can use this metric to select projects that contain different patterns of commit

ages.

• Commit Author. Each commit author is associated with a unique color. A

commit block is colored according to its author. For example, a researcher

interested in studying the influence of dominant contributors on minor con-

31

tributors in open source projects can begin their exploration by using this

metric to identify projects that exhibit a pattern of one or several dominant

contributors.

• Commit Localization. Fraction of the number of unique project directories

containing files modified by the commit. Metric value of 1 means that all

the modified files in a commit are in a single directory. Metric value of

0 means all the project directories contain a file modified by the commit.

For example, researchers interested in cross-cutting concerns could use this

metric to search for projects to study. A project with many commits that have

a low value of localization can potentially have a high level of cross-cutting

concerns.

• Commit Message Length. The number of words in a commit log message.

For example, a researcher interested in finding whether a correlation exists

between the commit message lengths and developer experience can compare

this metric with the Author Experience metric and select projects that exhibit

different patterns for further study.

• Files Modified. The number of files modified in a particular commit, in-

cludes new and deleted files. For example, a researcher interested in study-

ing project-wide refactoring operations can use this metric to find points

in history where a large number of files were modified in a repository. A

large number of files modified could potentially indicates that this event has

occurred. This metric was added based on a suggestion by one of the partic-

ipants in the SE researchers study.

• Languages in a Commit. The number of unique programming languages

used in a commit based on filenames. For example, a researcher interested

in studying the interaction between languages in different commits can use

this metric to identify projects that have many multilingual commits.

• Merge Indicator. Displays the number of parents involved in a commit. Two

or more parents denote a merge commit. For example, a researcher may be

interested in studying projects with many merge commits. This metric can

32

reveal whether a project is an appropriate candidate for such a study. This

metric was added based on a suggestion by one of the participants in the SE

researchers study.

• Most Edited File. The number of times that the most edited file in a commit

has been previously modified. For example, a researcher interested in study-

ing “god files” can use this metric to identify projects where a small number

of files have been edited multiple times over a short period. The existence of

such files potentially indicates the existence of “god files”.

• Number of Branches. The number of branches that are concurrently active

at a commit point. For example, a researcher interested in studying how

and why development teams change the way they use branches can use this

metric to identify different patterns of branch usage for further exploration.

• POM Files. The number of POM files changed in every commit. For ex-

ample, a researcher interested in exploring the reasons for changes to the

parameters of the build scripts of projects can use this metric to find points

in history where those changes occurred.

The POM Files metric is an example of a specific case that can be generalized.

In this case, to highlight edits to files with a user-determined filename pattern.

Customizable metrics are discussed as future work in Section 6.1

33

Chapter 5

Evaluation

We conducted two user studies and an experiment to answer the research ques-

tions we posed earlier in Section 1.1. This chapter describes these evaluations and

discusses the results.

For convenience we repeat the research questions here. For a more detailed

discussion of these research questions see Section 1.1:

• RQ1: Can SE researchers use RepoGrams to understand and compare char-

acteristics of a project’s source repository?

• RQ2: Will SE researchers consider using RepoGrams to select evaluation

targets for experiments and case studies?

• RQ3: How usable is the RepoGrams visualization and tool?

• RQ4: How much effort is required to add metrics to RepoGrams?

The rest of this chapter is organized as follows: Section 5.1 details a user study

with undergraduate students that answers RQ3, Section 5.2 details a user study

with SE researchers that answers RQ1 and RQ2, and finally Section 5.3 details a

case study that answers RQ4.

34

5.1 User study with undergraduate students
In this first evaluation, a user study with undergraduate students, we aimed to deter-

mine if individuals less experienced with repositories and repository analysis could

comprehend the concept of a repository footprint and effectively use RepoGrams

(RQ3). The study was conducted in a fourth year software engineering class: A

total of 91 students participated and 74 students completed the study. Participation

in the study in class was optional. We incentivized participation by raffling off five

$25 gift cards for the university’s book store among the participants that completed

the study.

5.1.1 Methodology

The study consisted of two parts: a 10 minute lecture demonstrating RepoGrams,

and a 40 minute web-based questionnaire. The questionnaire asked the participants

to perform tasks with RepoGrams and answer questions about their perception of

the information presented by the tool.

The questionnaire had three sections1: (1) a demographics section to evaluate

the participants’ knowledge and experience, (2) four warm-up questions to intro-

duce participants to RepoGrams and (3) ten main questions in three categories:

• Metric comprehension. Six questions to test if participants understood the

meanings of various metrics.

• Comparisons across projects. Three questions to test if the participants

could recognize patterns across repository footprints to compare and con-

trast projects and to find positive or negative correlations between them.

• Exploratory question. One question to test whether participants could trans-

late a high-level question into tasks in RepoGrams.

Before each of the main questions, participants had to change selected metrics

and/or block length modes. A detailed explanation on the metrics used in each

question was provided.

1The full questionnaire is listed in Appendix B.

35

The questions were posed in the context of 5 repositories selected from 10

random projects from GitHub’s trending projects page that were open source and

had up to 1,500 commits. From those 10 projects we systematically attempted

permutations of 5 projects2 until we found a permutation such that all 5 repository

footprints fit the ten main questions from the study. We established ground truth

answers for each question. The final set of project repositories in the study had a

min / median / max commit counts of 581 / 951 / 1,118, respectively.

5.1.2 Results

We received 74 completed questionnaires from the 91 participants. These 74 par-

ticipants answered a median of 8 of the 10 answers correctly. The median time

to complete a metric comprehension question was 1:20 min, comparison across

projects was 1:32 min, and the exploratory question was 2:51 min. In total, partic-

ipants took on median 14:10 min to answer the main questions. The success with

which participants answered questions in relatively short time provides evidence

that RepoGrams is usable by a broad population (RQ3). Interestingly, we found

no significant correlation between a participants’ success rate and their industry or

Version Control System (VCS) experience.

To provide more insight into how these users fared, we highlight the results for

two questions; we do not discuss the results of the other eight questions in detail.

Question 5, is an example of a metric comprehension question that asked:

“Using the Languages in a Commit metric and any block length, which project

is likely to contain source code written in the most diverse number of different

languages?” (94% success rate)

In this task the participants were shown 5 repository footprints, as seen in Fig-

ure 5.1. Our ground truth consisted of two answers that were visually similar: (1)

a footprint that had one commit block in the 16–18 range (chosen by 48 (72%) of

participants), and (2) a footprint that had two commits block in the 14–15 range

(chosen by 15 (22%) of participants). The remaining three footprints had all their

commit blocks in the 5–6 range or lesser. The high success rate for this question in-

2A 6th project was later taken at random. Its repository footprint was to be removed by the
participants at the beginning of the study as part of a task intended to familiarize the participants
with the interface.

36

dicates that the users were able to comprehend the metric presented by RepoGrams

and to find patterns and trends based on the repository footprints of projects.

Figure 5.1: RepoGrams showing the repository footprints as it was during the
user study with undergraduate students, question 5.

Question 12 is an example of a comparisons across projects question: “Us-

ing the languages in a commit metric and the fixed block length, which two project

repositories appear to have the most similar development process with each other?”

(81% success rate)

In this question, we asked the participants to explain their choice of the two

repositories. We then coded the answers based on the attributes the participants

used in their decision. For each question we created at least two codes, one code

indicates that the explanation was focused on the metric values (e.g., “These two

projects stick to at most 2 languages at all times in their commits. Sometimes,

but rarely, they use 3–4 languages as indicated by the commits”), the other code

indicates that the explanation was focused on the visualization (e.g., “The shading

in both projects were very light”). Occasionally an explanation would discuss both

the metric values and the visualization (e.g., “It seems that both languages use a

small number of languages throughout the timeline, since colors used for those

projects are mainly light”), in which case we applied both codes. When another

visual or abstract aspect was discussed in the participant’s explanation we created

codes to match them.

37

We found that the participants who discussed the meaning of the metric values

had a higher success rate (65%) compared to those participants who relied solely

on the visualization (27%). A similar trend is apparent in other question where we

asked the participants to explain their answer.

5.1.3 Summary

This user study on individuals with less SE training indicates that RepoGrams can

be used by a broader population of academics with a computer science background.

However, when individuals rely on the visualization without an understanding of

the metric underlying the visualization, mis-interpretation of the data may occur.

5.2 User study with SE researchers
To investigate the first two research questions (RQ1 and RQ2), we performed

a user study with researchers from the SE community. This study incorporated

two parts: first, participants used RepoGrams to answer questions about individual

projects and comparisons between projects; second, participants were interviewed

about RepoGrams. We recruited participants for the study from a subset of au-

thors from the MSR 2014 conference, as these authors likely performed research

involving empirical studies using software projects as evaluation targets, and many

have experience with repository information. These authors are the kind of SE re-

searchers that might benefit from a tool such as RepoGrams. Some of the authors

forwarded the invitation to their students whom we included in the study.

We used the results of the previous user study and the comments given by its

participants to improve the tool prior to running this user study with SE researchers.

For example, in the first study RepoGrams only supported the display of one metric

at a time. Participant comments prompted us to add support for displaying multiple

metrics. We also realized that some labels and descriptions caused confusion and

ambiguity, we endeavored to clarify their meanings. On the technical side, we

found that due to the server load during the study, performance was a recurring

complaint. We made significant improvements to make all actions in the tool faster.

The study had 14 participants: 5 faculty, 1 post doc, 6 PhD students, and 2

masters students. Participants were affiliated with institutions from North Amer-

38

ica, South America, and Europe. All participants have research experience analyz-

ing the evolution of software projects and/or evaluating tools using artifacts from

software projects.

Similarly to the undergraduate study, we raffled off one $100 gift card to in-

centivize participation. The study was performed in one-on-one sessions with each

participant: 5 participants were co-located with the investigator and 9 sessions were

performed over video chat.

5.2.1 Methodology

Each session in the study began with a short demonstration of RepoGrams by

the investigator, and with gathering demographic information. A participant then

worked through nine questions presented through a web-based questionnaire.3

The first three questions on the questionnaire were aimed at helping a partici-

pant understand the user interface and various metrics (5 minutes limit for all three

questions). Our intent was to ensure each participant gained a similar level of ex-

perience with the tool prior to the main questions.

The remaining six questions tested whether a participant could use RepoGrams

to find advanced patterns. Questions in this section were of the form “group the

repositories into two sets based on a feature”, where the feature was implied by

the chosen metric (3–7 minutes limit per question). Table 5.1 lists these questions

in detail. We then interviewed each participant in a semi-structured interview de-

scribed in Section 5.2.3.

For the study we chose the top 25 trending projects (pulled on February 3rd,

2015) for each of the ten most popular languages on GitHub [64]. From this set

we systematically generated random permutations of 1–9 projects for each ques-

tion until we found a set of projects such that the set’s repository footprints fit the

intended purpose of the questions. The final set of project repositories in the study

had a min / median / max commit counts of 128 / 216 / 906, respectively.

3The full questionnaire is listed in Appendix C.

39

Table 5.1: Main questions from the advanced user study.

Question
reposi-

tory
footprints

Dist.

4 Which of the following statements is true?
There is a general {upwards / constant /
downwards} trend to the metric values.

1

5 Categorize the projects into two clusters: (a) projects
that use Maven (include .pom files), (b) projects that
do not use Maven.

9

6 Categorize the projects into two clusters: (a) projects
that used a single master branch before branching off
to multiple branches, (b) projects that branched off
early in their development.

5

7 Categorize the projects into two clusters: (a) projects
that have a correlation between branches and au-
thors, (b) projects that do not exhibit this correlation.

8

8 Categorize the projects into two clusters: (a) projects
that have one dominant contributor, based on num-
ber of lines of code changed, (b) projects that do not
have such a contributor. A dominant contributor is
one who committed at least 50% of the LoC changes
in the project.

3

9 Same as 5, with number of commits instead of num-
ber of lines of code changed.

3

5.2.2 Results

To give an overall sense of whether SE researchers were in agreement about the

posed questions, we use a graphic in the Dist. column of Table 5.1. In this column,

each participant’s answer is represented by a block; blocks of the same color de-

note identical answers. For example, for question 6, twelve participants chose one

answer and two participant chose a different answer each; a total of three distinct

answers to that question.

The Dist. column of Table 5.1 shows widespread agreement amongst the re-

searchers for questions 4 and 5. These questions are largely related to interpret-

ing metrics for a project. This quantitative agreement lends support to the under-

40

standing part of RQ1. More variance in the answers resulted from the remaining

questions that target the comparison part of RQ1; these questions required more

interpretation of metrics and comparisons amongst projects.

To gain more insight into the SE researchers use of RepoGrams, we discuss

each of the main questions.

Question 4 asked the participants to recognize a trend in the metric value in a

single repository. The majority of participants (12 of 14) managed to recognize the

trend almost immediately by observing the visualization.

Figure 5.2: RepoGrams showing the repository footprints as it was during the
user study with SE researchers, question 4.

Question 5 asked the participants to identify repositories that have a non-zero

value in one metric. The participants considered 9 repository footprints where the

metric was POM Files: a value of n indicates that n POM files were modified in a

commit. This metric is useful for quickly identifying projects that use the Maven

build system [4]. All except one participant agreed on the choice for the nine

repositories. This question indicates that RepoGrams is useful in distinguishing

repository footprints that contain a common feature, represented by a particular

color.

Figure 5.3: RepoGrams showing the repository footprints as it was during the
user study with SE researchers, question 5.

41

Question 6 asked the participants to identify those repositories in which the

repository footprints started with a sequence of commit blocks of a particular color.

The participants considered 5 repository footprints. The metric was Branches

Used: each branch is given a unique color, with a specific color reserved for com-

mits to the master branch. All five footprints contained hundreds of colors.

The existence of a leading sequence of commit blocks of a single color in a

Branches Used metric footprint indicates that the project used a single branch at

the start of its timeline or that the project was imported from a centralized version

control system to Git. All participants agreed on two of the footprints and all but

one agreed on each of the other footprints. This indicates that RepoGrams is useful

in finding long sequences of colors, even within footprints that contain hundreds

of colors.

Figure 5.4: RepoGrams showing the repository footprints as it was during the
user study with SE researchers, question 6.

Question 7 asked the participants to identify those repositories in which the

repository footprints for two metrics contained a correspondence between the col-

ors of the same commit block. The participants considered a total of 8 repository

footprints, with two metrics for four project. The two metrics were Commit Author

and Branches Used. A match in colors between these two metrics would indicate

that committers in the project follow the practice of having one branch per au-

thor. This is useful to identify for those studies that consider code ownership or the

impact of committer diversity on feature development [14].

In the task the number of colors in a pair of footprints for the same repository

ranged from a few (<10) to many (>20). The majority (twelve) of participants

agreed on their choices for the first, second, and fourth repository pairs. But, we

found that they were about evenly split on the third repository (eight vs. six partic-

42

ipants). This indicates that RepoGrams is useful in finding a correlation between

repository footprints when the number of colors is low, but it is less effective with

many unique colors.

Figure 5.5: RepoGrams showing the repository footprints as it was during the
user study with SE researchers, question 7.

Question 8 and 9 asked the participants to estimate the magnitude of non-

continuous regions of discrete values. The participants were relatively split on

these results. We conclude that RepoGrams is not the ideal tool for performing this

type of task.

Figure 5.6: RepoGrams showing the repository footprints as it was during the
user study with SE researchers, question 8.

43

Figure 5.7: RepoGrams showing the repository footprints as it was during the
user study with SE researchers, question 9.

5.2.3 Semi-structured interview

After the participants finished the main tasks, we conduced a semi-structured in-

terview to discuss their experiences with RepoGrams. We asked 5 questions, and

alloted a maximum of 10 minutes for this part. No interview lasted that long. The

questions were:

• Do you see RepoGrams being integrated into your research/evaluation pro-

cess? If so, can you give an example of a research project that you could

use/could have used RepoGrams in?

• What are one or two metrics that you wish RepoGrams included that you

would find useful in your research? How much time would you be willing to

invest in order to write code to integrate a new metric?

• In your opinion, what are the best and worst parts of RepoGrams?

• Choose one of the main tasks that we asked you to perform. How would you

have performed it without RepoGrams?

• Do you have any other questions or comments?

Since the interviews were mostly unstructured, participants went back and forth

between questions when replying to our questions. Hence, the following summary

of all interviews also takes an unstructured form:

44

Of the 14 participants, 11 noted that they want to use RepoGrams in their fu-

ture research: “I would use the tool to verify or at least to get some data on my

selected projects” [P12]4 and “I would use RepoGrams as an exploratory tool to

see the characteristics of projects that I want to choose” [P9]. They also shared

past research projects in which RepoGrams could have assisted them in making a

more informed decision while choosing or analyzing evaluation targets. The re-

maining 3 participants said that they do not see themselves using RepoGrams in

their research but that either their students or their colleagues might benefit from

the tool.

Most participants found the existing metrics useful: “Sometimes I’m looking

for active projects that change a lot, so these metrics [e.g., Commit Age] are very

useful” [P8]. However, they all suggested new metrics and mentioned that they

would invest between 1 hour to 1 week to add their proposed metric to RepoGrams.

In Section 5.3 we detail a case study in which we add three of these proposed met-

rics to RepoGrams and show that this takes less than an hour per metric. The

proposed metrics ranged from simple metrics like counting the number of mod-

ified files in a commit, to complex metrics that rely on third-party services and

tools. For example, two participants wanted to integrate tools to compute the com-

plexity of a change-set based on their own prior works. Another participant wanted

to integrate a method to detect the likelihood that a commit is a bug-introducing

commit. Yet another participant suggested a metric to calculate the code coverage

of the repository’s test suite to consider the evolution of a project’s test suite over

time.

A few of the suggestions would require significant changes. For example, in-

spired by the POM Files metric, two participants suggested a generalized version

of this metric that contains a query window to select a file name pattern. The met-

ric would then count the number of files matching the query in each commit. We

discuss this idea and others in Chapter 6.

The participants also found that RepoGrams helped them to identify general

historical patterns and to compare projects: “I can use RepoGrams to find general

trends in projects” [P3] and “You can find similarities . . . it gives a nice overview

4We use [P1]–[P14] to refer to the anonymous participants.

45

for cross-projects comparisons” [P13]. They also noted that RepoGrams would

help them make stronger claims in their work: “I think this tool would be useful if

we wanted to claim generalizability of the results” [P4].

