
Dancing in the Dark: Private Multi-Party Machine
Learning in an Untrusted Setting

by

Clement Fung

BASc., University of Waterloo, 2016

A THESIS SUBMITTED IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR THE DEGREE OF

Master of Science

in

THE FACULTY OF GRADUATE AND POSTDOCTORAL

STUDIES

(Computer Science)

The University of British Columbia

(Vancouver)

October 2018

c© Clement Fung, 2018

The following individuals certify that they have read, and recommend to the Fac-
ulty of Graduate and Postdoctoral Studies for acceptance, the thesis entitled:

Dancing in the Dark: Private Multi-Party Machine Learning in an Un-
trusted Setting

submitted by Clement Fung in partial fulfillment of the requirements for the de-
gree of Master of Science in Computer Science.

Examining Committee:

Ivan Beschastnikh, Computer Science
Supervisor

Margo Seltzer, Computer Science
Supervisory Committee Member

ii

Abstract

The problem of machine learning (ML) over distributed data sources arises in a

variety of domains. Unfortunately, today’s distributed ML systems use an unso-

phisticated threat model: data sources must trust a central ML process.

We propose a brokered learning abstraction that provides data sources with

provable privacy guarantees while allowing them to contribute data towards a globally-

learned model in an untrusted setting. We realize this abstraction by building on

the state of the art in multi-party distributed ML and differential privacy meth-

ods to construct TorMentor, a system that is deployed as a hidden service over an

anonymous communication protocol.

We define a new threat model by characterizing, developing and evaluating

new attacks in the brokered learning setting, along with effective defenses for these

attacks. We show that TorMentor effectively protects data sources against known

ML attacks while providing them with a tunable trade-off between model accuracy

and privacy.

We evaluate TorMentor with local and geo-distributed deployments on Azure.

In an experiment with 200 clients and 14 megabytes of data per client our prototype

trained a logistic regression model using stochastic gradient descent in 65 seconds.

iii

Lay Summary

Machine learning is a form of analysis that draws insights from large volumes of

training data. This mandates the collection of data into a single system for analysis,

but the nature of data today is highly distributed and private. Furthermore, most

of this analysis is performed by companies, who lack incentive to provide user

privacy.

We design TorMentor, a system that enables anonymous, distributed machine

learning between parties. Our contribution also includes a novel learning paradigm

called brokered learning, which removes the role of the central institution in the

machine learning process.

Through brokered learning, TorMentor protects the privacy and security of data

providers while ensuring that analysis is performed correctly. We design and eval-

uate such a system and show that it outperforms the state of the art in defending

against known privacy and security threats on distributed machine learning sys-

tems.

iv

Preface

All of the work presented henceforth was conducted in the NSS (Networks, Sys-

tems and Security) lab in the Department of Computer Science at the University of

British Columbia, Point Grey campus.

The work presented in this thesis is original, unpublished work by the author,

Clement Fung. This work was performed in collaboration with Syed Iqbal, Jamie

Koerner and Stewart Grant. The entirety of this work was designed and written

in assistance with Dr. Ivan Beschastnikh, who supervised this projects and all the

students involved.

The design of the TorMentor algorithms, system and API in Chapter 5 were

performed by the author. Jamie implemented and designed the differentially-private

learning component described in Section 5.4 and Algorithm 1. Syed assisted me

with the implementation of the go-python component of the system described in

Chapter 6. Jamie implemented the noise function in Python described in Chap-

ter 6.

Regarding the evaluation of the system, Jamie executed the experiments for

and generated Figure 7.1. Stewart assisted with the deployment of the system on

Azure described in Chapter 6 and used to generate Figures 7.2, 7.3, 7.6 and 7.7.