One of our design goals was to support qualitative analysis of software repos-

itories. However, multiple participants noted that the tool would be more useful if

it exposed statistical information: “It would help if I had numeric summaries.” and

“When I ask an exact numeric question this tool is terrible for that. For aggregate

summaries it’s not good enough” [P6]

Another design limitation that bothered participants is the set temporal ordering

of commits in the repository footprint abstraction: “Sometimes I would like to order

the commits by values, not by time” [P7] and “I would like to be able to remove the

merge commits from the visualizations.” [P14]. Related to this, a few participants

noted the limitation that RepoGrams does not capture real time in the sequence of

commit blocks: “the interface doesn’t expose how much time has passed between

commits, only their order.” [P7]

The participants were asked to choose one of the tasks and explain how they

would solve that task without using RepoGrams. Two generalized approaches

emerged repeatedly. The most common approach was to write a custom script

that clones the repositories and performs the analysis. One participant mentioned

that their first solution script to solve task 6 (identifying projects that use or have

used Maven) would potentially get wrong results since they intended to only ob-

serve the latest snapshot and not every commit from the repository. A software

project might have used Maven early in its development and later switched to an

alternative build system, in which case its latest snapshot would not contain POM

files and the script would fail to recognize this repository.

Alternatively some participants said that they would import the meta-data of the

Git repositories into a spreadsheet application and perform the analysis manually.

Some participants mentioned that GitHub exposes some visualizations, such as a

histogram of contributors for repositories. These visualizations are per-repository

and do not facilitate comparisons.

46

5.2.4 Summary

This study shows that SE researchers can use RepoGrams to understand character-

istics about a project’s source repository and that they can, in a number of cases, use

RepoGrams to compare repositories (RQ1), although the researchers noted areas

for improvement. Through interviews, we determined that RepoGrams is of imme-

diate use to today’s researchers (RQ2) and that there is a need for custom-defined

metrics.

5.3 Estimation of effort involved in adding new metrics
The SE researchers who participated in the user study described in the previous

section had a strong interest in adding new metrics to RepoGrams. Because re-

searchers tend to have unique research projects that they are interested in evaluat-

ing, it is likely that this interest is true of the broader SE community as well. In this

last study we evaluated the effort in adding new metrics to RepoGrams (RQ4).

The metrics were implemented by two junior SE researchers: (Dev1) a mas-

ters student who is the author of this thesis, and (Dev2) a fourth year Computer

Science undergraduate student. Dev1 was, at the time, not directly involved in the

programming of the tool and was only slightly familiar with the codebase. Dev2

was unfamiliar with the project codebase. Each developer added three new metrics

(bottom six rows in Table 4.1).

Dev1 added the POM Files, Commit Author, and Commit Age metrics. Prior to

adding these metrics Dev1 spent 30 minutes setting up the environment and explor-

ing the code. The POM Files metric took 30 minutes to implement and required

changing 16 LoC5. Dev1 then spent 52 minutes and 48 minutes developing the

Commit Author and Commit Age metrics, changing a similar amount of code for

each metric.

Dev2 implemented three metrics based on some of the suggestions made by

the SE researchers in Section 5.2.3: Files Modified, Merge Indicator, and Author

Experience. Prior to adding these metrics Dev2 spent 39 minutes setting up the

5Note that these numbers are different from those listed in Table 4.1. See the closing paragraph
in Section 5.3.1 for an explanation on this disparity.

47

environment and 40 minutes exploring the code. These metrics took 42, 44, and 26

minutes to implement, respectively. All metrics required changing fewer than 30

LoC.

5.3.1 Summary

The min / median / max times to implement the six metrics were 26 / 43 / 52

minutes. These values compare favorably with the time that it would take to write a

custom script to extract metric values from a repository, an alternative practiced by

almost all SE researchers in our user study. The key difference, however, is that by

adding the new metric to RepoGrams the researcher gains two advantages: (1) the

resulting project pattern for the metric can be juxtaposed against project patterns

for all of the other metrics already present in the tool, and (2) the researcher can use

all of the existing interaction capabilities in RepoGrams (changing block lengths,

zooming, etc).

At the time of this case study, the architecture of the tool required that devel-

opers modify existing source code files in order to add a new metrics. While this

complicated the process of adding a new metric, the experiment shows that devel-

opers can do so in less than 1 hour after an initial code exploration. We attempted

to streamline this process even further by reworking the architecture of the tool to

move the implementation of metrics to separate files as described in Section 4.2.

During this architectural change we had to rewrite parts of the existing metrics. Ta-

ble 4.1 lists the LoC count after this change. We also added documentation to assist

developers in setting up their development environment and created examples that

demonstrate how to add new metrics.

48

Chapter 6

Future work

In this section we discuss plans for future work involving RepoGrams. Some of

these are in response to current limitations of tool, while others are new ideas aimed

to expand the reach of this tool beyond its current SE researchers focus.

6.1 Additional features
Studying populations of projects. RepoGrams requires the user to add one project

at a time. We are working to add support for importing random project samples

from GitHub. RepoGrams can be integrated with a large database of repositories

such as GHTorrent [31]. Users can then use a query language (such as SQL or a

unique domain-specific language) to query by attributes that are recorded in the

database. e.g., filter to select random projects that use a particular programming

language, have a particular team size, specific range of activity in a period of time.

By randomizing the selection based on strictly defined metrics such as these, SE

researcher can have a stronger claim of generalizability in their papers.

Supporting custom metrics. SE researchers in our user study (Section 5.2)

wanted more specialized metrics that were, unsurprisingly, related to their research

interests. As mentioned in Section 5.2.3 we are working on a solution in which

specific metrics can be customized in the front-end. These metrics will have pa-

rameters that can be set by the users, and calculated by the server for display.

For example, the POM Files metric is a specific case of a more generic metric

49

that counts the number of modified files in a commit that match a specific pattern

(e.g., *.pom). We are also considering another solution in which a researcher

could write a metric function in Python or a domain-specific language and submit

it to the server through the browser. The server would integrate and use this user-

defined metric to derive repository footprints. We plan to explore the challenges

and benefits of this strategy.

Supporting non-source-code historical information. RepoGrams currently sup-

ports Git repositories. However, software projects may have bug trackers, mailing

lists, Wikis, and other resources that it may be useful to study over time and com-

pare with repository history in a RepoGrams interface. We plan to extend Re-

poGrams with this information by integrating with the GitHub API, taking into

account concerns pointed out in prior work [13].

Robust bucketing of metric values. Uniform bucket sizing currently imple-

mented in RepoGrams has several issues. For example, a single outlier metric

value can cause the first bucket to become so large as to include most other values

except the outlier. One solution is to generate buckets based on different distribu-

tions and to find outliers and place them in a special bucket. We will try different

configurations and algorithms for bucketing, as well as enabling real-time modifi-

cations by users, in an attempt to solve this issue and other similar ones.

Supporting collaborations. We added an import/export feature that saves the

local state in a file, which can be shared and then loaded into the tool by others.

This is a preliminary solution to the problem of sharing the data sets and visual-

izations between different researchers working on the same project. We intend to

design and implement a more contemporary solution. e.g., sharing a link to the

current state instead of sharing files.

6.2 Expanded audience
Educational study. We are exploring, together with other researchers in our depart-

ment, the option of using RepoGrams for educational purposes. We are designing

two experiments that involves integrating RepoGrams in a third year SE class in

which student teams develop a software project for the entire term. In one exper-

iment we are attempting to find correlation between specific repository footprints

50

and final grades given to student teams in previous terms when the class was taught.

In the other experiment we will integrate RepoGrams into the periodic evaluations

of the student teams by the Teaching Assistants (TAs) during the term. In this ex-

periment we are attempting to discover whether the visualizations shown by the

tool help guide the student teams towards a more successful completion of the

project and to better understand the expectations of their TA.

Use of RepoGrams in the industry. RepoGrams is designed for SE researchers.

However, it is possible that it can be also used by other target audiences. One exam-

ple is for managers or software developers in industry. They can use RepoGrams to

track project activity and potentially gain insights about the development process.

6.3 Further evaluations
Long term benefits of RepoGrams for SE researchers. Our evaluation did not con-

clusively show that RepoGrams helps SE researchers in selecting their evaluation

targets. We plan to use RepoGrams in our own SE research work and to collect

anecdotal evidence from other researchers to be able to eventually argue this point

conclusively.

Evaluating new features. We added several new features to RepoGrams that

we did not evaluate. One example of such a feature is the logarithmic block length

mode described in Section 4.1.1. This block length mode was added after the user

study with SE researchers (Section 5.2) and thus was not evaluated.

Another feature that we added to the tool was created while designing the above

mentioned educational study. We found that many student groups perform large

scale refactoring such as running a code formatter on specific commits or adding

large third party libraries to their repositories. The commits blocks for these com-

mits take up a sizable part of the repository footprint, yet they are of no interest in

this study. We implemented a feature to hide individual commits from the view.

Evaluating whether it is a useful feature for the SE community remains future work.

We intend to test this new feature and others as part of any future evaluation

where they might prove relevant.

51

Chapter 7

Conclusion

The widespread availability of open source repositories has had significant impact

on SE research. It is now possible for an empirical study to consider hundreds of

projects with thousands of commits, hundreds of authors, and millions of lines of

code. Unfortunately, more is not necessarily better or easier. To properly select

evaluation targets for a research study the researcher must be highly aware of the

features of the projects that may influence the results. Our preliminary investigation

of 55 published papers indicates that this process is frequently undocumented or

haphazard.

To help with this issue we developed RepoGrams, a tool for analyzing and

comparing software repositories across multiple dimensions. The key idea is a

flexible repository footprint abstraction that can compactly represent a variety of

user-defined metrics to help characterize software projects over time. We eval-

uated RepoGrams in two user studies and found that it helps researchers to an-

swer advanced, open-ended, questions about the relative evolution of software

projects. RepoGrams is released as free software [53] and is made available online

at http://repograms.net/.

52

http://repograms.net/

Bibliography

[1] AngularJS — Superheroic JavaScript MVW Framework.
https://angularjs.org/. → pages 28

[2] CherryPy — A Minimalist Python Web Framework. http://cherrypy.org/. →
pages 28

[3] Docker - Build, Ship, and Run Any App, Anywhere.
https://www.docker.com/. → pages 28

[4] Welcome to Apache Maven. http://maven.apache.org/. → pages 41

[5] Flickr uploading tool for GNOME. https://github.com/GNOME/postr. →
pages 4

[6] Welcome to pygit2s documentation. http://www.pygit2.org/. → pages 28

[7] DB Browser for SQLite project.
https://github.com/sqlitebrowser/sqlitebrowser. → pages 4

[8] Summarizing Software Artifacts. https://www.cs.ubc.ca/cs-research/
software-practices-lab/projects/summarizing-software-artifacts. → pages 8

[9] Alexa. github.com Site Overview. http://www.alexa.com/siteinfo/github.com.
[Accessed Apr. 20, 2015]. → pages 1

[10] A. Alipour, A. Hindle, and E. Stroulia. A Contextual Approach Towards
More Accurate Duplicate Bug Report Detection. In Proceedings of the 10th
Working Conference on Mining Software Repositories, MSR ’13, pages
183–192, Piscataway, NJ, USA, 2013. IEEE Press. ISBN
978-1-4673-2936-1. URL
http://dl.acm.org/citation.cfm?id=2487085.2487123. → pages 66, 67

53

https://angularjs.org/
http://cherrypy.org/
https://www.docker.com/
http://maven.apache.org/
https://github.com/GNOME/postr
http://www.pygit2.org/
https://github.com/sqlitebrowser/sqlitebrowser
https://www.cs.ubc.ca/cs-research/software-practices-lab/projects/summarizing-software-artifacts
https://www.cs.ubc.ca/cs-research/software-practices-lab/projects/summarizing-software-artifacts
http://www.alexa.com/siteinfo/github.com
http://dl.acm.org/citation.cfm?id=2487085.2487123

[11] J. B. Begole, J. C. Tang, R. B. Smith, and N. Yankelovich. Work Rhythms:
Analyzing Visualizations of Awareness Histories of Distributed Groups. In
Proceedings of the 2002 ACM Conference on Computer Supported
Cooperative Work, CSCW ’02, pages 334–343, New York, NY, USA, 2002.
ACM. ISBN 1-58113-560-2. doi:10.1145/587078.587125. URL
http://doi.acm.org/10.1145/587078.587125. → pages 11

[12] N. Bettenburg, M. Nagappan, and A. E. Hassan. Think Locally, Act
Globally: Improving Defect and Effort Prediction Models. In Proceedings of
the 9th IEEE Working Conference on Mining Software Repositories, MSR
’12, pages 60–69, Piscataway, NJ, USA, 2012. IEEE Press. ISBN
978-1-4673-1761-0. URL
http://dl.acm.org/citation.cfm?id=2664446.2664455. → pages 64

[13] C. Bird, P. C. Rigby, E. T. Barr, D. J. Hamilton, D. M. German, and
P. Devanbu. The Promises and Perils of Mining Git. In Proceedings of the
2009 6th IEEE International Working Conference on Mining Software
Repositories, MSR ’09, pages 1–10, Washington, DC, USA, 2009. IEEE
Computer Society. ISBN 978-1-4244-3493-0.
doi:10.1109/MSR.2009.5069475. URL
http://dx.doi.org/10.1109/MSR.2009.5069475. → pages 5, 31, 50

[14] C. Bird, N. Nagappan, B. Murphy, H. Gall, and P. Devanbu. Don’t Touch
My Code! Examining the Effects of Ownership on Software Quality. In
Proceedings of the 19th ACM SIGSOFT Symposium and the 13th European
Conference on Foundations of Software Engineering, ESEC/FSE ’11, pages
4–14, New York, NY, USA, 2011. ACM. ISBN 978-1-4503-0443-6.
doi:10.1145/2025113.2025119. URL
http://doi.acm.org/10.1145/2025113.2025119. → pages 42

[15] T. F. Bissyandé, F. Thung, D. Lo, L. Jiang, and L. Réveillère. Orion: A
Software Project Search Engine with Integrated Diverse Software Artifacts.
In Proceedings of the 2013 18th International Conference on Engineering of
Complex Computer Systems, ICECCS ’13, pages 242–245, Washington, DC,
USA, 2013. IEEE Computer Society. ISBN 978-0-7695-5007-7.
doi:10.1109/ICECCS.2013.42. URL
http://dx.doi.org/10.1109/ICECCS.2013.42. → pages 8

[16] A. Borges, W. Ferreira, E. Barreiros, A. Almeida, L. Fonseca, E. Teixeira,
D. Silva, A. Alencar, and S. Soares. Support Mechanisms to Conduct
Empirical Studies in Software Engineering: A Systematic Mapping Study.
In Proceedings of the 19th International Conference on Evaluation and

54

http://dx.doi.org/10.1145/587078.587125
http://doi.acm.org/10.1145/587078.587125
http://dl.acm.org/citation.cfm?id=2664446.2664455
http://dx.doi.org/10.1109/MSR.2009.5069475
http://dx.doi.org/10.1109/MSR.2009.5069475
http://dx.doi.org/10.1145/2025113.2025119
http://doi.acm.org/10.1145/2025113.2025119
http://dx.doi.org/10.1109/ICECCS.2013.42
http://dx.doi.org/10.1109/ICECCS.2013.42

Assessment in Software Engineering, EASE ’15, pages 22:1–22:14, New
York, NY, USA, 2015. ACM. ISBN 978-1-4503-3350-4.
doi:10.1145/2745802.2745823. URL
http://doi.acm.org/10.1145/2745802.2745823. → pages 9

[17] K. Chen, P. Liu, and Y. Zhang. Achieving Accuracy and Scalability
Simultaneously in Detecting Application Clones on Android Markets. In
Proceedings of the 36th International Conference on Software Engineering,
ICSE 2014, pages 175–186, New York, NY, USA, 2014. ACM. ISBN
978-1-4503-2756-5. doi:10.1145/2568225.2568286. URL
http://doi.acm.org/10.1145/2568225.2568286. → pages 1

[18] C. Collberg, S. Kobourov, J. Nagra, J. Pitts, and K. Wampler. A System for
Graph-based Visualization of the Evolution of Software. In Proceedings of
the 2003 ACM Symposium on Software Visualization, SoftVis ’03, pages
77–ff, New York, NY, USA, 2003. ACM. ISBN 1-58113-642-0.
doi:10.1145/774833.774844. URL
http://doi.acm.org/10.1145/774833.774844. → pages 10

[19] M. D’Ambros, M. Lanza, and H. Gall. Fractal Figures: Visualizing
Development Effort for CVS Entities. In Proceedings of the 3rd IEEE
International Workshop on Visualizing Software for Understanding and
Analysis, VISSOFT ’05, pages 16–, Washington, DC, USA, 2005. IEEE
Computer Society. ISBN 0-7803-9540-9.
doi:10.1109/VISSOF.2005.1684303. URL
http://dx.doi.org/10.1109/VISSOF.2005.1684303. → pages 11

[20] M. D’Ambros, H. Gall, M. Lanza, and M. Pinzger. Analysing Software
Repositories to Understand Software Evolution. In Software Evolution,
pages 37–67. Springer Berlin Heidelberg, 2008. ISBN 978-3-540-76439-7.
doi:10.1007/978-3-540-76440-3 3. URL
http://dx.doi.org/10.1007/978-3-540-76440-3 3. → pages 10

[21] R. M. de Mello, P. C. da Silva, P. Runeson, and G. H. Travassos. Towards a
Framework to Support Large Scale Sampling in Software Engineering
Surveys. In Proceedings of the 8th ACM/IEEE International Symposium on
Empirical Software Engineering and Measurement, ESEM ’14, pages
48:1–48:4, New York, NY, USA, 2014. ACM. ISBN 978-1-4503-2774-9.
doi:10.1145/2652524.2652567. URL
http://doi.acm.org/10.1145/2652524.2652567. → pages 9

55

http://dx.doi.org/10.1145/2745802.2745823
http://doi.acm.org/10.1145/2745802.2745823
http://dx.doi.org/10.1145/2568225.2568286
http://doi.acm.org/10.1145/2568225.2568286
http://dx.doi.org/10.1145/774833.774844
http://doi.acm.org/10.1145/774833.774844
http://dx.doi.org/10.1109/VISSOF.2005.1684303
http://dx.doi.org/10.1109/VISSOF.2005.1684303
http://dx.doi.org/10.1007/978-3-540-76440-3_3
http://dx.doi.org/10.1007/978-3-540-76440-3_3
http://dx.doi.org/10.1145/2652524.2652567
http://doi.acm.org/10.1145/2652524.2652567

[22] A. Delater and B. Paech. Tracing Requirements and Source Code during
Software Development: An Empirical Study. In Empirical Software
Engineering and Measurement, 2013 ACM / IEEE International Symposium
on, pages 25–34. IEEE, Oct 2013. doi:10.1109/ESEM.2013.16. → pages 18

[23] S. Diehl. Software Visualization: Visualizing the Structure, Behaviour, and
Evolution of Software. Springer, 2010. ISBN 3642079857, 9783642079856.
→ pages 10

[24] R. Dyer, H. A. Nguyen, H. Rajan, and T. N. Nguyen. Boa: A Language and
Infrastructure for Analyzing Ultra-large-scale Software Repositories. In
Proceedings of the 2013 International Conference on Software Engineering,
ICSE ’13, pages 422–431, Piscataway, NJ, USA, 2013. IEEE Press. ISBN
978-1-4673-3076-3. URL
http://dl.acm.org/citation.cfm?id=2486788.2486844. → pages 8

[25] S. G. Eick, J. L. Steffen, and E. E. Sumner, Jr. Seesoft-A Tool for
Visualizing Line Oriented Software Statistics. IEEE Trans. Softw. Eng., 18
(11):957–968, Nov. 1992. ISSN 0098-5589. doi:10.1109/32.177365. URL
http://dx.doi.org/10.1109/32.177365. → pages 11

[26] Free Software Foundation. GNU General Public License, Version 3.
https://www.gnu.org/copyleft/gpl.html. → pages 110

[27] G. Ghezzi and H. C. Gall. Replicating Mining Studies with SOFAS. In
Proceedings of the 10th Working Conference on Mining Software
Repositories, MSR ’13, pages 363–372, Piscataway, NJ, USA, 2013. IEEE
Press. ISBN 978-1-4673-2936-1. URL
http://dl.acm.org/citation.cfm?id=2487085.2487152. → pages 9

[28] T. Girba, A. Kuhn, M. Seeberger, and S. Ducasse. How Developers Drive
Software Evolution. In Proceedings of the Eighth International Workshop
on Principles of Software Evolution, IWPSE ’05, pages 113–122,
Washington, DC, USA, 2005. IEEE Computer Society. ISBN
0-7695-2349-8. doi:10.1109/IWPSE.2005.21. URL
http://dx.doi.org/10.1109/IWPSE.2005.21. → pages 10

[29] A. Gokhale, V. Ganapathy, and Y. Padmanaban. Inferring Likely Mappings
Between APIs. In Proceedings of the 2013 International Conference on
Software Engineering, ICSE ’13, pages 82–91, Piscataway, NJ, USA, 2013.
IEEE Press. ISBN 978-1-4673-3076-3. URL
http://dl.acm.org/citation.cfm?id=2486788.2486800. → pages 66

56

http://dx.doi.org/10.1109/ESEM.2013.16
http://dl.acm.org/citation.cfm?id=2486788.2486844
http://dx.doi.org/10.1109/32.177365
http://dx.doi.org/10.1109/32.177365
https://www.gnu.org/copyleft/gpl.html
http://dl.acm.org/citation.cfm?id=2487085.2487152
http://dx.doi.org/10.1109/IWPSE.2005.21
http://dx.doi.org/10.1109/IWPSE.2005.21
http://dl.acm.org/citation.cfm?id=2486788.2486800

[30] G. Gousios. The GHTorent Dataset and Tool Suite. In Proceedings of the
10th Working Conference on Mining Software Repositories, MSR ’13, pages
233–236, Piscataway, NJ, USA, 2013. IEEE Press. ISBN
978-1-4673-2936-1. URL
http://dl.acm.org/citation.cfm?id=2487085.2487132. → pages 8, 20

[31] G. Gousios, B. Vasilescu, A. Serebrenik, and A. Zaidman. Lean GHTorrent:
GitHub Data on Demand. In Proceedings of the 11th Working Conference
on Mining Software Repositories, MSR 2014, pages 384–387, New York,
NY, USA, 2014. ACM. ISBN 978-1-4503-2863-0.
doi:10.1145/2597073.2597126. URL
http://doi.acm.org/10.1145/2597073.2597126. → pages 8, 49

[32] V. T. Heikkila, M. Paasivaara, and C. Lassenius. Scrumbut, but does it
matter? A mixed-method study of the planning process of a multi-team
scrum organization. In Empirical Software Engineering and Measurement,
2013 ACM/IEEE International Symposium on, pages 85–94. IEEE, 2013. →
pages 16

[33] H. Hemmati, S. Nadi, O. Baysal, O. Kononenko, W. Wang, R. Holmes, and
M. W. Godfrey. The MSR Cookbook: Mining a Decade of Research. In
Proceedings of the 10th Working Conference on Mining Software
Repositories, MSR ’13, pages 343–352, Piscataway, NJ, USA, 2013. IEEE
Press. ISBN 978-1-4673-2936-1. URL
http://dl.acm.org/citation.cfm?id=2487085.2487150. → pages 9

[34] C. Iacob and R. Harrison. Retrieving and Analyzing Mobile Apps Feature
Requests from Online Reviews. In Proceedings of the 10th Working
Conference on Mining Software Repositories, MSR ’13, pages 41–44,
Piscataway, NJ, USA, 2013. IEEE Press. ISBN 978-1-4673-2936-1. URL
http://dl.acm.org/citation.cfm?id=2487085.2487094. → pages 67

[35] A. Jedlitschka and D. Pfahl. Reporting guidelines for controlled experiments
in software engineering. In Empirical Software Engineering, 2005. 2005
International Symposium on, pages 10–pp. IEEE, Nov 2005.
doi:10.1109/ISESE.2005.1541818. → pages 9

[36] R. Just, D. Jalali, and M. D. Ernst. Defects4J: A Database of Existing Faults
to Enable Controlled Testing Studies for Java Programs. In Proceedings of
the 2014 International Symposium on Software Testing and Analysis, ISSTA
2014, pages 437–440, New York, NY, USA, 2014. ACM. ISBN

57

http://dl.acm.org/citation.cfm?id=2487085.2487132
http://dx.doi.org/10.1145/2597073.2597126
http://doi.acm.org/10.1145/2597073.2597126
http://dl.acm.org/citation.cfm?id=2487085.2487150
http://dl.acm.org/citation.cfm?id=2487085.2487094
http://dx.doi.org/10.1109/ISESE.2005.1541818

978-1-4503-2645-2. doi:10.1145/2610384.2628055. URL
http://doi.acm.org/10.1145/2610384.2628055. → pages 8

[37] T. Kwon and Z. Su. Detecting and Analyzing Insecure Component Usage.
In Proceedings of the ACM SIGSOFT 20th International Symposium on the
Foundations of Software Engineering, FSE ’12, pages 5:1–5:11, New York,
NY, USA, 2012. ACM. ISBN 978-1-4503-1614-9.
doi:10.1145/2393596.2393599. URL
http://doi.acm.org/10.1145/2393596.2393599. → pages 2, 15

[38] M. Lanza. The Evolution Matrix: Recovering Software Evolution Using
Software Visualization Techniques. In Proceedings of the 4th International
Workshop on Principles of Software Evolution, IWPSE ’01, pages 37–42,
New York, NY, USA, 2001. ACM. ISBN 1-58113-508-4.
doi:10.1145/602461.602467. URL
http://doi.acm.org/10.1145/602461.602467. → pages 10

[39] M. Lungu, M. Lanza, T. Gı̂rba, and R. Robbes. The Small Project
Observatory: Visualizing Software Ecosystems. Sci. Comput. Program., 75
(4):264–275, Apr. 2010. ISSN 0167-6423. doi:10.1016/j.scico.2009.09.004.
URL http://dx.doi.org/10.1016/j.scico.2009.09.004. → pages 10

[40] S. Mani, R. Catherine, V. S. Sinha, and A. Dubey. AUSUM: Approach for
Unsupervised Bug Report Summarization. In Proceedings of the ACM
SIGSOFT 20th International Symposium on the Foundations of Software
Engineering, FSE ’12, pages 11:1–11:11, New York, NY, USA, 2012. ACM.
ISBN 978-1-4503-1614-9. doi:10.1145/2393596.2393607. URL
http://doi.acm.org/10.1145/2393596.2393607. → pages 2, 18

[41] T. Mens and S. Demeyer. Future Trends in Software Evolution Metrics. In
Proceedings of the 4th International Workshop on Principles of Software
Evolution, IWPSE ’01, pages 83–86, New York, NY, USA, 2001. ACM.
ISBN 1-58113-508-4. doi:10.1145/602461.602476. URL
http://doi.acm.org/10.1145/602461.602476. → pages 10

[42] C. Metz. How GitHub Conquered Google, Microsoft, and Everyone Else.
http://www.wired.com/2015/03/
github-conquered-google-microsoft-everyone-else/. → pages 1

[43] T. Munzner. Visualization Analysis and Design. CRC Press, 2014. → pages
4, 26

58

http://dx.doi.org/10.1145/2610384.2628055
http://doi.acm.org/10.1145/2610384.2628055
http://dx.doi.org/10.1145/2393596.2393599
http://doi.acm.org/10.1145/2393596.2393599
http://dx.doi.org/10.1145/602461.602467
http://doi.acm.org/10.1145/602461.602467
http://dx.doi.org/10.1016/j.scico.2009.09.004
http://dx.doi.org/10.1016/j.scico.2009.09.004
http://dx.doi.org/10.1145/2393596.2393607
http://doi.acm.org/10.1145/2393596.2393607
http://dx.doi.org/10.1145/602461.602476
http://doi.acm.org/10.1145/602461.602476
http://www.wired.com/2015/03/github-conquered-google-microsoft-everyone-else/
http://www.wired.com/2015/03/github-conquered-google-microsoft-everyone-else/

[44] S. Nadi, C. Dietrich, R. Tartler, R. C. Holt, and D. Lohmann. Linux
Variability Anomalies: What Causes Them and How Do They Get Fixed? In
Proceedings of the 10th Working Conference on Mining Software
Repositories, MSR ’13, pages 111–120, Piscataway, NJ, USA, 2013. IEEE
Press. ISBN 978-1-4673-2936-1. URL
http://dl.acm.org/citation.cfm?id=2487085.2487112. → pages 66

[45] M. Nagappan, T. Zimmermann, and C. Bird. Diversity in Software
Engineering Research. In Proceedings of the 2013 9th Joint Meeting on
Foundations of Software Engineering, ESEC/FSE 2013, pages 466–476,
New York, NY, USA, 2013. ACM. ISBN 978-1-4503-2237-9.
doi:10.1145/2491411.2491415. URL
http://doi.acm.org/10.1145/2491411.2491415. → pages 2, 8

[46] S. Neu. Telling Evolutionary Stories with Complicity. PhD thesis, Citeseer,
2011. → pages 10

[47] R. Nokhbeh Zaeem and S. Khurshid. Test Input Generation Using Dynamic
Programming. In Proceedings of the ACM SIGSOFT 20th International
Symposium on the Foundations of Software Engineering, FSE ’12, pages
34:1–34:11, New York, NY, USA, 2012. ACM. ISBN 978-1-4503-1614-9.
doi:10.1145/2393596.2393635. URL
http://doi.acm.org/10.1145/2393596.2393635. → pages 66, 67

[48] M. Pinzger, H. Gall, M. Fischer, and M. Lanza. Visualizing Multiple
Evolution Metrics. In Proceedings of the 2005 ACM Symposium on Software
Visualization, SoftVis ’05, pages 67–75, New York, NY, USA, 2005. ACM.
ISBN 1-59593-073-6. doi:10.1145/1056018.1056027. URL
http://doi.acm.org/10.1145/1056018.1056027. → pages 10

[49] D. Posnett, P. Devanbu, and V. Filkov. MIC check: a correlation tactic for
ESE data. In Proceedings of the 9th IEEE Working Conference on Mining
Software Repositories, pages 22–31. IEEE Press, 2012. → pages 15, 66

[50] T. Proebsting and A. M. Warren. Repeatability and Benefaction in Computer
Systems Research. 2015. → pages 9

[51] S. Rastkar, G. C. Murphy, and G. Murray. Summarizing Software Artifacts:
A Case Study of Bug Reports. In Proceedings of the 32Nd ACM/IEEE
International Conference on Software Engineering - Volume 1, ICSE ’10,
pages 505–514, New York, NY, USA, 2010. ACM. ISBN
978-1-60558-719-6. doi:10.1145/1806799.1806872. URL
http://doi.acm.org/10.1145/1806799.1806872. → pages 8

59

http://dl.acm.org/citation.cfm?id=2487085.2487112
http://dx.doi.org/10.1145/2491411.2491415
http://doi.acm.org/10.1145/2491411.2491415
http://dx.doi.org/10.1145/2393596.2393635
http://doi.acm.org/10.1145/2393596.2393635
http://dx.doi.org/10.1145/1056018.1056027
http://doi.acm.org/10.1145/1056018.1056027
http://dx.doi.org/10.1145/1806799.1806872
http://doi.acm.org/10.1145/1806799.1806872

[52] B. Ray, D. Posnett, V. Filkov, and P. Devanbu. A Large Scale Study of
Programming Languages and Code Quality in Github. In Proceedings of the
22Nd ACM SIGSOFT International Symposium on Foundations of Software
Engineering, FSE 2014, pages 155–165, New York, NY, USA, 2014. ACM.
ISBN 978-1-4503-3056-5. doi:10.1145/2635868.2635922. URL
http://doi.acm.org/10.1145/2635868.2635922. → pages 1

[53] D. Rozenberg, V. Poser, H. Becker, F. Kosmale, S. Becking, S. Grant,
M. Maas, M. Jose, and I. Beschastnikh. RepoGrams.
https://github.com/RepoGrams/RepoGrams. → pages 52, 110

[54] F. Servant and J. A. Jones. History Slicing: Assisting Code-evolution Tasks.
In Proceedings of the ACM SIGSOFT 20th International Symposium on the
Foundations of Software Engineering, FSE ’12, pages 43:1–43:11, New
York, NY, USA, 2012. ACM. ISBN 978-1-4503-1614-9.
doi:10.1145/2393596.2393646. URL
http://doi.acm.org/10.1145/2393596.2393646. → pages 10

[55] J. Siegmund, N. Siegmund, and S. Apel. Views on internal and external
validity in empirical software engineering. In Proceedings of the 37th
International Conference on Software Engineering, ICSE 2015, 2015. →
pages 9

[56] F. Sokol, M. Finavaro Aniche, and M. Gerosa. MetricMiner: Supporting
researchers in mining software repositories. In Source Code Analysis and
Manipulation (SCAM), 2013 IEEE 13th International Working Conference
on, pages 142–146, Sept 2013. doi:10.1109/SCAM.2013.6648195. → pages
8

[57] M.-A. D. Storey, D. Čubranić, and D. M. German. On the Use of
Visualization to Support Awareness of Human Activities in Software
Development: A Survey and a Framework. In Proceedings of the 2005 ACM
Symposium on Software Visualization, SoftVis ’05, pages 193–202, New
York, NY, USA, 2005. ACM. ISBN 1-59593-073-6.
doi:10.1145/1056018.1056045. URL
http://doi.acm.org/10.1145/1056018.1056045. → pages 10

[58] A. Strauss and J. Corbin. Basics of qualitative research: Techniques and
procedures for developing grounded theory. September 1998. → pages 12

[59] C. M. B. Taylor and M. Munro. Revision Towers. In Proceedings of the 1st
International Workshop on Visualizing Software for Understanding and

60

http://dx.doi.org/10.1145/2635868.2635922
http://doi.acm.org/10.1145/2635868.2635922
https://github.com/RepoGrams/RepoGrams
http://dx.doi.org/10.1145/2393596.2393646
http://doi.acm.org/10.1145/2393596.2393646
http://dx.doi.org/10.1109/SCAM.2013.6648195
http://dx.doi.org/10.1145/1056018.1056045
http://doi.acm.org/10.1145/1056018.1056045

Analysis, VISSOFT ’02, pages 43–50, Washington, DC, USA, 2002. IEEE
Computer Society. ISBN 0-7695-1662-9. URL
http://dl.acm.org/citation.cfm?id=832270.833810. → pages 10

[60] E. Tempero, C. Anslow, J. Dietrich, T. Han, J. Li, M. Lumpe, H. Melton, and
J. Noble. The Qualitas Corpus: A Curated Collection of Java Code for
Empirical Studies. In Proceedings of the 2010 Asia Pacific Software
Engineering Conference, APSEC ’10, pages 336–345, Washington, DC,
USA, 2010. IEEE Computer Society. ISBN 978-0-7695-4266-9.
doi:10.1109/APSEC.2010.46. URL
http://dx.doi.org/10.1109/APSEC.2010.46. → pages 8

[61] C. Treude and M.-A. Storey. Work Item Tagging: Communicating Concerns
in Collaborative Software Development. IEEE Trans. Softw. Eng., 38(1):
19–34, Jan. 2012. ISSN 0098-5589. doi:10.1109/TSE.2010.91. URL
http://dx.doi.org/10.1109/TSE.2010.91. → pages 11

[62] J. Tsay, L. Dabbish, and J. Herbsleb. Let’s Talk About It: Evaluating
Contributions Through Discussion in GitHub. In Proceedings of the 22Nd
ACM SIGSOFT International Symposium on Foundations of Software
Engineering, FSE 2014, pages 144–154, New York, NY, USA, 2014. ACM.
ISBN 978-1-4503-3056-5. doi:10.1145/2635868.2635882. URL
http://doi.acm.org/10.1145/2635868.2635882. → pages 16

[63] F. B. Viégas, M. Wattenberg, and K. Dave. Studying Cooperation and
Conflict Between Authors with History Flow Visualizations. In Proceedings
of the SIGCHI Conference on Human Factors in Computing Systems, CHI
’04, pages 575–582, New York, NY, USA, 2004. ACM. ISBN
1-58113-702-8. doi:10.1145/985692.985765. URL
http://doi.acm.org/10.1145/985692.985765. → pages 11

[64] J. Warner. Top 100 Most Popular Languages on Github.
https://jaxbot.me/articles/github-most-popular-languages, July 2014. →
pages 39

[65] M. Wattenberg, F. B. Viégas, and K. Hollenbach. Visualizing Activity on
Wikipedia with Chromograms. In Proceedings of the 11th IFIP TC 13
International Conference on Human-computer Interaction - Volume Part II,
INTERACT’07, pages 272–287. Springer-Verlag, Berlin, Heidelberg, 2007.
ISBN 3-540-74799-0, 978-3-540-74799-4. URL
http://dl.acm.org/citation.cfm?id=1778331.1778361. → pages 11

61

http://dl.acm.org/citation.cfm?id=832270.833810
http://dx.doi.org/10.1109/APSEC.2010.46
http://dx.doi.org/10.1109/APSEC.2010.46
http://dx.doi.org/10.1109/TSE.2010.91
http://dx.doi.org/10.1109/TSE.2010.91
http://dx.doi.org/10.1145/2635868.2635882
http://doi.acm.org/10.1145/2635868.2635882
http://dx.doi.org/10.1145/985692.985765
http://doi.acm.org/10.1145/985692.985765
https://jaxbot.me/articles/github-most-popular-languages
http://dl.acm.org/citation.cfm?id=1778331.1778361

[66] J. Wu, R. C. Holt, and A. E. Hassan. Exploring Software Evolution Using
Spectrographs. In Proceedings of the 11th Working Conference on Reverse
Engineering, WCRE ’04, pages 80–89, Washington, DC, USA, 2004. IEEE
Computer Society. ISBN 0-7695-2243-2. URL
http://dl.acm.org/citation.cfm?id=1038267.1039040. → pages 10

[67] S. Xie, F. Khomh, and Y. Zou. An Empirical Study of the Fault-proneness of
Clone Mutation and Clone Migration. In Proceedings of the 10th Working
Conference on Mining Software Repositories, MSR ’13, pages 149–158,
Piscataway, NJ, USA, 2013. IEEE Press. ISBN 978-1-4673-2936-1. URL
http://dl.acm.org/citation.cfm?id=2487085.2487118. → pages 16, 18, 66

[68] J. Yang and L. Tan. Inferring semantically related words from software
context. In Proceedings of the 9th IEEE Working Conference on Mining
Software Repositories, pages 161–170. IEEE Press, 2012. → pages 15

62

http://dl.acm.org/citation.cfm?id=1038267.1039040
http://dl.acm.org/citation.cfm?id=2487085.2487118

Appendix A

Literature survey

This appendix contains meta-data and raw results for the literature survey described

in Chapter 3.