All other figures and experiments were designed and conducted by the author.

v

Table of Contents

Abstract . iii

Lay Summary . iv

Preface . v

Table of Contents . vi

List of Tables . viii

List of Figures . ix

Glossary . xi

Acknowledgments . xii

1 Introduction . 1

2 Background . 4

3 Brokered Learning . 9
3.1 Decoupling federated learning 9

3.2 Defining brokered learning . 10

3.3 Example use cases . 11

4 Threat model, guarantees, assumptions 13
4.1 Security guarantees . 15

vi

4.2 Assumptions . 16

5 TorMentor Design . 17
5.1 Design overview . 17

5.2 Curator API . 18

5.3 Client API . 19

5.4 Training process . 19

5.5 Defending against inversion attacks 21

5.6 Defending against poisoning attacks 23

5.7 Modular design . 25

6 TorMentor Implementation . 26

7 Evaluation . 27
7.1 Methodology . 27

7.2 Model convergence . 29

7.3 Scalability and overhead . 29

7.4 Inversion defenses evaluation . 31

7.5 Poisoning defenses evaluation 34

8 Discussion . 37

9 Conclusion . 39

Bibliography . 40

vii

List of Tables

Table 5.1 TorMentor Curator API. 18

Table 5.2 TorMentor Client API. 18

Table 7.1 Time to train the model with TorMentor, with and without Tor,

over a varying number of clients. 30

viii

List of Figures

Figure 2.1 Brokered learning and TorMentor design. Brokers (implemented

as hidden Tor services) mediate between curators (top) and sets

of clients (bottom). 8

Figure 4.1 (a) Attacks/defenses in TorMentor. (b) Threat model: an edge

is an attack by source against target(s). 14

Figure 5.1 Overview of the TorMentor protocol between curator/broker/-

client. 20

Figure 5.2 One iteration in an inversion attack in which an attacker ob-

serves the difference between Mt and Mt+2, and infers this dif-

ference to be ∆V,t+1. After many iterations, the attacker can

discover M∗V , the optimal model trained on the victim’s data. . 22

Figure 7.1 Effects of differential privacy and batch size on training loss

over time. As ε and b decrease, model convergence is slower

and may not be guaranteed. 29

Figure 7.2 TorMentor model convergence in deployments with 10, 50,

100, and 200 clients. 30

Figure 7.3 TorMentor without Tor model convergence in deployments with

10, 50, 100, and 200 clients. 31

Figure 7.4 Model agreement between victim model and inverted estimate

in the ideal setting (Fig. 5.2), with varying ε 32

ix

Figure 7.5 Reconstruction error between victim model and inverted model

estimate, with varying privacy parameters: the number of by-

standers and the privacy parameter ε 34

Figure 7.6 Model training loss over time, when attacked by a varying pro-

portion of poisoners. RONI threshold is maintained at 2%. . . 35

Figure 7.7 Model training loss over time, when attacked by 50% poison-

ers. RONI threshold is varied from 0.5% to 5%. 35

x

Glossary

API application programming inferface

CPU computer processing unit

LOC lines of code

MCMC Markov Chain Monte Carlo

MIT Massachusetts Institute of Technology

ML Machine learning

P2P peer-to-peer

RAM random access memory

RONI reject on negative influence

SD standard deviation

SGD stochastic gradient descent

SGX Intel Software Guard Extensions

UCI University of California Irvine

VM virtual machine

WAN wide area network

xi

Acknowledgments

This research was funded by grants from both the Natural Science and Engineer-

ing Research Council of Canada (NSERC) Discovery Grant, Huawei Technologies

Co., and the Institute for Computing, Information and Cognitive Systems (ICICS)

at the University of British Columbia, Point Grey Campus.

Firstly, I would like to thank Ivan Beschastnikh for taking a chance on me as

his student and providing careful guidance throughout my Masters degree, while

subsequently introducing me to the joys of research. Another thank you goes to

Margo Seltzer for being my second reader and taking the time to provide feedback

on my thesis.

I would also like to thank the members of the NSS lab for joining me through

the perils of graduate school: most notably Amanda Carbonari, Fabian Ruffy,

Stewart Grant, Nodir Kodirov and Puneet Mehrotra. All of you made my numerous

late nights in the lab bearable, and to some extent, even a little enjoyable.

In addition to my friends listed above, I thank the many new friends I have

made here at UBC: Giovanni Viviani, Yasha Pushak, Neil Newman, Kuba Karpierz,

Siddhesh Khandelwal, Alistair Wick, Nico Ritschel, and many more who deserve

to be listed. You kept me sane at times when my research was struggling, and kept

my work-life balance in check.