A.1 Full protocol
This is version 6 of the protocol, which we evolved during the coding process.

A.1.1 Scope

Our study considers a paper to be in scope if it describe evaluation targets that

match our definition.

A.1.2 Overview

1. Categorize each assigned paper along 5 dimensions. Along the way, you

may need to

2. expand the codebook to accommodate previously unobserved cases. The 5

dimensions:

(a) code: selection criteria

(b) code: projects visibility

(c) yes/no: does the paper analyzes some feature of the projects over time

(d) keywords: data used in the evaluation

63

(e) number: number of evaluation targets

A.1.3 Procedure

Read the abstract. Usually the abstract mentions whether the paper evaluates a

tool (on rare occasions it will not be mentioned in the abstract but will be in the

introduction or conclusion).

Scan the paper to find the section describing the evaluation (usually titled Eval-

uation or Methodology, but can have another name). Once you found the name(s)

of the project(s1) that are being evaluated, search for all mentions of those names

and look for a paragraph that explains the reasons for selecting those projects. Usu-

ally it will contain the key phrases “we selected X because Y” or “our reasons for

selecting X are Y”.

Familiarize yourself with all the codes, apply the one that matches best. Some

papers can have two or more selection criteria codes or project visibility codes

apply to them. Reasons for that might be:

• The selection criteria is ambiguous

• There are two sets of projects (e.g., creating a cross-project prediction model

for software defects)

• It is clear that the selection process had all of the codes apply

• Example: “All datasets used in our case study have been obtained from the

PROMISE repository, and have been reported to be as diverse of datasets as

can be found in this database” [12] — REF and DIV

Some papers clearly do not evaluate software. e.g., papers that review or cri-

tique previous papers, papers that only conduct a series of interviews, etc. In this

case apply IRR for selection criteria only.

Some papers have a detailed explanation on their selection criteria in the threats

to validity section. Make sure to read this section as well.

1Some papers do not mention the project by name (e.g., IND paper that does not reveal the
industrial partner) in which case they would usually give the project a pseudonym or call it “our case
study”, “the studied program”, etc.

64

A.2 Categories
The following codes apply solely to the main evaluation(s) of the paper. They do

not include preliminary works.

• Selection criteria codes are listed in Table 3.2.

Disambiguation

– DEV requires that the selected project(s) have a specific development

process, either followed by developers or related to some automated

tool. The development process is mentioned explicitly as a one of the

reasons that this project was chosen or as a requirement for the tool to

operate. This does not necessarily have to be a unique feature. It could

be something common, such as the existence of certain data sets, usage

of various aid tools that relate to each other such as an issue tracker that

integrates with version control, etc.

– QUA and MET differ in strictness. They both require that the selec-

tion criteria is somewhat indexable: codebase size, age, programming

languages, team composition, popularity, program domain, etc. The

difference is that QUA is not well-defined, there is no “function” that,

given a project, returns a yes/no answer to whether or not this project

fits the selection criteria. MET is more deterministic — either a project

fits the criteria, or it does not.

– DIV is blurry — it may be difficult to tell if the authors are charac-

terizing the projects they selected or if they used diversity as a criteria

during project selection. Therefore, consider whether diversity is men-

tioned in the vicinity of selection methodology and whether it is likely

that it was a selection criteria.

– ACC is not always added when an industrial project is studied. When

there is no clear reason, other than the fact that they had access, ACC

code should not be used. If an equivalent analysis was applied to an

industrial and an open source project then ACC should not be used.

Note that the IND visibility code (see Table 3.3) can still apply, even if

ACC is not used.

65

• Project visibility codes are listed in Table 3.3.

• Analyzes some features of the project over time (evolution)

– Yes: some aspect of the analysis studies a feature of the projects’ over

time. e.g., comparing two or more releases, reviewing commit logs,

inspecting bug types over time.

Example: [49] — this paper uses the projects’ commit logs and bug

history in its evaluation.

– No: all aspects of the analysis make use of a single snapshot of each

project. e.g., running a tool on one version of the project’s source code,

comparing bug types across projects but not across time.

Example: [47] — this paper uses the projects’ source code from a sin-

gle snapshot in its evaluation.

• Evaluated artifacts keywords

Write in keywords that describe the evaluation targets’ artifacts from used in

the paper. Examples:

– [29]: “runtime traces”

– [44]: “patches”

– [67]: “code clones”

– [10]: “bug reports”

• What is a valid evaluation target

A software project. For example, a codebase that evolves over time with

multiple collaborators. Not, for example, an abstract model or an algorithm.

• Number of evaluation targets

The number of evaluation targets that the paper uses. This is a subjective

number, as some targets can be thought of as 1 project or many projects

(e.g., Android is an operating system with many sub-projects: One paper

can evaluate Android as a single target, while another paper can evaluate the

many sub-projects in Android).

66

Use the following rules of thumb, which are ordered in decreasing prece-

dence (initial ones take precedence):

1. If a number is explicitly mentioned, use that number.

Example of 161 targets: “Out of the 169 apps randomly selected, 8

apps had no reviews assigned to them which left us with 161 reviewed

apps” [34]

2. For multi-project targets, look for whether a multi-project is evaluated

as a single target or as multiple targets.

Example of 8 targets: [47] — this paper names 3 targets (“Microbench-

marks”, “Google Chrome”, and “Apple Safari”), but in various tables

and in the text the Microbenchmarks are being evaluated as 6 discrete

targets. The total number is therefore 8: 6 microbenchmarks + 2 named

applications.

3. If a number is not explicitly mentioned but the authors list names of

projects and treat each project as a single target in their evaluation,

count the names.

Example of 1 target: “We evaluate our approach on a large bug-report

data-set from the Android project, which is a Linux-based operating

system with several sub-projects” [10]

A.2.1 Notes

Multiple selection codes may indicate a number of scenarios. For example, a paper

might have selected two sets of projects independently (e.g., ACC for industrial

Microsoft projects and REF for open source projects based on prior work). The

two selection codes may also indicate a kind of filtering (e.g., REF for selecting

benchmarks from prior work and QUA to filter these benchmarks down to a subset

used in the paper).

A.3 Raw results
Here we list the raw results from the literature survey.

67

Table A.1: Results on the initial set of 59 papers used to seed the codebook.

Title
Selection
code [1]

of
evaluation
targets

MSR 2014

Mining energy-greedy API usage patterns in Android apps: an empirical study UNK 55

GreenMiner: a hardware based mining software repositories software energy consumption framework SPE 1

Mining questions about software energy consumption IRR

Prediction and ranking of co-change candidates for clones QUA 6

Incremental origin analysis of source code files QUA 7

Oops! where did that code snippet come from? SPE 1

Works for me! characterizing non-reproducible bug reports QUA 6

Characterizing and predicting blocking bugs in open source projects QUA 6

An empirical study of dormant bugs SPE 20

The promises and perils of mining GitHub IRR

Mining StackOverflow to turn the IDE into a self-confident programming prompter CON 2

Mining questions asked by web developers IRR

Process mining multiple repositories for software defect resolution from control and organizational perspective SPE 1

MUX: algorithm selection for software model checkers REF 79

Improving the effectiveness of test suite through mining historical data IND 1

Finding patterns in static analysis alerts: improving actionable alert ranking QUA 3

Impact analysis of change requests on source code based on interaction and commit histories QUA 1

An empirical study of just-in-time defect prediction using cross-project models REF, QUA 11

Towards building a universal defect prediction model POP, REF 1403

The impact of code review coverage and code review participation on software quality: a case study of the qt, VTK, and ITK projects MET 3

Modern code reviews in open-source projects: which problems do they fix QUA 2

Thesaurus-based automatic query expansion for interface-driven code search REF 100

Estimating development effort in Free/Open source software projects by mining software repositories: a case study of OpenStack QUA 1

An industrial case study of automatically identifying performance regression-causes IND, REF 2

Revisiting Android reuse studies in the context of code obfuscation and library usages POP 24379

Syntax errors just aren't natural: improving error reporting with language models UNK 3

Do developers feel emotions? an exploratory analysis of emotions in software artifacts REF 117

How does a typical tutorial for mobile development look like? IRR

Unsupervised discovery of intentional process models from event logs SPE 1

ICSE2014

Cowboys, ankle sprains, and keepers of quality: how is video game development different from software development? IRR

Analyze this! 145 questions for data scientists in software engineering IRR

The dimensions of software engineering success IRR

How do professionals perceive legacy systems and software modernization? IRR

SimRT: an automated framework to support regression testing for data races QUA 5

Performance regression testing target prioritization via performance risk analysis QUA 3

Code coverage for suite evaluation by developers MET 1254

Time pressure: a controlled experiment of test case development and requirements review IRR

Verifying component and connector models against crosscutting structural views UNK 4

TradeMaker: automated dynamic analysis of synthesized tradespaces REF, CON 4

Lifting model transformations to product lines IRR

Automated goal operationalisation based on interpolation and SAT solving IRR

Mining configuration constraints: static analyses and empirical results QUA 4

Which configuration option should I change? QUA 8

Detecting differences across multiple instances of code clones UNK 3

Achieving accuracy and scalability simultaneously in detecting application clones on Android markets POP 150145

Two's company, three's a crowd: a case study of crowdsourcing software development DES, IND 1

Does latitude hurt while longitude kills? geographical and temporal separation in a large scale software development project DES, IND 1

Software engineering at the speed of light: how developers stay current using twitter IRR

Building it together: synchronous development in OSS REF, QUA, SPE 31

A critical review of "automatic patch generation learned from human-written patches": essay on the problem statement and the evaluation of automatic software rep IRR

Data-guided repair of selection statements QUA 7

The strength of random search on automated program repair REF 7

MintHint: automated synthesis of repair hints MET 3

Mining behavior models from user-intensive web applications IND 1

Reviser: efficiently updating IDE-/IFDS-based data-flow analyses in response to incremental program changes DES, UNK 4

Automated design of self-adaptive software with control-theoretical formal guarantees QUA 3

Perturbation analysis of stochastic systems with empirical distribution parameters IRR

How do centralized and distributed version control systems impact software changes? MET 132

Transition from centralized to decentralized version control systems: a case study on reasons, barriers, and outcomes IRR

• SPE (“SPEcial development process required”) was renamed to DEV (“some

quality of the DEVelopment practice required”)

68

• CON and IND, which were originally “selection process” codes, were used

to create the “project visibility” category

• POP (“A complete set or random subset of projects from an explicit popula-

tion of repositories (such as GitHub, an app store, etc.)”) and MET (“random

or manual selection based on a set of well-defined METrics”) was removed

from the final version of the codebook as no papers in the main literature

survey were categorized using these codes. An extended literature survey

might reveal such papers, in which case these codes can be re-added to the

codebook.

• DES (“Evaluated on a project that the tool is designed for, or a case study

performed on specific projects (no tool)”) was removed and replaced by other

rationales where appropriate

69

Table A.2: Results and analysis of the survey of 55 paper.

Title Selection code Visibility code Analyzes evolution Evaluated data type keywords # of evaluation t

ICSE2013
Robust reconfigurations of component assemblies IRR

Coupling software architecture and human architecture for collaboration-aware s IRR

Inferring likely mappings between APIs QUA PUB No runtime traces 21

Creating a shared understanding of testing culture on a social coding site IRR

Human performance regression testing QUA PUB No User performance times 1

Teaching and learning programming and software engineering via interactive ga IRR

UML in practice IRR

Agility at scale: economic governance, measured improvement, and disciplined IRR

Reducing human effort and improving quality in peer code reviews using automa ACC,DEV IND No review requests, commits 2 or 3

Improving feature location practice with multi-faceted interactive exploration REF,QUA PUB No source code, features 1

MSR2013
Which work-item updates need your response? DEV PUB,IND Yes work items 2

Linux variability anomalies: what causes them and how do they get fixed? DEV PUB Yes Patches 1

An empirical study of the fault-proneness of clone mutation and clone migration QUA,DIV PUB Yes code clones 3

A contextual approach towards more accurate duplicate bug report detection DEV,QUA PUB Yes bug reports 1

Why so complicated? simple term filtering and weighting for location-based bug DEV,QUA PUB No bug reports, source code, commits 2

The impact of tangled code changes DEV,QUA PUB No bug reports, commits 5

Replicating mining studies with SOFAS IRR

Bug report assignee recommendation using activity profiles QUA,DIV PUB No bug reports 3

Bug resolution catalysts: identifying essential non-committers from bug repositori DEV,DIV PUB,IND No bug reports, commits 16

Discovering, reporting, and fixing performance bugs DEV,REF PUB No bug reports, patches 3

FSE2014
Verifying CTL-live properties of infinite state models using an SMT solver IRR

Let's talk about it: evaluating contributions through discussion in GitHub REF,MET PUB Yes pull requests, comments ?

Detecting energy bugs and hotspots in mobile apps DIV PUB No executables 30

Selection and presentation practices for code example summarization DEV PUB No code fragments 1

Vector abstraction and concretization for scalable detection of refactorings REF,QUA PUB Yes source code, commits 203

Focus-shifting patterns of OSS developers and their congruence with call graphs QUA PUB Yes commits 15

Building call graphs for embedded client-side code in dynamic web applications REF PUB No source code 5

JSAI: a static analysis platform for JavaScript REF,DIV PUB No source code 28

Sherlock: scalable deadlock detection for concurrent programs REF,DIV PUB No source code 22

Sketches and diagrams in practice IRR

FSE2012
Detecting and analyzing insecure component usage QUA PUB No components, security policies 6

Do crosscutting concerns cause modularity problems? DEV,QUA PUB Yes bug reports, patches, reviews 1

AUSUM: approach for unsupervised bug report summarization REF,UNK PUB,IND No bug reports 2

Test input generation using dynamic programming REF,QUA PUB No source code 8

Mining the execution history of a software system to infer the best time for its ad UNK UNK No event log 1

CarFast: achieving higher statement coverage faster IRR

Multi-layered approach for recovering links between bug reports and fixes REF PUB Yes bug reports, commits 3

Understanding myths and realities of test-suite evolution DEV,QUA PUB Yes test suites 6

Searching connected API subgraph via text phrases IRR

Rubicon: bounded verification of web applications DEV,QUA,DIV PUB No source code, specs 5

MSR2012
MIC check: A correlation tactic for ESE data DEV PUB Yes bug reports, commit logs 4

Think locally, act globally: Improving defect and effort prediction models REF,DIV PUB Yes defects 4

Analysis of customer satisfaction survey data IRR

Inferring semantically related words from software context REF PUB No source code 7

A qualitative study on performance bugs DEV,QUA PUB No bug reports 2

ASE2013
Improving efficiency of dynamic analysis with dynamic dependence summaries REF PUB Yes source code 6

Bita: Coverage-guided, automatic testing of actor programs REF,QUA PUB,CON No source code 8

Ranger: Parallel analysis of alloy models by range partitioning IRR

JFlow: Practical refactorings for flow-based parallelism REF,DIV PUB No source code 7

SEDGE: Symbolic example data generation for dataflow programs REF,QUA PUB No source code 31

ESEM2013
Tracing Requirements and Source Code during Software Development: An Emp DEV CON Yes requirements, work items, source cod 3

When a Patch Goes Bad: Exploring the Properties of Vulnerability-Contributing REF,DEV PUB Yes commits, source code, vulnerabilities 1

ScrumBut, But Does it Matter? A Mixed-Method Study of the Planning Process o DEV,ACC IND Yes requirements 1

Using Ensembles for Web Effort Estimation IRR

Experimental Comparison of Two Safety Analysis Methods and Its Replication IRR

70

Appendix B

Undergraduate students study

This appendix contains meta-data and raw results for the user study with under-

graduate students described in Section 5.1.

B.1 Slides from the in-class demonstration

A tool to analyze and juxtapose
software project history

University of British Columbia
Computer Science

Software Practices Lab

Saarland University
Computer Science

Brief lecture and	

in-class research study

71

 University of British Columbia Ivan Beschastnikh

Another tool to visualize repositories?

• There are numerous tool to visualize repositories!

• None provide a flexible interface to!

• Juxtapose/compare multiple repositories!

• Unify multiple metrics of a repository into one view!

• Simple and easy to use!

• Our targeted population: SE researchers!

• Need to select evaluation targets for studies!

• Need a simple and efficient project comparison tool

2

 University of British Columbia Ivan Beschastnikh

Repograms: a repository is a sequence of blocks

• A block represents a commit!

• Block’s length is either a fixed constant or encodes
lines of codes changed!

• A block’s colour represents a “metric” value!

• A metric is a function:!

• Example (block length = fixed constant):

3

m(commit) ! number

Time

First commit

…

Project

72

 University of British Columbia Ivan Beschastnikh

Repograms: a repository is a sequence of blocks

• A block represents a commit!

• Block’s length is either a fixed constant or encodes
lines of codes changed!

• A block’s colour represents a “metric” value!

• A metric is a function:!

• Example (block length = lines of code changed):

4

m(commit) ! number

Time

First commit Big commit

…

Project

 University of British Columbia Ivan Beschastnikh

Repograms: a repository is a sequence of blocks

• A block represents a commit!

• Block’s length is either fixed constant or encodes lines of
codes changed!

• A block’s colour represents a “metric” value!

• Example metric: “number of words in a commit message”

5

Time

Short message Longer message

…

73

 University of British Columbia Ivan Beschastnikh

DEMO!

• Basic tool features

6

Time

Short message Longer message

…

 University of British Columbia Ivan Beschastnikh

Evaluating repograms

• User-study!

• Study design: survey + tool use
(you’ll experience this firsthand!)!

• Human subjects review

7

Time

Short message Longer message

…

74

 University of British Columbia Ivan Beschastnikh

Human subjects review (REB)

8

• REB: research ethics board!

• Independent body!

• Reviews research protocol + study materials!

• Goal is to maximize human safety: protect
human subjects from physical or
psychological harm!

• Risk-benefit analysis

 University of British Columbia Ivan Beschastnikh

Repograms REB application

9

• PDFs

75

In-class research study

Help us evaluate !

• You are the subjects	

• Voluntary (you don’t have to participate)	

• Can do the study at home (anytime this week)	

• Enter raffle for 5 x $25 gift cards to UBC Bookstore

Begin study by browsing to:

Questions? Raise your hand.

http://repograms.net

Browser options: Chrome (best), Firefox, or Safari (worst)	

 Does not work in IE	

Avoid tablets and phones

76

B.2 Protocol and questionnaire

B.2.1 Overview

The study was conducted in a 4th year software engineering class at the Univer-

sity of British Columbia. Prior to the study there were two lectures by the leading

investigator. The first lecture covered concepts in version control systems and re-

search methods. The second lecture was an introduction to RepoGrams. The slides

from the latter lecture are presented in the preceding section.

Participation was voluntary, we emphasized this before beginning the study.

There were 105 students in the classroom, 91 students began the questionnaire and

74 completed it.

When opening RepoGrams during this study it automatically loaded the fol-

lowing 5 repositories1:

• https://github.com/RepoGrams/sqlitebrowser

• https://github.com/RepoGrams/vim.js

• https://github.com/RepoGrams/AudioStreamer

• https://github.com/RepoGrams/LightTable

• https://github.com/RepoGrams/html-pipeline

B.2.2 Questionnaire

[Questions are elaborated in the next sections]

We mark our ground truth answers with an underline. For some questions there

is more than one correct answer.

A. Consent form

B. Demographics (1 page, 5 questions)

1In the study we loaded the original repositories from which these repositories were forked. We
forked and froze these repositories post-study for reproducibility reasons.

77

https://github.com/RepoGrams/sqlitebrowser
https://github.com/RepoGrams/vim.js
https://github.com/RepoGrams/AudioStreamer
https://github.com/RepoGrams/LightTable
https://github.com/RepoGrams/html-pipeline

C. Warmup questions (2 pages, 4 questions)

D. Metric comprehension questions (5 pages, 6 questions)

E. Questions about comparisons across projects (3 pages, 3 questions)

F. Exploratory question (1 page, 1 question)

G. Open comments (1 page, 2 questions)

H. Raffle ticket

B.2.3 Demographics

a. How many Computer Science courses have you successfully passed?

• 0–5 courses

• 6–10 courses

• 11–15 courses

• 16 or more courses

b. Have you worked in Computer Science related jobs (e.g. co-ops, intern-

ships)? If so, how many academic terms have you spent working in such

jobs?

• I have not worked in CS related jobs

• 1 term

• 2 terms

• 3 terms

• 4 or more terms

c. How many years of experience have you had with version control systems?

(e.g., mercurial, git, svn, cvs)

• No experience

78

• 1 year of experience

• 2 years of experience

• 3 years of experience

• 4 or more years of experience

d. How often do you use version control systems?

Consider any use of version control systems, whether it is during courses,

jobs, or for private use.

• Daily

• Weekly

• Monthly

• Never use/used

e. Have you ever used version control outside of class, for a project not related

to schoolwork?

• Yes

• No

f. Note: Our online questionnaire included another question in the Demograph-

ics section after e., however, we found that the question was understood am-

biguously by a large number of participants. As a consequence we removed

that question from our analysis and do not report on it here.

B.2.4 Warmup questions

(pg. 1)

• We developed a tool called RepoGrams for comparing and analyzing the

history of multiple software projects. In this study you will help us evaluate

RepoGrams.

79

• RepoGrams can be used to analyze various repository metrics, such as the

number of programming languages that a project consists of over time.

• A repository consists of a number of commits. RepoGrams represents a

commit as a block. The blocks can be configured to have different block

lengths.

• A metric measures something about a commit. RepoGrams calculates a nu-

meric metric value for each commit in a project repository.

• RepoGrams uses colours to represent different commit metric values. The

legend details which colour corresponds to each metric value, or range of

values.

Open RepoGrams in a separate tab: http://repograms.net:2000/

In RepoGrams, a row of blocks represents the software repository history of a

software project. A coloured block in one such row represents a single commit to

a project repository.

1. How many projects are listed in the newly opened RepoGrams tab?

• 1

• 2

• 3

• 4

• 5

2. Using the Fixed block length, estimate the number of commits in the Au-
dioStreamer project using the RepoGrams tool:

• Tens (10–99)

• Hundreds (100–999)

• Thousands (1,000–9,999)

• Tens of thousands (10,000–99,999)

80

http://repograms.net:2000/

(pg. 2)

How to use RepoGrams

• Hover your mouse pointer over the block that represents the commit (desk-

top/laptop) or touch the commit (tablets) to see the commit’s unique iden-

tifier (called commit hash) and the commit message. Clicking/touching the

commit will copy the first 5 letters/numbers of the commit’s hash to your

clipboard for easy pasting into the answer sheet.

• When asked to identify one or more commits, type the first 5 letters/numbers

of their commit hash to the answer sheet.

• When asked to identify one or more projects, project repositories, or metric,

type their name(s) to the answer sheet.

3. Remove the AudioStreamer project repository from the view. How many

project are now listed?

• 1

• 2

• 3

• 4

• 5

4. Add the Postr repository (URL provided below) to the view. Using any

metric and the Lines changed (comparable btw. projects) block length and

the zoom control, how does the Postr project compare with the other projects

in terms of its size? (Options below are listed from smallest to largest)

https://github.com/RepoGrams/postr

• Postr is the smallest project

• Postr is the second smallest project

• Postr is the second largest project

• Postr is the largest project

81

https://github.com/RepoGrams/postr

B.2.5 Metric comprehension questions

(pg. 1)

Languages in a Commit metric

The Languages in a Commit metric measures the number of different program-

ming languages used in each commit. For example, a commit that changed one

Java file and two XML files would get the value 2 because it changed a Java file

and XML files. A commit that changed 100 Java files would get the value 1 because

it only changed Java files.

5. Using the Languages in a Commit metric and any block length, which project

is likely to contain source code written in the most diverse number of differ-

ent languages?

• sqlitebrowser

• vim.js

• LightTable

• html-pipeline

• postr

(pg. 2)

Branches Used metric

The Branches Used metric assigns a colour to each commit based on the branch

that the commit belongs to (each branch in a project is given a unique colour).

6. Using the Branches Used metric and the Lines changed (incomparable btw.

projects) block length, which project repository is most like to have the least
number of distinct branches?

• sqlitebrowser

• vim.js

• LightTable

• html-pipeline

82

• postr

7. Using the Branches Used metric and the Lines changed (incomparable btw.

projects) block length, which project repository is most like to have the most
number of distinct branches?

• sqlitebrowser

• vim.js

• LightTable

• html-pipeline

• postr

(pg. 3)

Most Edited File metric

The Most Edited Files metric measures the number of times that the most edited

file in a commit has been previously modified. A commit with a high metric value

indicates that it modifies a file that was changed many times in previous commits.

A commit will have a low value if it is composed of new or rarely edited files.

8. Using the Most Edited File metric and the Fixed block length, what is the

commit hash of the latest commit that modified the most popular file(s) in

the Postr project?

[text field]

[ground truth answer: bed3257]

(pg. 4)

Commit Localization metric

The Commit Localization metric represents the fraction of the number of unique

project directories containing files modified by the commit.

Metric value of 1 means that all the modified files in a commit are in a single

directory. Metric value of 0 means all the project directories contain a file modified

by the commit.

83

9. Using the Commit Localization metric and the Fixed block length, which

project had the longest uninterrupted sequence of commits with metric val-

ues in the range 0.88–1.00?

• sqlitebrowser

• vim.js

• LightTable

• html-pipeline

• postr

(pg. 5)

Number of Branches metric

The Number of Branches metric measures the number of branches actively

used by developers: a high value means that developers were making changes in

many different branches at the time that a commit was created.

10. Using the Number of Branches metric and the Fixed block length, find one

commit in LightTable when developers were using the largest number of

concurrent branches?

There can be multiple correct answers to this question.

[text field]

[ground truth answer: any of 522d848, 7729887, c55f44e]

B.2.6 Questions about comparisons across projects

In this set of questions you will be asked to compare different projects based on

one or two metrics. For each of the following questions, explain the reason for

your choices in 1–2 short sentences.

(pg. 1)

11. Using the Number of Branches metric and the Lines changed (incomparable

btw. projects) block length, which project appears to have a development

process most similar to LightTable?

84

• sqlitebrowser

• vim.js

• LightTable

• html-pipeline

• postr

a. Why did you choose this project?

[text field]

(pg. 2)

12. Using the Languages in a Commit metric and the Fixed block length, which

two project repositories appear to have the most similar development process

with each other?

• sqlitebrowser

• vim.js

• LightTable

• html-pipeline

• postr

a. Why did you choose this project?

[text field]

(pg. 3)

Commit Message Length

The Commit Message Length metric counts the number of words in the commit

log message of each commit.

13. Using the Commit Message Length metric and the Fixed block length, which

project has a distinct pattern in the level of detail of its commit messages that

distinguishes it from all of the other projects?

• sqlitebrowser

85

• vim.js

• LightTable

• html-pipeline

• postr

a. Read through some of the commit messages (by hovering over the

commits) from the project you selected and briefly explain why

this project has such a distinct pattern.

[text field]

B.2.7 Exploratory question

(pg. 1)

Choosing metrics

Commit messages provide current and future developers in the project with

insight for what changes were made and the reasoning behind those changes. Un-

fortunately, developers sometimes neglect to detail the changes and reasons.

Using the Lines changed (incomparable btw. projects) block length, find a sin-

gle commit in vim.js where the developer made a significant change but neglected

to elaborate on that change. Choose any commit that is NOT the first commit in

the project. There can be multiple correct answers to this question.

14. Which metric(s) did you use?

[text field]

Which commit did you identify?

[text field]

[ground truth answer: any of 1557ac8, 09039d7, c343fb6, e071941,

238dba7, 7390e4e]

a. Write a short explanation for your choice of metric(s):

[text field]

86

B.2.8 Open comments

a. Was there anything confusing about RepoGrams? What tasks were difficult

to perform?

[text field]

b. Other comments about RepoGrams and this study:

[text field]

B.2.9 Filtering results

We discarded individual answers when students spent a disproportionately short

time (<10 seconds) on the page that contained those questions. We also received

one extra entry (a total of 75 responses) in which the participant answered 3 of the

4 warmup questions wrong. We discarded this entry from our analysis and from all

reports. Anonymized results are collected in the next section.

B.3 Raw results
Here we list the raw results. Cells with a dark red background denote an answer that

is incompatible with our ground truth answers. Cells with an orange background

denote that the answer for this question was discarded from the report for being

answered in less than 10 seconds, and was most likely skipped by the participant.

Columns titled gt mark whether the raw answer was compatible with our ground

truth (true/false). Columns titled gt-agree and gt-disagree are the encoded labels

that we assigned to the explanation by the participants, based on their raw text

response. We do not report raw text responses to preserve the anonymity of the

participants.

87

Table B.1: Raw results from the demographics section in the user study with
undergraduate students.

P a b c d e time

1 16+ 0 4+ Weekly yes 00:01:17

2 11-15 0 1 Monthly no 00:00:53

3 11-15 3 3 Monthly no 00:01:14

4 16+ 3 2 Daily yes 00:00:11

5 0-5 0 2 Weekly no 00:02:09

6 16+ 3 1 Never yes 00:00:46

7 16+ 0 2 Weekly yes 00:00:46

8 6-10 4+ 2 Weekly yes 00:00:56

9 6-10 0 1 Daily no 00:01:50

10 11-15 2 2 Daily yes 00:02:15

11 11-15 0 1 Weekly yes 00:01:43

12 6-10 2 1 Daily yes 00:00:17

13 16+ 0 1 Weekly yes 00:00:38

14 6-10 0 3 Daily yes 00:00:19

15 6-10 0 3 Daily yes 00:01:36

16 0-5 0 2 Weekly no 00:02:25

17 6-10 2 1 Weekly yes 00:01:36

18 11-15 2 1 Daily yes 00:01:07

19 0-5 3 3 Daily yes 00:00:28

20 11-15 4+ 4+ Weekly yes 00:01:23

21 11-15 3 2 Monthly yes 00:00:31

22 16+ 0 2 Daily yes 00:00:29

23 6-10 2 1 Monthly yes 00:00:15

24 6-10 0 1 Weekly yes 00:01:11

25 11-15 3 1 Weekly yes 00:00:47

26 11-15 2 1 Daily yes 00:01:02

27 11-15 0 2 Weekly yes 00:00:55

28 11-15 0 2 Weekly yes 00:02:25

29 6-10 2 2 Daily yes 00:01:47

30 11-15 2 2 Monthly yes 00:00:50

31 11-15 3 3 Weekly yes 00:00:37

P a b c d e time

32 16+ 0 2 Never yes 00:00:53

33 0-5 1 2 Weekly yes 00:01:11

34 11-15 1 1 Monthly no 00:01:28

35 6-10 1 1 Monthly yes 00:01:07

36 0-5 0 2 Weekly yes 00:00:57

37 6-10 2 2 Daily yes 00:00:30

38 11-15 4+ 2 Weekly yes 00:00:36

39 11-15 4+ 2 Weekly no 00:00:59

40 0-5 0 1 Daily yes 00:00:44

41 11-15 3 2 Daily yes 00:00:38

42 11-15 4+ 4+ Weekly yes 00:00:54

43 6-10 0 3 Monthly yes 00:00:59

44 11-15 0 0 Never no 00:00:41

45 11-15 4+ 2 Weekly yes 00:01:13

46 6-10 2 1 Weekly no 00:01:47

47 11-15 0 2 Daily yes 00:01:45

48 16+ 4+ 2 Weekly yes 00:00:50

49 11-15 1 1 Weekly yes 00:01:52

50 6-10 2 1 Weekly yes 00:01:25

51 11-15 1 1 Never yes 00:04:19

52 0-5 0 2 Monthly no 00:01:42

53 16+ 4+ 3 Weekly yes 00:02:07

54 6-10 1 2 Weekly yes 00:01:15

55 11-15 2 1 Weekly yes 00:01:31

56 11-15 2 2 Daily yes 00:00:30

57 6-10 0 1 Weekly no 00:01:29

58 16+ 4+ 3 Daily yes 00:01:46

59 11-15 1 0 Never no 00:02:10

60 6-10 2 1 Weekly yes 00:01:10

61 6-10 2 1 Daily yes 00:01:01

62 11-15 3 3 Daily yes 00:00:50

P a b c d e time

63 6-10 0 1 Monthly no 00:00:54

64 0-5 0 2 Daily yes 00:01:36

65 16+ 3 3 Weekly yes 00:00:31

66 16+ 4+ 3 Daily yes 00:01:01

67 6-10 0 1 Never no 00:00:57

68 16+ 4+ 3 Monthly yes 00:03:26

69 6-10 2 2 Weekly yes 00:00:38

70 6-10 4+ 1 Never yes 00:03:56

71 16+ 2 1 Daily yes 00:00:35

72 6-10 4+ 1 Monthly no 00:01:12

73 16+ 3 3 Weekly yes 00:02:27

74 11-15 0 2 Weekly yes 00:00:38

88

Table B.2: Raw results from the warmup section (questions 1–4) in the user
study with undergraduate students.

Red cells denote participant answers that do not match our ground truth for that question.