Lastly, I must thank my friends and family in Toronto for supporting me from

afar. Despite our physical distance, I have always felt extremely grateful to have

such a loving network of support available to me.

xii

Chapter 1

Introduction

Machine learning (ML) models rely on large volumes of diverse, representative

data for training and validation. However, to build multi-party models from user-

generated data, users must provide and share their potentially sensitive information.

Existing solutions [29, 31], even when incorporating privacy-preserving mecha-

nisms [2], assume the presence of a trusted central entity that all users share their

data and/or model updates with. For example, the Gboard service [32] uses sensi-

tive data from Android keyboard inputs to generate better text suggestions; users

who wish to train an accurate Gboard suggestion model must send their mobile

keyboard data to Google.

Federated learning [33] keeps data on the client device and trains ML models

by only transferring model parameters to a trusted central coordinator. In the quest

for training the optimal ML model as quickly as possible, the coordinator is not

incentivized to provide privacy for data providers: data is collected and is only

kept on the device as a performance optimization [33].

Furthermore, federated learning is not private or secure against adversaries,

who can pose as honest data providers or an honest coordinator and who use aux-

iliary information from the learning process to infer information about the training

data of other users [22], despite data never being explicitly shared. One may con-

sider obfuscating data labels before learning, but this is also insufficient to guar-

antee privacy [9]. General privacy-preserving computation models exist, but they

rely on substantial amounts of additional infrastructure. These include homomor-

1

phically encrypted secure aggregation [7], secure multi-party computation [34], or

trusted Intel Software Guard Extensions (SGX) [39], all of which are infeasible for

individuals and small organizations to deploy.

Today there is no accessible solution to collaborative multi-party machine learn-

ing that maintains privacy and anonymity in an untrusted setting. In developing

this solution, we propose a novel setting called brokered learning that decouples

the role of coordination from the role of defining the learning process. We intro-

duce a short-lived, honest-but-curious broker that mediates interactions between a

curator, who defines the shared learning task, and clients, who provide training

data. In decoupling these roles, curators are no longer able to directly link clients

to their model updates, and cannot manipulate the learning process.

Clients and curators never directly communicate: they are protected from each

other by a broker that is only used to coordinate the learning task. The broker is

administered by an honest-but-curious neutral party, detects and rejects anomalous

behavior, and terminates when the learning objective is met. Our system design

supports privacy and anonymity by building on accessible public infrastructure to

minimize the cost of setting up and maintaining a broker.

We realize the brokered learning setting by designing, implementing, and eval-

uating TorMentor, a system which creates brokers to interface with the curator and

the clients in a brokered learning process. TorMentor is implemented as a hidden

Tor service, but can use any general-purpose anonymous communication service

to safeguard the identities of curators and clients.

Although the model curator is removed from the learning process, a myriad of

other attacks are still possible. We adapt known ML attacks to brokered learning

and build on several state of the art techniques to thwart a variety of these attacks

when they are mounted by clients, brokers and curators. Client-side differential

privacy [13, 20] protects users from inversion attacks [17, 18], reject on negative

influence (RONI) [4] and monitored client statistics [35] prevent model poisoning

attacks [6, 25] and proof of work [3] mitigates sybil attacks [12].

Our evaluation of TorMentor demonstrates that these defenses protect clients

and curators from each other. For example, in one experiment with 50% mali-

cious poisoning clients, a TorMentor broker was able to converge to an optimum

after mitigating and recovering from malicious behavior through our novel adap-

2

tive proof of work mechanism. We also evaluated the performance of our prototype

in a geo-distributed setting: across 200 geo-distributed clients with 14 MB of data

per client, the training process in TorMentor takes 67s. By comparison the training

on a similar federated learning system without Tor would take 13s. The observed

overhead of TorMentor ranges from 5-10x, and depending on the level of privacy

and security required, TorMentor’s modular design allows users to further tune the

system to meet their expected needs on the security-performance trade-off.

In summary, we make four contributions:

? We develop a brokered learning setting for privacy-preserving anonymous

multi-party machine learning in an untrusted setting. We define the responsi-

bilities, interactions, and threat models for the three actors in brokered learn-

ing: curators, clients, and the broker.