P 1 2 time 3 4 time

1 5 Tens 00:01:55 4 Second smallest 00:00:07

2 5 Tens 00:04:20 4 Second smallest 00:03:43

3 5 Tens 00:02:44 4 Second smallest 00:02:11

4 5 Tens 00:01:37 4 Smallest 00:00:47

5 5 Tens 00:01:45 4 Smallest 00:01:06

6 5 Tens 00:02:45 4 Second smallest 00:02:05

7 5 Tens 00:02:09 4 Second smallest 00:02:05

8 5 Tens 00:01:56 4 Second smallest 00:01:35

9 5 Tens 00:02:29 4 Smallest 00:02:03

10 5 Tens 00:01:31 4 Second smallest 00:00:03

11 5 Tens 00:04:15 4 Smallest 00:01:13

12 5 Tens 00:01:09 4 Second smallest 00:01:47

13 5 Tens 00:01:50 4 Smallest 00:01:54

14 5 Tens 00:00:47 4 Largest 00:00:40

15 5 Tens 00:02:36 4 Second smallest 00:03:21

16 5 Tens 00:01:26 4 Smallest 00:00:44

17 5 Tens 00:02:13 4 Second smallest 00:01:44

18 5 Hundreds 00:02:38 4 Second smallest 00:02:31

19 5 Tens 00:01:12 4 Second largest 00:00:40

20 5 Tens 00:03:08 4 Second smallest 00:02:04

21 5 Hundreds 00:03:36 4 Second smallest 00:02:08

22 5 Tens 00:01:37 4 Second largest 00:05:15

23 5 Tens 00:00:03 4 Second smallest 00:00:10

24 5 Tens 00:02:35 4 Smallest 00:01:46

25 5 Tens 00:01:32 4 Smallest 00:01:44

26 5 Tens 00:02:17 4 Second smallest 00:01:54

27 5 Tens 00:01:27 4 Second smallest 00:01:31

28 5 Tens 00:02:45 4 Second smallest 00:01:47

29 5 Tens 00:01:56 4 Second smallest 00:01:21

30 5 Tens 00:01:10 4 Second smallest 00:01:45

31 5 Tens 00:02:07 4 Largest 00:01:17

P 1 2 time 3 4 time

32 5 Tens 00:04:02 4 Smallest 00:00:46

33 5 Tens 00:04:37 4 Second smallest 00:02:01

34 5 Tens 00:02:52 4 Second smallest 00:02:01

35 5 Hundreds 00:02:13 4 Second smallest 00:01:12

36 5 Tens 00:02:30 4 Smallest 00:05:17

37 5 Tens 00:06:34 4 Smallest 00:01:01

38 5 Hundreds 00:01:46 4 Second smallest 00:00:52

39 5 Hundreds 00:04:00 4 Smallest 00:03:02

40 5 Tens 00:01:31 4 Second largest 00:00:54

41 5 Tens 00:03:16 4 Second smallest 00:00:10

42 5 Tens 00:02:04 4 Smallest 00:02:31

43 5 Tens 00:02:26 4 Smallest 00:02:43

44 5 Tens 00:03:46 4 Second smallest 00:01:50

45 5 Tens 00:01:57 4 Second smallest 00:03:01

46 5 Thousands 00:06:38 4 Second largest 00:02:17

47 5 Tens 00:01:04 4 Smallest 00:00:54

48 5 Hundreds 00:04:01 4 Second smallest 00:02:11

49 5 Tens 00:01:10 4 Second smallest 00:01:27

50 5 Tens 00:02:13 4 Second smallest 00:03:51

51 5 Tens 00:02:33 4 Smallest 00:01:32

52 5 Tens 00:01:30 4 Smallest 00:01:22

53 5 Tens 00:04:09 4 Second smallest 00:01:47

54 5 Tens 00:07:07 4 Second smallest 00:00:08

55 5 Tens 00:02:48 4 Second smallest 00:00:55

56 5 Tens 00:00:58 4 Second smallest 00:00:45

57 5 Tens 00:02:13 4 Second smallest 00:02:13

58 5 Tens 00:01:56 4 Second smallest 00:00:49

59 5 Tens 00:05:41 4 Second smallest 00:01:28

60 5 Tens 00:00:53 4 Second smallest 00:02:09

61 5 Tens 00:01:40 4 Second smallest 00:03:12

62 5 Tens 00:02:46 4 Second smallest 00:01:39

P 1 2 time 3 4 time

63 5 Tens 00:02:46 4 Second smallest 00:01:13

64 5 Tens 00:04:21 4 Second smallest 00:01:48

65 5 Tens 00:02:15 4 Second smallest 00:03:09

66 5 Tens 00:01:21 4 Second smallest 00:01:04

67 5 Thousands 00:01:32 4 Largest 00:00:56

68 5 Tens 00:01:46 4 Smallest 00:03:06

69 5 Tens 00:00:19 4 Second smallest 00:01:12

70 5 Tens 00:03:57 4 Smallest 00:01:32

71 5 Tens 00:00:06 4 Second smallest 00:01:13

72 5 Tens 00:02:20 4 Second smallest 00:00:51

73 5 Tens 00:03:06 4 Second smallest 00:00:10

74 5 Hundreds 00:03:16 4 Second smallest 00:01:32

89

Table B.3: Raw results from the metrics comprehension section (questions
5–7) in the user study with undergraduate students.

Red cells denote participant answers that do not match our ground truth for that question.
Orange cells denote participant answers that took less than 10 seconds, and were ignored.

P 5 time 6 7 time

1 vim.js 00:00:38 vim.js html-pipeline 00:01:39

2 vim.js 00:02:44 vim.js html-pipeline 00:01:21

3 vim.js 00:00:56 vim.js html-pipeline 00:01:14

4 vim.js 00:00:16 vim.js html-pipeline 00:00:55

5 LightTable 00:00:57 vim.js html-pipeline 00:01:22

6 vim.js 00:01:29 vim.js html-pipeline 00:01:26

7 vim.js 00:01:18 sqlitebrowser html-pipeline 00:02:38

8 vim.js 00:01:22 vim.js html-pipeline 00:02:04

9 vim.js 00:01:19 vim.js html-pipeline 00:00:47

10 skipped vim.js html-pipeline 00:03:51

11 skipped vim.js html-pipeline 00:01:14

12 LightTable 00:01:38 vim.js html-pipeline 00:01:23

13 LightTable 00:00:30 vim.js LightTable 00:01:05

14 vim.js 00:00:53 vim.js html-pipeline 00:00:42

15 vim.js 00:01:39 vim.js html-pipeline 00:00:11

16 vim.js 00:00:37 vim.js html-pipeline 00:02:13

17 vim.js 00:01:35 vim.js html-pipeline 00:01:15

18 vim.js 00:04:35 sqlitebrowser html-pipeline 00:01:53

19 vim.js 00:00:55 vim.js html-pipeline 00:00:42

20 vim.js 00:00:53 vim.js html-pipeline 00:01:53

21 vim.js 00:01:38 postr LightTable 00:00:43

22 vim.js 00:01:44 vim.js html-pipeline 00:01:05

23 skipped vim.js html-pipeline 00:00:39

24 vim.js 00:01:32 vim.js html-pipeline 00:01:45

25 LightTable 00:01:29 sqlitebrowser LightTable 00:01:44

26 vim.js 00:00:40 LightTable vim.js 00:01:20

27 LightTable 00:01:27 vim.js html-pipeline 00:00:42

28 vim.js 00:00:40 vim.js html-pipeline 00:01:35

29 vim.js 00:00:43 vim.js html-pipeline 00:01:20

30 vim.js 00:00:37 html-pipeline vim.js 00:00:31

31 LightTable 00:02:24 vim.js html-pipeline 00:00:59

32 sqlitebrowser 00:01:22 vim.js html-pipeline 00:01:58

33 vim.js 00:07:44 vim.js html-pipeline 00:01:20

34 vim.js 00:00:54 vim.js html-pipeline 00:01:52

35 vim.js 00:00:29 vim.js html-pipeline 00:01:33

36 vim.js 00:01:05 vim.js html-pipeline 00:02:35

37 LightTable 00:00:36 vim.js html-pipeline 00:01:46

38 LightTable 00:00:20 vim.js html-pipeline 00:00:42

39 vim.js 00:01:30 vim.js html-pipeline 00:01:22

40 postr 00:00:35 LightTable html-pipeline 00:02:45

41 vim.js 00:00:37 LightTable html-pipeline 00:01:23

P 5 time 6 7 time

42 LightTable 00:01:41 vim.js html-pipeline 00:01:47

43 vim.js 00:02:34 sqlitebrowser html-pipeline 00:03:10

44 vim.js 00:00:58 vim.js html-pipeline 00:01:35

45 LightTable 00:01:38 vim.js html-pipeline 00:07:43

46 skipped vim.js html-pipeline 00:02:34

47 vim.js 00:01:21 vim.js html-pipeline 00:00:56

48 vim.js 00:01:25 vim.js html-pipeline 00:01:09

49 vim.js 00:01:11 sqlitebrowser html-pipeline 00:00:50

50 vim.js 00:01:21 vim.js html-pipeline 00:02:39

51 skipped vim.js html-pipeline 00:01:00

52 LightTable 00:01:02 html-pipeline vim.js 00:01:52

53 LightTable 00:03:35 vim.js html-pipeline 00:01:12

54 skipped skipped skipped

55 vim.js 00:00:50 html-pipeline LightTable 00:00:52

56 vim.js 00:00:31 vim.js postr 00:01:21

57 skipped skipped skipped

58 vim.js 00:00:45 postr sqlitebrowser 00:01:19

59 vim.js 00:00:55 vim.js html-pipeline 00:01:08

60 sqlitebrowser 00:00:52 vim.js html-pipeline 00:01:00

61 vim.js 00:00:53 vim.js html-pipeline 00:01:56

62 vim.js 00:00:57 vim.js html-pipeline 00:01:19

63 vim.js 00:01:39 skipped skipped

64 vim.js 00:01:16 vim.js html-pipeline 00:01:21

65 LightTable 00:01:36 vim.js html-pipeline 00:01:58

66 LightTable 00:00:41 vim.js postr 00:01:04

67 vim.js 00:01:29 vim.js html-pipeline 00:01:00

68 sqlitebrowser 00:01:09 vim.js html-pipeline 00:01:06

69 vim.js 00:00:55 vim.js html-pipeline 00:00:49

70 LightTable 00:01:33 vim.js html-pipeline 00:01:15

71 vim.js 00:00:51 vim.js html-pipeline 00:01:54

72 vim.js 00:00:35 sqlitebrowser html-pipeline 00:00:51

73 vim.js 00:00:15 vim.js html-pipeline 00:01:12

74 vim.js 00:00:38 LightTable vim.js 00:01:04

90

Table B.4: Raw results from the metrics comprehension section (questions
8–10) in the user study with undergraduate students.

Red cells denote participant answers that do not match our ground truth for that question.
Orange cells denote participant answers that took less than 10 seconds, and were ignored.

P 8 time 9 time 10 time

1 bed325 TRUE 00:01:04 sqlitebrowser 00:01:15 c55f44e TRUE 00:01:04

2 bed325 TRUE 00:03:01 sqlitebrowser 00:03:42 c55f44e TRUE 00:01:44

3 bed325 TRUE 00:01:36 sqlitebrowser 00:00:52 c55f44e TRUE 00:01:03

4 bed325 TRUE 00:00:44 sqlitebrowser 00:00:33 80ac53 FALSE 00:00:34

5 bed325 TRUE 00:02:13 sqlitebrowser 00:01:52 c55f44e TRUE 00:01:19

6 bed325 TRUE 00:02:20 sqlitebrowser 00:01:30 522d84 TRUE 00:01:01

7 bed325 TRUE 00:06:15 sqlitebrowser 00:02:16 c55f44e TRUE 00:00:57

8 77b4d FALSE 00:01:08 sqlitebrowser 00:00:53 b1560 FALSE 00:00:41

9 2f1b685 FALSE 00:01:27 sqlitebrowser 00:00:32 4dc0bb FALSE 00:00:47

10 bed325 TRUE 00:01:14 postr 00:01:10 c55f44e TRUE 00:01:26

11 bed325 TRUE 00:01:23 sqlitebrowser 00:01:17 f12727f FALSE 00:00:43

12 bed325 TRUE 00:00:54 sqlitebrowser 00:00:49 c55f44e TRUE 00:00:56

13 bed325 TRUE 00:00:43 sqlitebrowser 00:00:55 7e8e21 FALSE 00:00:53

14 b8d043 FALSE 00:00:26 LightTable 00:02:02 3dad78 FALSE 00:00:31

15 bed32 TRUE 00:01:58 sqlitebrowser 00:01:52 c55f4 TRUE 00:01:20

16 bed325 TRUE 00:02:16 sqlitebrowser 00:01:37 772988 TRUE 00:00:31

17 bed325 TRUE 00:01:23 sqlitebrowser 00:01:13 c55f44e TRUE 00:00:49

18 68ab71 FALSE 00:00:51 sqlitebrowser 00:00:43 d22605 FALSE 00:00:40

19 bed325 TRUE 00:00:51 sqlitebrowser 00:01:01 772988 TRUE 00:00:46

20 bed325 TRUE 00:01:50 vim.js 00:00:38 522d84 TRUE 00:00:39

21 e2f651ff FALSE 00:01:37 sqlitebrowser 00:00:46 c55f44e TRUE 00:02:29

22 b8d043 FALSE 00:01:01 sqlitebrowser 00:01:08 21e3dd FALSE 00:00:52

23 d3566 FALSE 00:00:24 sqlitebrowser 00:00:25 77298 TRUE 00:00:42

24 sqlitebrowser 00:02:10 772988 TRUE 00:01:00

25 bed325 TRUE 00:01:00 sqlitebrowser 00:01:23 c55f44e TRUE 00:01:24

26 944e02 FALSE 00:01:45 html-pipeline 00:01:41 c55f44e TRUE 00:00:49

27 bed325 TRUE 00:01:00 sqlitebrowser 00:01:38 c55f44e TRUE 00:00:40

28 bed325 TRUE 00:01:36 sqlitebrowser 00:01:54 c55f44e TRUE 00:02:24

29 77b4d5 FALSE 00:00:53 sqlitebrowser 00:00:53 4dc0bb FALSE 00:00:47

30 bed325 TRUE 00:01:47 sqlitebrowser 00:01:48 c55f44e TRUE 00:00:54

31 284a48 FALSE 00:01:15 sqlitebrowser 00:00:30 4dc0bb FALSE 00:01:14

32 bed325 TRUE 00:01:30 postr 00:00:37 023441 FALSE 00:01:10

33 ca78b0 FALSE 00:01:15 sqlitebrowser 00:02:55 522d84 TRUE 00:02:18

34 f8a1769 FALSE 00:02:19 sqlitebrowser 00:01:47 c55f44e TRUE 00:00:58

35 bed325 TRUE 00:01:36 sqlitebrowser 00:00:51 c55f44e TRUE 00:00:54

36 bed325 TRUE 00:01:41 sqlitebrowser 00:03:19 c55f44e TRUE 00:01:44

37 f829f06 FALSE 00:01:24 sqlitebrowser 00:01:10 023441 FALSE 00:01:03

38 944e02 FALSE 00:00:34 sqlitebrowser 00:00:44 772988 TRUE 00:00:39

39 bed325 TRUE 00:01:20 sqlitebrowser 00:01:26 c55f44e TRUE 00:01:20

40 b8d043 FALSE 00:01:41 postr 00:00:53 522d84 TRUE 00:01:16

41 bed325 TRUE 00:00:42 sqlitebrowser 00:00:51 772988 TRUE 00:00:37

91

P 8 time 9 time 10 time

42 bed325 TRUE 00:01:24 sqlitebrowser 00:02:03

43 bed325 TRUE 00:01:21 sqlitebrowser 00:01:43 772988 TRUE 00:01:13

44 bc159 FALSE 00:02:15 sqlitebrowser 00:01:15 4dc0b FALSE 00:01:47

45 944e02 FALSE 00:04:23 sqlitebrowser 00:05:12 772988 TRUE 00:02:13

46 944e02 FALSE 00:02:39 sqlitebrowser 00:01:01

47 bed325 TRUE 00:01:37 sqlitebrowser 00:01:14 772988 TRUE 00:00:32

48 bed325 TRUE 00:01:30 sqlitebrowser 00:03:00 c55f44e TRUE 00:00:51

49 944e02 FALSE 00:00:46 sqlitebrowser 00:00:38 772988 TRUE 00:00:42

50 bed32 TRUE 00:06:00 sqlitebrowser 00:00:57 c55f4 TRUE 00:00:58

51 bed327 TRUE 00:01:53 sqlitebrowser 00:00:43 522d84 TRUE 00:01:37

52 d957e4 FALSE 00:01:19 html-pipeline 00:00:59 772988 TRUE 00:01:07

53 bed325 TRUE 00:02:23 sqlitebrowser 00:00:36 c55f44e TRUE 00:00:37

54 00:00:51 sqlitebrowser 00:01:09 522d84 TRUE 00:00:49

55 77b4d5 FALSE 00:01:12 sqlitebrowser 00:00:40 c55f44e TRUE 00:01:23

56 c1f9dae FALSE 00:00:58 html-pipeline 00:00:39 d22605 FALSE 00:00:43

57 bed325 TRUE 00:01:22 sqlitebrowser 00:01:41 c55f44e TRUE 00:01:08

58 944e02 FALSE 00:00:52 sqlitebrowser 00:01:37 c55f44e TRUE 00:00:39

59 bed32 TRUE 00:01:24 sqlitebrowser 00:01:29 c55f4 TRUE 00:04:19

60 bed325 TRUE 00:01:23 sqlitebrowser 00:02:32 c55f44e TRUE 00:01:07

61 944e02 FALSE 00:01:21 sqlitebrowser 00:02:08 772988 TRUE 00:00:49

62 bed325 TRUE 00:01:11 sqlitebrowser 00:01:44 c55f44e TRUE 00:00:49

63 bed325 TRUE 00:01:12 sqlitebrowser 00:00:34 c55f44e TRUE 00:00:51

64 bed325 TRUE 00:01:32 sqlitebrowser 00:01:27 c55f44e TRUE 00:01:17

65 bed325 TRUE 00:01:47 sqlitebrowser 00:02:44 c55f44e TRUE 00:00:53

66 77b4d5 FALSE 00:01:03 sqlitebrowser 00:00:39 b15607 FALSE 00:00:44

67 428940 FALSE 00:01:38 sqlitebrowser 00:00:50 c55f44e TRUE 00:01:16

68 944e02 FALSE 00:01:11 sqlitebrowser 00:01:17 c55f44e TRUE 00:00:43

69 a4be10 FALSE 00:00:36 sqlitebrowser 00:00:29 ec1f3a2 FALSE 00:00:39

70 73ef810 FALSE 00:02:19 vim.js 00:01:41 c55f44e TRUE 00:00:51

71 bed325 TRUE 00:02:57 sqlitebrowser 00:01:07 522d84 TRUE 00:01:10

72 944e02 FALSE 00:01:02 sqlitebrowser 00:01:16 c55f44e TRUE 00:00:44

73 bed325 TRUE 00:01:55 sqlitebrowser 00:01:46 c55f44e TRUE 00:01:57

74 944e02 FALSE 00:00:43 sqlitebrowser 00:01:12 9c283d FALSE 00:00:21

92

Table B.5: Raw results from the project comparison section (questions 11–
13) in the user study with undergraduate students.

Red cells denote participant answers that do not match our ground truth for that question.
Orange cells denote participant answers that took less than 10 seconds, and were ignored.