? We realize the brokered learning model in the design and implementation of

TorMentor and evaluate TorMentor’s training and classification performance

on a public dataset.

? We translate known attacks on centralized ML (poisoning [25, 38] and inver-

sion [17, 18]) and known defenses in centralized ML (RONI [4], differential

privacy [13]) to the brokered learning setting. We evaluate the privacy and

utility implications of these attacks and defenses.

? We design, implement, and evaluate three new defense mechanisms for the

brokered learning setting: distributed RONI, adaptive proof of work, and

thresholding the number of clients.

3

Chapter 2

Background

Machine Learning (ML). Many ML problems can be represented as the min-

imization of a loss function in a large Euclidean space. For example, a binary

classification task in ML involves using features from data examples to predict dis-

crete binary outputs; a higher loss results in more prediction errors. Given a set of

training data and a proposed model, ML algorithms train, or iteratively find an op-

timal set of parameters, for the given training set. One approach is to use stochastic

gradient descent (SGD) [8], an iterative algorithm which samples a batch of training

examples of size b, uses them to compute gradients on the parameters of the cur-

rent model, and takes gradient steps in the corresponding gradient direction. The

algorithm then updates the model parameters and another iteration is performed

(Appendix A contains all background formalisms).

Our work uses SGD as the training method. SGD is a general learning algo-

rithm that is used to train a variety of models, including deep learning [45].

Distributed multi-party ML. To support larger models and datasets, ML training

has been parallelized using a parameter server architecture [29]: the global model

parameters are partitioned and stored on a parameter server. At each iteration,

client machines pull the parameters, compute and apply one or more iterations,

and push their updates back to the server. This can be done with a synchronous or

asynchronous protocol [24, 41], both of which are supported in our work.

Federated Learning [33]. The partitioning of training data enables multi-party

4

machine learning: data is distributed across multiple data owners and cannot be

shared. Federated learning supports this setting through a protocol in which clients

send gradient updates in a distributed SGD algorithm. These updates are collected

and averaged by a central server, enabling training over partitioned data sources

from different owners.

Attacks on ML. Our work operates under a unique and novel set of assumptions

when performing ML and requires a new threat model. Despite this novel setting,

the attacks are functionally analogous to state of the art ML attacks known today.

Poisoning attack. In a poisoning attack [6, 35], an adversary meticulously cre-

ates adversarial training examples and inserts them into the training data set of a

target model. This may be done to degrade the accuracy of the final model (a ran-

dom attack), or to increase/decrease the probability of a targeted example being

predicted as a target class (a targeted attack) [25]. For example, such an attack

could be mounted to avoid anomaly detectors [42] or to evade email spam filter-

ing [38].

In federated learning, clients possess a disjoint set of the total training data;

they have full control over this set, and can therefore perform poisoning attacks

with minimal difficulty.

Information leakage. In an information leakage attack, such as model inver-

sion, an adversary attempts to recover training examples from a trained model f (x).

Given a targeted class y, one inversion technique involves testing all possible val-

ues in a feasible feature region, given that some information about the targeted

example is known. The attack then finds the most probable values of the targeted

example features [17].

Another model inversion attack uses prediction confidence scores from f (x)

when predicting y to perform gradient descent to train a model ˆf (x) that closely

resembles f (x). The victim’s features are probabilistically determined by using the

model in prediction. The resulting vector x that comes from this process is one that

most closely resembles an original victim training example [18].

Information leakage attacks have been extended to federated learning: instead

of querying information from a fully trained model, an adversary observes changes

in the shared model during the training process itself [22]. In doing so, the adver-

5

sary can reconstruct training examples that belong to other clients.

Defenses for ML. A RONI (Reject on Negative Influence) defense [4] counters ML

poisoning attacks. Given a set of untrusted training examples Dun, this defense

trains two models, one model using all of the trusted training data D, and another

model using the union dataset D′ = D∪Dun which includes the untrusted data.

If the performance of D′ is significantly worse than the performance of D on a

validation dataset, the data Dun is flagged as malicious and rejected. However,

this defense relies on access to the centralized dataset, which is infeasible in the

federated learning setting.