P 11 gt-agree gt-disagree time 12 12 html-pip gt-agree gt-disagree time 13 gt-agree gt-disagree time

1 html-pipeline BRA 00:02:31 html-pipeline postr TRUE LAN 00:01:48 vim.js AUT 00:01:32

2 html-pipeline BRA 00:02:18 html-pipeline postr TRUE LAN 00:02:53 postr OTH 00:03:53

3 html-pipeline BRA 00:01:38 postr html-pipeline TRUE LAN 00:02:13 vim.js LEN 00:02:34

4 html-pipeline VIS 00:00:43 html-pipeline postr TRUE VIS 00:00:45 vim.js AUT 00:00:55

5 html-pipeline BRA 00:01:29 html-pipeline postr TRUE LAN 00:01:42 vim.js AUT 00:02:11

6 html-pipeline VIS 00:01:46 postr html-pipeline TRUE VIS 00:03:30 vim.js AUT 00:02:54

7 html-pipeline BRA,VIS 00:03:19 html-pipeline postr TRUE LAN,VIS 00:01:41 html-pipeline LEN 00:07:27

8 html-pipeline BRA 00:03:00 html-pipeline postr TRUE LAN 00:00:54 vim.js AUT 00:01:18

9 html-pipeline BRA 00:01:54 html-pipeline postr TRUE LAN 00:00:51 vim.js AUT 00:00:38

10 sqlitebrowser BRA 00:03:11 postr html-pipeline TRUE LAN 00:02:03 vim.js AUT 00:01:46

11 html-pipeline 00:01:02 html-pipeline postr TRUE OTH 00:00:48 LightTable 00:00:12

12 html-pipeline BRA 00:02:00 vim.js LightTable FALSE LAN 00:01:57 vim.js AUT 00:01:04

13 sqlitebrowser BRA 00:02:07 vim.js LightTable FALSE OTH 00:01:06 vim.js LEN 00:01:25

14 html-pipeline VIS 00:00:33 vim.js LightTable FALSE VIS 00:00:24 sqlitebrowser 00:00:53

15 html-pipeline BRA 00:03:28 html-pipeline postr TRUE VIS 00:03:14 vim.js LEN 00:04:57

16 html-pipeline LIN 00:01:33 html-pipeline postr TRUE LAN 00:01:41 sqlitebrowser OTH 00:02:59

17 html-pipeline BRA 00:02:46 html-pipeline postr TRUE LAN 00:02:25 vim.js AUT 00:01:39

18 html-pipeline BRA 00:02:13 html-pipeline postr TRUE LAN 00:01:06 vim.js VIS 00:00:46

19 html-pipeline LIN 00:01:07 html-pipeline postr TRUE LAN 00:01:01 sqlitebrowser OTH 00:01:14

20 sqlitebrowser VIS 00:00:58 html-pipeline postr TRUE VIS 00:00:51 vim.js VIS 00:00:58

21 html-pipeline BRA 00:01:42 postr html-pipeline TRUE OTH 00:01:18 sqlitebrowser 00:01:22

22 html-pipeline BRA 00:01:30 html-pipeline postr TRUE LAN 00:01:08 LightTable LEN 00:01:53

23 html-pipeline BRA 00:01:43 html-pipeline postr TRUE LAN 00:01:33 vim.js AUT 00:02:04

24 html-pipeline BRA 00:01:53 html-pipeline postr TRUE LAN 00:01:48 vim.js AUT 00:03:47

25 html-pipeline VIS 00:02:08 html-pipeline postr TRUE VIS 00:01:03 vim.js AUT 00:01:28

26 html-pipeline BRA 00:01:38 html-pipeline postr TRUE LAN 00:01:44 vim.js AUT 00:02:20

27 html-pipeline BRA 00:00:57 html-pipeline postr TRUE LAN 00:01:02 vim.js AUT 00:02:21

28 html-pipeline VIS 00:01:09 html-pipeline postr TRUE VIS 00:01:15 sqlitebrowser VIS 00:01:35

29 html-pipeline BRA 00:01:05 html-pipeline postr TRUE LAN 00:01:12 vim.js LEN 00:01:03

30 html-pipeline BRA 00:01:44 html-pipeline postr TRUE LAN 00:01:06 vim.js AUT 00:01:23

31 sqlitebrowser VIS 00:00:49 sqlitebrowser LightTable FALSE VIS 00:00:56 vim.js AUT 00:00:45

32 html-pipeline VIS 00:01:22 html-pipeline postr TRUE OTH 00:01:45 vim.js AUT 00:01:23

33 html-pipeline VIS 00:00:53 html-pipeline postr TRUE VIS 00:01:12 vim.js LEN 00:01:40

34 html-pipeline VIS 00:01:23 html-pipeline postr TRUE LAN 00:01:28 vim.js VIS 00:03:56

35 html-pipeline VIS 00:01:10 LightTable sqlitebrowser FALSE VIS 00:02:01 vim.js AUT 00:02:30

36 html-pipeline BRA,VIS 00:02:20 postr html-pipeline TRUE LAN,VIS 00:02:08 vim.js AUT 00:01:23

37 html-pipeline VIS 00:01:40 html-pipeline postr TRUE VIS 00:01:51 vim.js AUT 00:01:28

38 html-pipeline LIN 00:01:28 postr html-pipeline TRUE OTH 00:00:56 vim.js AUT 00:01:07

39 html-pipeline VIS 00:01:07 LightTable vim.js FALSE VIS 00:02:54 sqlitebrowser OTH 00:03:59

40 sqlitebrowser VIS 00:01:13 sqlitebrowser html-pipeline FALSE VIS 00:01:14 vim.js AUT 00:01:32

41 html-pipeline LIN 00:01:54 html-pipeline postr TRUE LAN,VIS 00:00:56 vim.js AUT 00:01:22

42 html-pipeline BRA 00:06:33 sqlitebrowser LightTable FALSE LAN 00:02:16 vim.js AUT 00:01:19

43 html-pipeline VIS 00:01:06 html-pipeline postr TRUE LAN 00:03:13 vim.js AUT 00:02:41

44 html-pipeline BRA 00:01:42 html-pipeline postr TRUE VIS 00:02:23 vim.js AUT 00:02:41

45 skipped html-pipeline postr TRUE LAN 00:00:19 sqlitebrowser LEN 00:02:47

46 vim.js 00:03:43 sqlitebrowser html-pipeline FALSE OTH 00:01:32 LightTable 00:00:53

47 html-pipeline BRA 00:01:22 LightTable vim.js FALSE LAN 00:01:39 vim.js AUT 00:01:42

48 html-pipeline BRA 00:01:54 html-pipeline postr TRUE LAN 00:01:25 vim.js AUT 00:02:22

49 html-pipeline VIS 00:01:08 html-pipeline postr TRUE VIS 00:01:11 vim.js AUT 00:01:22

50 html-pipeline BRA,VIS 00:03:44 html-pipeline postr TRUE LAN 00:02:01 vim.js LEN 00:01:30

51 html-pipeline VIS 00:00:44 html-pipeline postr TRUE VIS 00:00:39 skipped AUT

52 html-pipeline VIS 00:01:13 html-pipeline postr TRUE VIS 00:00:57 vim.js AUT 00:01:12

53 html-pipeline VIS 00:01:45 html-pipeline postr TRUE LAN 00:01:12 vim.js AUT 00:01:05

54 html-pipeline VIS 00:00:50 html-pipeline postr TRUE VIS 00:00:49 vim.js AUT 00:01:04

55 html-pipeline 00:01:03 html-pipeline postr TRUE OTH 00:00:30 vim.js LEN 00:01:09

56 vim.js BRA 00:01:15 html-pipeline postr TRUE LAN,VIS 00:01:08 vim.js AUT 00:01:00

57 html-pipeline BRA 00:02:02 html-pipeline postr TRUE LAN 00:02:21 vim.js AUT 00:01:26

58 html-pipeline BRA,VIS 00:01:06 html-pipeline postr TRUE VIS 00:01:25 vim.js AUT 00:01:43

59 html-pipeline VIS 00:02:36 postr html-pipeline TRUE VIS 00:00:54 vim.js VIS 00:02:27

60 html-pipeline BRA 00:01:37 html-pipeline postr TRUE LAN 00:03:13 vim.js AUT 00:02:11

61 html-pipeline BRA,VIS 00:02:25 html-pipeline postr TRUE LAN 00:01:35 vim.js LEN 00:02:23

62 html-pipeline BRA,VIS 00:01:08 html-pipeline postr TRUE LAN 00:01:49 vim.js AUT 00:01:49

63 html-pipeline BRA 00:03:24 html-pipeline postr TRUE LAN 00:02:01 sqlitebrowser OTH 00:03:18

64 html-pipeline 00:02:41 html-pipeline postr TRUE LAN 00:02:27 skipped

65 html-pipeline VIS 00:00:47 html-pipeline postr TRUE LAN,VIS 00:01:09 vim.js AUT 00:01:18

66 html-pipeline VIS 00:01:22 vim.js LightTable FALSE VIS 00:00:57 vim.js LEN 00:01:00

67 html-pipeline BRA 00:02:00 LightTable vim.js FALSE LAN 00:02:00 sqlitebrowser OTH 00:02:22

68 vim.js BRA,VIS 00:02:04 html-pipeline postr TRUE LAN 00:01:35 vim.js AUT 00:01:46

69 html-pipeline BRA 00:00:51 html-pipeline postr TRUE LAN 00:01:31 vim.js AUT 00:02:27

70 sqlitebrowser VIS 00:00:52 html-pipeline postr TRUE VIS 00:03:26 vim.js VIS 00:01:49

93

P 11 gt-agree gt-disagree time 12 12 html-pip gt-agree gt-disagree time 13 gt-agree gt-disagree time

71 html-pipeline BRA 00:01:14 vim.js LightTable FALSE LAN 00:01:07 vim.js LEN 00:00:53

72 html-pipeline BRA 00:01:24 html-pipeline postr TRUE LAN 00:01:39 vim.js AUT 00:01:21

73 html-pipeline BRA 00:01:29 postr html-pipeline TRUE LAN 00:01:30 vim.js AUT 00:01:46

74 vim.js VIS 00:01:43 sqlitebrowser LightTable FALSE VIS 00:02:46 vim.js VIS 00:01:41

94

Table B.6: Raw results from the exploratory question in the user study with
undergraduate students.

Red cells denote participant answers that do not match our ground truth for that question.
Orange cells denote participant answers that took less than 10 seconds, and were ignored.

P 14-explain (raw text) Metric 1 Metric 2* Attrib 14 gt gt-agree gt-disagree time

1 Commit message length Commit Message Lengt ~ Block Length 580455 FALSE LIN,MSG 00:01:56

2 Commit Message Length Commit Message Lengt ? ? 7eddc5 FALSE MSG 00:03:01

3 Commit Localization Commit Localization ? ? 238dba TRUE MET 00:03:59

4 Most edited file Most Edited File ~ Commit Message ~

5 Most edited files Most Edited File ? ? 09039d TRUE MET 00:04:14

6 Message length Commit Message Lengt ? ? be4b34 FALSE LIN,MSG 00:03:14

7 commit message length Commit Message Lengt ~ Block Length e07194 TRUE LIN,MSG 00:03:57

8 Commit Message Length Commit Message Lengt ? ? a430a FALSE MSG 00:01:43

9 Most edited file Most Edited File ~ Block Length 09039d TRUE LIN 00:02:15

10 Commit message length Commit Message Lengt ~ Block Length 1557ac TRUE LIN,MET 00:03:20

11 FALSE 00:00:13

12 Commit message length Commit Message Lengt ~ Block Length 7390e4 TRUE LIN,MSG 00:04:57

13

14

15 Commit message length, Mos Commit Message Lengt ~ Commit Message 1557a TRUE MET,MSG 00:04:02

16 Commit Message Length Commit Message Lengt ? ? 1557ac TRUE MSG 00:03:44

17 commit message length Commit Message Lengt ~ Block Length 1557ac TRUE LIN,MSG 00:05:05

18 most edited file Most Edited File ? ? eef9a3f FALSE MET 00:02:40

19 Message Length, Lines chang Commit Message Lengt ~ Block Length c343fb TRUE LIN,MSG 00:03:29

20 Commit message length Commit Message Lengt ? ? 522d84 FALSE MSG 00:02:29

21 FALSE 00:00:10

22 commit message length Commit Message Lengt ? ? 580455 FALSE MSG 00:01:30

23 Commit Message Length Commit Message Lengt ~ Block Length 8f5b0 FALSE LIN,MSG 00:02:44

24 Languages in a commit Languages in a Commit ~ Commit Message 860100 FALSE MET,MSG 00:04:15

25 Commit message length Commit Message Lengt ~ Block Length 1557ac TRUE LIN,MSG 00:02:13

26 Commit Localization Commit Localization ? ? 5e1492 FALSE MET 00:03:56

27 Commit Message Length Commit Message Lengt ~ Block Length c343fb TRUE LIN,MSG 00:02:33

28 Commit message length Commit Message Lengt ~ Block Length e07194 TRUE LIN,MSG 00:04:19

29 commit message length Commit Message Lengt ~ Block Length 7390e4 TRUE LIN,MSG 00:02:25

30 Commit Message Length Commit Message Lengt ? ~ 7390e4 TRUE LIN,MSG 00:02:31

31 Commit Message Length Commit Message Lengt ? ? e07194 TRUE MSG 00:01:38

32 Commit Message Length Commit Message Lengt ~ Block Length 9c283d FALSE LIN 00:02:32

33 most edited file Most Edited File ~ Commit Message 09039d TRUE LIN,MSG 00:03:40

34 commit localization Commit Message Lengt Commit Localization ~ 8f5b0e FALSE LIN,MET 00:02:29

35 Commit Message Length Commit Message Lengt ~ Block Length 9c283d FALSE LIN,MSG 00:02:26

36 Localization Commit Localization ~ Commit Message 238dba TRUE MET,MSG 00:04:47

37 Languages in a commit Languages in a Commit ~ Commit Message 87eff91 FALSE MET,MSG 00:03:11

38 Most edited file Most Edited File ? ? 09039d TRUE MET 00:02:21

39 Commit Localization Commit Localization ~ Commit Message 9c283d FALSE MSG 00:04:06

40 Commit Localization Commit Localization ? ? 1557ac TRUE MET 00:02:54

41 Commit Localization Commit Localization ~ Commit Message 58ab0d FALSE MET,MSG 00:05:49

42 The biggest whitest block Commit Message Lengt ~ Block Length 7390e4 TRUE LIN,MSG 00:02:52

43 Commit Message Length Commit Message Lengt ? ? e07194 TRUE 00:03:02

44 commit message length Commit Message Lengt ? ? 7390e TRUE MSG 00:02:35

45 Commit message length Commit Message Lengt ? ? c343fb TRUE MSG 00:04:24

46 block length ? ? Block Length 7390e4 TRUE 00:04:34

47 Commit message length and l Commit Message Lengt ~ Block Length 09039d TRUE LIN,MSG 00:02:23

48 Commit Localization Commit Localization ? ? 3748e4 FALSE MET 00:03:22

49 most edited file Most Edited File ~ Commit Message b8d043 FALSE MET,MSG 00:03:13

50 Commit Message Length Commit Message Lengt ~ Block Length 7390e TRUE LIN,MSG 00:02:36

51 color ? ? ? 4ab142 FALSE MSG 00:03:11

52 Commit Message Length Commit Message Lengt ? ? c343fb TRUE MSG 00:02:18

95

P 14-explain (raw text) Metric 1 Metric 2* Attrib 14 gt gt-agree gt-disagree time

53 Commit Message Length Commit Message Lengt ? ? e07194 TRUE MSG 00:02:15

54 fix buils ? ~ Block Length fe9105 FALSE MET,MSG 00:03:57

55 most edited file Most Edited File ? ? 09039d TRUE 00:01:50

56 commit message length Commit Message Lengt ? ? c343fb TRUE MSG 00:02:21

57 Commit message length Commit Message Lengt ~ Block Length c343fb TRUE LIN,MSG 00:03:29

58 Length of block and color Commit Message Lengt ~ Block Length 7390e4 TRUE LIN,MSG 00:02:40

59 Commit Message Length Commit Message Lengt ~ Block Length

60 Commit Localization, Commit Commit Message Lengt Commit Localization ~ 238dba TRUE MET,MSG 00:09:56

61 commit message length Commit Message Lengt ? ? c343fb TRUE MSG 00:04:19

62 Most Edited File Most Edited File ? ? eef9a3f FALSE MET 00:02:21

63 Most files edited Most Edited File FALSE 00:02:49

64 00:02:45

65 Commit Metric Length Commit Message Lengt ~ Block Length c343fb TRUE LIN,MSG 00:03:34

66 Block Length ? ? Block Length 1557ac TRUE LIN 00:01:08

67 Message Length Commit Message Lengt ~ Block Length 238dba TRUE LIN,MSG 00:02:41

68 commit message length Commit Message Lengt ? ? 580455 FALSE MSG 00:02:01

69 commit localization Commit Localization ~ Commit Message 3748e4 FALSE MET,MSG 00:02:20

70 color ? ? ? ce8a4f FALSE MET 00:03:33

71 Most Edited File Most Edited File ? ? 85985d FALSE 00:02:25

72 Commit Localization Commit Localization ~ Commit Message c55f44 FALSE MET,MSG 00:10:22

73 meesage length ? ~ Message Length 7390e4 TRUE MSG 00:03:32

74 commit message length Commit Message Lengt ? ? 1557ac TRUE MSG 00:01:54

96

• VIS The explanation discusses the visual characteristics of the repository

footprints. e.g., “Similar visualization”, “Similar pattern”, “Similar colors”

• BRA The explanation discusses the branches, based on the values presented

by the branches used or number of branches metrics. e.g.,“Increased number

of branches over time”, “Similar number of branches”

• LIN The explanation discusses the number of LoC changed, based on the

length of commit blocks when the appropriate block length mode was se-

lected. e.g., “High number of lines changed towards the end”, “Larger com-

mits towards the end”

• LAN The explanation discusses the number of distinct programming lan-

guages involved in a commit, based on the languages in a commit metric.

e.g., “Both projects use few languages”

• AUT The explanation discusses the scripted/automated commits performed

on the vim.js project

• LEN The explanation discusses the difference in commit message length,

based on either the commit message length metric or based on reading the

actual commit message on the commit block

• MSG The explanation discusses the contents of the commit message of the

commit that was selected by the participant in the exploratory question

• MET The explanation discusses the metric values of the metric that was se-

lected by the participant in the exploratory question

• OTH Other types of explanations or unclear explanations

97

Appendix C

Software engineering researchers
study

This appendix contains meta-data and raw results for the user study with SE re-

searchers described in Section 5.2.

C.1 Protocol and questionnaire

C.1.1 Procedure overview

The focus of the study is to show that participants can use RepoGrams for pattern

identification. We want to focus the study on finding clusters/categories in the

repositories.