Differential privacy [13] is a privacy guarantee that ensures that, for a given

dataset, when used to answer questions about a given population, that no adversary

can identify individuals that are members of the dataset. Differential privacy is

user-centric: the violation of a single user’s privacy is considered a privacy breach.

Differential privacy is parameterized by ε , which controls the privacy-utility trade-

off. In the ML context, utility equates to model performance [45]. When ε ap-

proaches 0, full privacy is ensured, but an inaccurate model is produced. When ε

approaches infinity, the optimal model is produced without any privacy guarantees.

Differential privacy has been applied to several classes of ML algorithms [5,

43] in decentralized settings to theoretically guarantee that a client’s privacy is not

compromised when their data is used to train a model. This guarantee extends to

both the training of the model and to usage of the model for predictions.

Differentially private SGD [20, 45] is a method that applies differential pri-

vacy in performing SGD. Before sending gradient updates at each iteration, clients

perturb their gradient values with additive noise, which protects the privacy of the

input dataset. The choice of batch size impacts the effect of the privacy parameter

on the model performance. Our work uses differentially private SGD to provide

the flexible privacy levels against attacks in our setting.

Anonymous communication systems. Clients are still at privacy risk when send-

ing model updates directly to an untrusted broker, so we add an additional layer of

indirection in our work. Onion routing protocols are a modern method for provid-

ing anonymity in a distributed peer-to-peer (P2P) setting. When communicating

6

with a target node, clients route traffic through a randomly selected set of relay

nodes in the network, which obfuscates the source and destination nodes for each

message.

Our work supports the use of any modern implementation for providing anony-

mous communication. We select the Tor network [11] as the system in our imple-

mentation.

Sybil attacks and proof of work. An anonymous system that allows users to join

and leave may be attacked by sybils [12], in which an adversary joins a system

under multiple colluding aliases. One approach to mitigate sybil attacks is to use

proof of work [3], in which a user must solve a computationally expensive prob-

lem (that is easy to verify) to contribute to the system. This mechanism provides

the guarantee that if at least 50% of the total computation power in the system is

controlled by honest nodes, the system is resilient to sybils.

7

Curator 2 …Curator 1 Curator N

Client pool 1 Client pool 2 Client pool N

… … ……

Broker 1 Broker 2 Broker 3…

Figure 2.1: Brokered learning and TorMentor design. Brokers (implemented
as hidden Tor services) mediate between curators (top) and sets of
clients (bottom).

8

Chapter 3

Brokered Learning

In this work, we define brokered learning, which builds on the federated learning

setting [33], but assumes no trust between clients and curators.

3.1 Decoupling federated learning
In federated learning, a central organization (such as Google) acts as the parameter

server and performs two logically separate tasks: (1) define the data schema and

the learning objective, (2) coordinate distributed ML. The federated learning server

performs both tasks at a central service, however, there are good reasons to separate

them.

Fundamentally, the goals of data privacy and model accuracy are at tension.

Coordinating the ML training process in a private and secure manner compromises

the model’s ability to learn as much as possible from the training data. In current

learning settings, the coordinator is put in a position to provide privacy, yet they

are not incentivized to do so.

To take things even further, a malicious curator can observe the contributions of

any individual client, creating an opportunity to perform information leakage [22]

attacks on clients, such as model inversion [17, 18] or membership inference [44].

These attacks can be mitigated in federated learning with a secure aggregation pro-

tocol [7], but this solution does not handle poisoning attacks and requires several

coordinated communication rounds between clients for each iteration.

9

Client anonymity may also be desirable when privacy preferences are shared.

For example, if attempting to train a model that uses past criminal activity as a

feature, one user with strong privacy preferences in a large group of users with

weak privacy preferences will appear suspicious, even if their data is not revealed.

A key observation in our work is that because data providers and model cura-

tors agree on a learning objective before performing federated learning, there is

no need for the curator to also coordinate the learning.

Brokered learning decouples the two tasks into two distinct roles and includes

mechanisms for anonymity to protect data providers from the curator while orches-

trating federated learning. In this setting the users in the system (model curators

and data providers) do not communicate with one another, which facilitates a min-

imal trust model, strengthening user-level privacy and anonymity. As well, users

do not reveal their personal privacy parameters to the broker, since all privacy-

preserving computation is performed on the client.