The study will be conducted individually with each participant, either in a

meeting room or over the web with a video conference software.

C.1.2 Study protocol

We begin the description of each question with the following data:

[metric1, metric2, . . . , metricN ; metrics-grouping ; block-length ; repo-url1, repo-url2,

. . . , repo-urlN]

This lists the various settings that RepoGrams will be set to prior to each ques-

tion: which metric(s) will be used, which grouping mode, which block length

98

mode, and what repository URLs.

For the preparation and main tasks we will notify the participants a minute

before they are running out of time. When the participant runs out of time we will

ask them to mark “skipped” on the question and skip to the next question. At any

point we will give the participants the option of skipping a task that they cannot

complete. We will use the pilot studies to estimate how long the tasks should take.

The participants will answer the tasks using a custom online questionnaire soft-

ware.

C.1.3 Questionnaire

Demographics

a. Gender

• Male

• Female

• Other/rather not say

b. How often do you use Distributed Version Control Systems?

• Never/Rarely

• Once a month

• Once a week

• Daily

c. What is your academic status?

• Undergraduate student

• Masters student

• PhD student

• Postdoc

• Faculty

99

d. [multiple choice] As part of your research, have you performed any of the

following?

• Studied a version controlled project repository

• Inspected the evolution of a software project

• Evaluated a tool using artifacts (e.g., source code, logs, bug tracking

issues) from one or more software projects

Introduction to RepoGrams

We will now introduce RepoGrams and demonstrate the tool for you.

At the beginning of the study we will introduce and demonstrate the tool to the

participant, taking approximate 15 minutes. The rest of this section was not part

of the questionnaire itself, but rather a summary of the topics that were covered

during the demonstration as part of this section of the questionnaire.

1. Big-picture description:

• What does the tool do: RepoGrams visualizes information about git

repositories. It takes git repositories, lays all the commits out onto

a single horizontal line as blocks, and colors each block a color that

correspond to a value of some chosen metric. A metric can represent

information from a variety of domains, such as features of the code

(e.g., number of classes added/removed/modified) or of the develop-

ment process (e.g., who made the commit). The tool helps the tool user

investigate some aspects of git repositories or compare various features

of the selected projects.

• Imagine that you developed some SE tool and you want to write a pa-

per on that tool. Before you can do that, you have to run an evaluation

on it, and before you can run an evaluation you need to choose projects

to evaluate your tool on. We conducted a literature survey of SE papers

and found that researchers rarely explain how they chose their evalua-

tion targets or why they chose this subset and not another that would

fit their criteria. We created the tool as a response to this problem, we

100

hope to show that RepoGrams can be used to help choose projects with

stronger confidence.

• Our main target audience is SE researchers, but the tool can also po-

tentially be used by others, such as project leaders, managers, etc. . .

2. Basic metaphor: [in this part, as we go through the concepts we will demon-

strate them using the tool]

• The basic metaphor of RepoGrams is as follows: Each line represents

a single git project as it is represented in a single metric.

• Each block represents a single commit, and the commits are laid out in

temporal order, regardless of parent commit, from left to right. So the

first commit in the project is at the far left and the latest commit is on

the far right. Between the different metrics the same block represents

the same commit, only in that different metric.

• The block length can be changed to represent different things: it can

represent how many lines of code have been changed in the commit

(called churn in git), either comparable between the projects or incom-

parable (to see an overview of all projects), or it can just be a fixed

width if the churn does not matter.

• The color of each commit represents its value in this specific metrics

(see legend, description of metric)

3. Basic interactions available in the UI: [in the section we guide the participant

with step-by-step instructions to play around with the tool]

• Demonstrate adding 3 repositories

• Demonstrate zoom and scroll

• Demonstrate changing metrics, changing block length

• Demonstrate swapping repository order, removing repository

• Demonstrate loading of example data

101

4. Let the participant ask questions about the interface and suggest that they

take a minute to try it themselves. Explain that next up we will give them 3

tasks to perform, and that during those three tasks they can ask us questions,

but after those 3 tasks we will not be able to answer any question about the

interface or the tasks (except for clarifications if the instructions are unclear)

Preparation tasks

This section includes 3 tasks. You can spend up to 5 minutes to finish these tasks

(we will start the timer when you switch to the next page).

While working on these tasks you may ask clarification questions. Note that in

the next section we will not be able to answer any questions regarding the interface.

1. Preparation task 1

• [POM Files ; metrics-first ; fixed-length ;
https://github.com/sqlitebrowser/sqlitebrowser,
https://github.com/coolwanglu/vim.js,
https://github.com/mattgallagher/AudioStreamer,
https://github.com/LightTable/LightTable,
https://github.com/jch/html-pipeline]

• Based on the current view, what is your estimate of the number of com-

mits in the AudioStreamer project?

– 1–9

– 10–99

– 100–999

– 1,000–9,999

– 10,000–99,999

• (Based on question 2 from the undergraduate study)

2. Preparation task 2

• [Commit Localization ; metrics-first ; fixed-length ;
https://github.com/sqlitebrowser/sqlitebrowser,
https://github.com/coolwanglu/vim.js,
https://github.com/LightTable/LightTable,
https://github.com/jch/html-pipeline,
https://github.com/GNOME/postr]

102

https://github.com/sqlitebrowser/sqlitebrowser
https://github.com/coolwanglu/vim.js
https://github.com/mattgallagher/AudioStreamer
https://github.com/LightTable/LightTable
https://github.com/jch/html-pipeline
https://github.com/sqlitebrowser/sqlitebrowser
https://github.com/coolwanglu/vim.js
https://github.com/LightTable/LightTable
https://github.com/jch/html-pipeline
https://github.com/GNOME/postr

• Based on the current view, which project had the longest uninterrupted

sequence of highly localized (0.881.00) commits?

– sqlitebrowser

– vim.js

– LightTable

– html-pipeline

– postr

• (Based on question 9 from the undergraduate study)

3. Preparation task 3

• [Number of Branches ; metrics-first ; lines-changed-incomparable ;
https://github.com/sqlitebrowser/sqlitebrowser,
https://github.com/coolwanglu/vim.js,
https://github.com/LightTable/LightTable,
https://github.com/jch/html-pipeline,
https://github.com/GNOME/postr]

• Based on the current view, which project appears to have a develop-

ment process that is most similar to LightTable?

– sqlitebrowser

– vim.js

– LightTable

– html-pipeline

– postr

• (Based on question 11 from the undergraduate study)

Main tasks

Last change for questions

Please take a bit of time to explore RepoGrams and ask clarifying questions.

Beyond this point we will not be able to answer questions regarding the interface,

the definitions of the metrics, and other elements of the tool.

103

https://github.com/sqlitebrowser/sqlitebrowser
https://github.com/coolwanglu/vim.js
https://github.com/LightTable/LightTable
https://github.com/jch/html-pipeline
https://github.com/GNOME/postr

4. Main task 1

This task has a 3 minutes time limit.

• [Most Edited File ; metrics-first ; fixed-length ;
https://github.com/phusion/passenger-docker]

• Based on the current view, which of the following is true?

– There is a general UPWARDS trend to the metric values

– There is a general CONSTANT trend to the metric values

– There is a general DOWNWARDS trend to the metric values

5. Main task 2

This task has a 5 minutes time limit.

• [POM Files ; metrics-first ; fixed-length ;
https://github.com/facebook/css-layout,
https://github.com/qiujuer/Genius-Android,
https://github.com/JakeWharton/butterknife,
https://github.com/AndroidGears/Plugin,
https://github.com/pedrovgs/TuentiTV,
https://github.com/ksoichiro/Android-ObservableScrollView,
https://github.com/square/picasso,
https://github.com/google/iosched,
https://github.com/square/retrofit]

• Categorize the projects into two clusters — one cluster containing projects

that use Maven (include .pom files), and the other cluster with projects

that do not use Maven

• Note: Our online questionnaire included a subquestion here. However,

during our postmortem we found that the question was understood am-

biguously by a large number of participants. As a consequence we

removed that subquestion from our analysis and do not report on it

here.

6. Main task 3

This task has a 5 minutes time limit.

104

https://github.com/phusion/passenger-docker
https://github.com/facebook/css-layout
https://github.com/qiujuer/Genius-Android
https://github.com/JakeWharton/butterknife
https://github.com/AndroidGears/Plugin
https://github.com/pedrovgs/TuentiTV
https://github.com/ksoichiro/Android-ObservableScrollView
https://github.com/square/picasso
https://github.com/google/iosched
https://github.com/square/retrofit

• [Branched Used ; metrics-first ; fixed-length ;
https://github.com/munificent/wren,
https://github.com/PHPMailer/PHPMailer,
https://github.com/yahoo/pure,
https://github.com/stympy/faker,
https://github.com/mmozuras/pronto]

• Categorize the projects into two clusters — one cluster containing projects

that were developed on a single master branch before branching off

to multiple branches, and the other cluster containing projects that

branched off early in their development

7. Main task 4

This task has a 5 minutes time limit.

• [Commit Author, Branches Used ; repos-first ; lines-changed-incomparable
; https://github.com/JedWatson/touchstonejs,
https://github.com/pblittle/docker-logstash,
https://github.com/lukasschwab/stackit,
https://github.com/arialdomartini/oh-my-git]

• Categorize the projects into two clusters — one cluster containing projects

that have a correlation between branches and authors, and the other

cluster with projects that do not exhibit this correlation

8. Main task 5

This task has a 7 minutes time limit.

• [Commit Author ; repos-first ; lines-changed-comparable ;
https://github.com/lukasschwab/stackit,
https://github.com/deployphp/deployer,
https://github.com/sequenceiq/docker-ambari]

• (a) Categorize the projects into two clusters — one cluster has projects

that have one single obvious dominant contributor, based on number of

LINES OF CODE CHANGED, and the second group does not have

such a contributor. A dominant contributor is one that generated close

to or more than 50% of the line changes in the project.

Hint: you might have to zoom in and scroll.

• Before the next question, switch to the Fixed block length mode

105

https://github.com/munificent/wren
https://github.com/PHPMailer/PHPMailer
https://github.com/yahoo/pure
https://github.com/stympy/faker
https://github.com/mmozuras/pronto
https://github.com/JedWatson/touchstonejs
https://github.com/pblittle/docker-logstash
https://github.com/lukasschwab/stackit
https://github.com/arialdomartini/oh-my-git
https://github.com/lukasschwab/stackit
https://github.com/deployphp/deployer
https://github.com/sequenceiq/docker-ambari

• (b) Categorize the projects into two clusters — one cluster has projects

that have one single obvious dominant contributor, based on number of

COMMITS, and the second group does not have such a contributor. A

dominant contributor is one that generated close to or more than 50%

of the commits in the project.

Hint: you might have to scroll.

Open-ended questions

• Do you see RepoGrams being integrated into your research/evaluation pro-

cess? If so, can you give an example of a research project that you could

use/could have used RepoGrams in?

• What are one or two metrics that you wish RepoGrams included that you

would find useful in your research? How much time would you be willing to

invest in order to write code to integrate a new metric?

• In your opinion, what are the best and worst parts of RepoGrams?

• Choose one of the main tasks that we asked you to perform. How would you

have performed it without RepoGrams?

• Do you have any other questions or comments?

C.1.4 Filtering results

We discarded the results from 1 participant who was disqualified for not having

any prior experience with repository analysis (i.e., said participant did not check

any boxes in Demographics question d.)

C.2 Raw results
Here we list the raw results. The difference background colors for cells denote

equivalence sets. Each equivalence set denotes how many participants responded

with the same answer for each question.

106

Table C.1: Raw results from the user study with SE researchers.

Demographics Preparation questions Main questions
P a b c d 1 2 3 4 5 6 7 8a 8b
1 M Daily Faculty Y,Y,Y 10–99 sqlitebrowser html-pipeline upwards NNYNNNYYY LEELL YNYY NYY YYY

2 M Once a week Masters student Y,Y,Y 100–999 sqlitebrowser html-pipeline upwards NNYNNNYYY LELLL YNNY NYN NYN

3 M Once a week PhD student Y,Y,Y 10–99 sqlitebrowser vim.js constant NNYNNNYYY LEELL YNNY NYN NYY

4 M Once a week Faculty Y,Y,Y 10–99 sqlitebrowser html-pipeline upwards NNYNNNYYY LEELL YNYY NYY NYY

5 F Once a month Postdoc Y,Y,N 10–99 sqlitebrowser html-pipeline upwards NNYNNNYYY LEELL YNNY NYY NYY

6 M Daily PhD student Y,Y,Y 10–99 sqlitebrowser html-pipeline upwards NNYNNNYYY LEEEL YNYY NYY YYY

7 M Once a week Faculty Y,Y,Y 10–99 sqlitebrowser html-pipeline upwards NNYNNNYYY LEELL YNNY NYY NYY

8 F Once a week PhD student N,N,Y 10–99 sqlitebrowser html-pipeline upwards NNYNNNYYY LEELL YNYY NYY NYY

9 M Once a week PhD student Y,Y,Y 10–99 sqlitebrowser html-pipeline upwards NNYNNNYNY LEELL NYYY NYN NYN

10 M Daily Masters student Y,Y,Y 10–99 sqlitebrowser html-pipeline downwards NNYNNNYYY LEELL NNYY NYY NYY

11 M Once a week Faculty N,N,Y 10–99 sqlitebrowser html-pipeline upwards NNYNNNYYY LEELL YNNY NYY YYY

12 M Once a week PhD student Y,N,Y 10–99 sqlitebrowser html-pipeline upwards NNYNNNYYY LEELL YNNY NYY NYY

13 M Daily Faculty Y,Y,Y 10–99 sqlitebrowser html-pipeline upwards NNYNNNYYY LEELL YNYY NYY NYY

14 M Daily PhD student Y,Y,Y 10–99 sqlitebrowser html-pipeline upwards NNYNNNYYY LEELL YNYY NYY NYY

Percentage of participants who chose the most common answe 92.86% 100.00% 92.86% 85.71% 92.86% 85.71% 42.86% 78.57% 64.29%

We do not report raw text responses to preserve the anonymity of the partici-

pants.

107

Appendix D

Case study

This appendix contains meta-data and raw results for the case study to estimate the

effort involved in adding new metrics, described in Section 5.3.

D.1 Results

D.1.1 Overview

We conducted a case study to estimate the effort involved in integrating new simple

metrics into RepoGrams with two developers.

Dev1 is a computer science masters student who is the author of this thesis.

Dev2 is a computer science fourth year undergraduate student.

Both developers were not familiar with the codebase before they started the

experiment. Dev1 added 3 metrics between running the undergraduate user study

and running the user study with SE researchers, to be used in the latter user study.

Dev2 added 3 metrics that were requested by some of the participants from the user

study with SE researchers. Dev1 shared only the following details with Dev2:

• Development environment setup instructions

• The names of the 3 metrics that Dev1 added, to be used as starting points for

the exploration of the codebase

108

Both developers proceeded in a linear fashion, starting with setting up the de-

velopment environment, then exploring the code, and finally developing, integrat-

ing, and testing each metric individually. Both developers timed themselves as they

performed each step.

D.1.2 Raw results

Development environment setup time:

• Dev1: 20 minutes

• Dev2: 39 minutes

Exploration of the codebase:

• Dev1: 10 minutes

• Dev2: 40 minutes

Metrics implementations1:

Table D.1: Raw results from the case study to estimate the effort involved in
the implementation of new metrics.

Dev Metric name Time
(min)

LoC
Python

LoC
JavaScript

LoC
JSON

LoC HTML
& CSS

Dev1 POM Files 30 7 7 16 0
Dev1 Commit Author 52 12 26 730 33
Dev1 Commit Age 48 8 30 50 0
Dev2 Files Modified 42 7 7 16 0
Dev2 Merge Indicator 44 8 7 16 0
Dev2 Author Experience 26 17 7 16 0

1The number of LoC changed reported in Table D.1 might differ from those reported in Sec-
tion 5.3. The codebase for RepoGrams was refactored between the case study and the writing of this
thesis as a result of the case study to facilitate the addition and implementation of new metrics. As
part of the refactoring process, many metrics were rewritten to take advantage of these changes.

109

Appendix E

License and availability

RepoGrams is free software released under the GNU/GPL License [26]. The

source code for RepoGrams is available for download on GitHub [53]. A running

instance of RepoGrams is available at http://repograms.net/.

110

http://repograms.net/

	Abstract
	Preface
	Table of Contents
	List of Tables
	List of Figures
	Glossary
	Acknowledgments
	Dedication
	1 Introduction
	1.1 Research questions
	1.2 Contributions

	2 Related work
	2.1 Selection of evaluation targets
	2.2 Literature surveys
	2.3 Software visualizations

	3 Project selection approaches in SE literature
	3.1 Protocol
	3.2 Codebook
	3.3 Results

	4 RepoGrams's design and implementation
	4.1 Design
	4.1.1 Visual abstractions
	4.1.2 Mapping values into colors with buckets
	4.1.3 Supported interactions

	4.2 Implementation details
	4.3 Implemented metrics

	5 Evaluation
	5.1 User study with undergraduate students
	5.1.1 Methodology
	5.1.2 Results
	5.1.3 Summary

	5.2 User study with SE researchers
	5.2.1 Methodology
	5.2.2 Results
	5.2.3 Semi-structured interview
	5.2.4 Summary

	5.3 Estimation of effort involved in adding new metrics
	5.3.1 Summary

	6 Future work
	6.1 Additional features
	6.2 Expanded audience
	6.3 Further evaluations

	7 Conclusion
	Bibliography
	A Literature survey
	A.1 Full protocol
	A.1.1 Scope
	A.1.2 Overview
	A.1.3 Procedure

	A.2 Categories
	A.2.1 Notes

	A.3 Raw results

	B Undergraduate students study
	B.1 Slides from the in-class demonstration
	B.2 Protocol and questionnaire
	B.2.1 Overview
	B.2.2 Questionnaire
	B.2.3 Demographics
	B.2.4 Warmup questions
	B.2.5 Metric comprehension questions
	B.2.6 Questions about comparisons across projects
	B.2.7 Exploratory question
	B.2.8 Open comments
	B.2.9 Filtering results

	B.3 Raw results

	C Software engineering researchers study
	C.1 Protocol and questionnaire
	C.1.1 Procedure overview
	C.1.2 Study protocol
	C.1.3 Questionnaire
	C.1.4 Filtering results

	C.2 Raw results

	D Case study
	D.1 Results
	D.1.1 Overview
	D.1.2 Raw results

	E License and availability