At the same time brokered learning maintains the existing privacy features of

federated learning: data providers do not need to coordinate with each other (or

even be aware of each other). This is important to counter malicious clients who

attack other clients [22].

3.2 Defining brokered learning
Brokered learning builds on federated learning [33] but provides additional privacy

guarantees. This model introduces a broker to mediate the learning process.

Curators define the machine learning model. A curator has a learning task

in mind, but lacks the sufficient volume or variety of data to train a quality model.

Curators would like to collaborate with clients to perform the learning task and may

want to remain anonymous. We provide curators with anonymity in TorMentor by

deploying a broker as a Tor hidden service, and by using the broker as a point of

indirection (Figure 2.1).

Curators may know the identities of clients that wish to contribute to the model

or may be unaware of the clients that match their learning objectives. Brokered

learning supports these and other use cases, For example, curators may know some

subset of the clients, or set a restriction on the maximum number of anonymous

10

clients who can contribute1.

Clients contribute their data to the machine learning task and specify the cri-

teria for their participation. Instead of fully trusting the curator as they would in

federated learning, clients communicate with an honest-but-curious broker. The

broker is trusted only with coordinating the learning process, and does not learn

the identity nor data of any client. This threat model is similar to what was used in

the secure aggregation protocol for federated learning [7].

Brokered learning allows these clients to jointly contribute to a shared global

model, without being aware of nor trusting each other. Each client only needs to be

concerned about its personal privacy parameters. Some clients may be more con-

cerned with privacy than others; brokered learning supports differentially private

machine learning with heterogeneous privacy levels, which has been shown to be

feasible [20].

A broker is a short-lived process that coordinates the training of a multi-party

ML model. For each model defined by a curator in TorMentor, a single broker

is created and deployed as a hidden service in an anonymous network 2. Clients

perform actions such as requesting access to the system, defining client-specific

privacy parameters and sending model updates for distributed SGD. We define a

precise client application programming inferface (API) in Section 5. When model

training is complete, the broker publishes the model and terminates. In our vision,

brokers are not intended to be long lasting, and their sole function should be to bro-

ker the agreement between users to facilitate anonymous multi-party ML. Brokers

may even explicity be managed by governments or as part of a privacy enhancing

business model, both of whom are incentivized to provide privacy, anonymity and

fairness in distributed ML.

3.3 Example use cases
Medical Sharing Network. Hospitals store substantial patient medical data. How-

ever, due to strict regulations, they cannot share this data with each other. No in-

1We assume that the broker identifies or advertises the learning process to clients out of band,
externally to TorMentor.

2In this paper we do not consider who is running the broker; but we do assume that it is an
honest-but-curious third party that is distinct from the curator and the participating clients.

11

dividual hospital wishes to host the infrastructure for model coordination, and no

individual hospital is trusted to securely coordinate the analysis. An alternative so-

lution is for the network of hospitals to collaborate in a brokered learning system.

For this the hospitals would define the learning task, one hospital would agree to

deploy the broker as a hidden service, and all other willing hospitals would join

and contribute model updates, training a shared model.

Internet of Things. With the growth of the Internet of Things (IoT), and a largely

heterogeneous set of device providers, there is currently no solution for privacy-

preserving multi-device ML, hosted by a neutral provider. Without anonymous

multi-party ML, each system device provider would need to host their own ML co-

ordinators and would have no mechanism for sharing models across other providers.

Brokered learning allows these devices to collaborate on model training with-

out explicitly trusting each other. Devices reap the benefits of shared trained mod-

els, without risking data privacy loss. The broker can be run by any single com-

pany, or a neutral trusted third party, neither of which have power to compromise

device-level privacy.

12

Chapter 4

Threat model, guarantees,
assumptions

We realized brokered learning in a system called TorMentor, which uses differen-

tially private distributed SGD [45] to train a model in an anonymous multi-party

setting. We select Tor [11] as the anonymous communication network for TorMen-

tor. TorMentor is designed to counter malicious curators and malicious clients who

may attempt to gain additional information (information leakage) about others or

negatively influence the learning process (poisoning). The honest-but-curious bro-

ker coordinates the learning process, but is not trusted with the identity nor the data

of users.

Clients and curators do not attack the broker itself, rather they aim to attack

other curators, other clients, or the outcome of the learning process. Brokers are

also untrusted in the system: the client and curator API protects users from poten-

tial broker attacks. Figure 4.1 overviews TorMentor’s threat model with attacks/de-

fenses and who can attack who and how.

Deanonymization. For anonymous communication to and from the broker we as-

sume a threat model similar to Tor [11]: an adversary has the ability to observe

and control some, but not all of the network. Adversaries may attempt to observe

Tor traffic as a client or as a broker in the network [14, 28, 36]. Adversaries can

also influence traffic within Tor through their own onion router nodes, which do

13

Curator

Client(s)

DefensesAttack
ValidationPoisoning

Proof of workSybil

Tor, broker
indirectionDeAnon

Diff-priv,
bystandersInversion

Poisoning
DeAnon

Sybil

Inversion
DeAnon

Sybil

Inversion, DeAnon, Sybil
(a) (b)

Broker

Inversion
DeAnon

DeAnon

Figure 4.1: (a) Attacks/defenses in TorMentor. (b) Threat model: an edge is
an attack by source against target(s).

not necessarily need to be active TorMentor clients.

Poisoning attacks. In our threat model, poisoning attacks are performed by clients

against shared models. After a curator defines a model, adversarial clients can use

the defined learning objective to craft adversarial samples that oppose the objec-

tive. We assume that adversaries generate these adversarial samples using a com-

mon strategy such as label flipping [6], and join the training process and poison the

model by influencing its prediction probabilities.

Inversion attacks. We assume that adversaries can target a specific client victim

who they know is using the system. Inversion attacks can be executed from a

variety of points: the adversary may be administering the broker, the adversary

may curate a model that the victim joins, or the adversary joins model training

as a client, knowing that the victim has also joined. Although the broker does

not expose model confidence scores in the model prediction API, which are a key

piece of information for performing inversion attacks in a black-box setting [18],

our threat model grants adversaries white-box access to the model internals, which

is more powerful than a traditional model inversion attack.

In TorMentor, adversarial clients have access to the global model and can in-

fer confidence scores or gradient step values by carefully observing changes to the

14

global model and reconstructing a copy of the victim’s local model. This attack is

similar to a model stealing attack [48]: after stealing an accurate approximation of

a victim’s local model, an adversary can mount an inversion attack on the approxi-

mation to reconstruct the victim’s training examples.

Sybil attacks. Since clients and curators join the system anonymously, they can

generate sybils, or multiple colluding virtual clients, to attacks the system [12]. In

federated learning, all users are given an equal stake in the system, and thus sybils

make poisoning and inversion attacks linearly easier to perform.

4.1 Security guarantees
TorMentor guarantees that curator and client identities remain anonymous to all

parties in the system by using an anonymous communication network. Our proto-

type uses Tor and provides the same guarantees as Tor, however, it can use other

anonymous messaging systems [10, 49]. For example, since Tor is susceptible to

timing attacks, an adversary could target a client by observing its network traffic to

de-anonymize its participation in the system.

TorMentor exposes a small, restrictive API to limit a user’s influence on the

system. TorMentor alleviates the risk of poisoning attacks and inversion attacks by

allowing clients to specify k, the minimum number of clients required for training.

When a client joins the system, they are able to specify the number of other clients

required in the system, which TorMentor guarantees will be honored. Clients also

locally use differential privacy to further protect their privacy. Both parameters are

defined by the client, guaranteeing that clients (and not the curator) controls this

accuracy-privacy tradeoff.

TorMentor prevents sybils through proof of work, similar to the Bitcoin proto-

col [37]. This mechanism makes it expensive, though not impossible, to mount a

sybil attack. Proof of work is implemented at two points: proof of work as a pre-

requisite for system admission, and proof of work as a prerequisite for contributing

to the model.

15

4.2 Assumptions
We assume that the only means to access information within the system is through

the APIs defined in Section 5. A TorMentor instance and its corresponding brokers

are exposed as a hidden service with a public .onion domain. We assume that this

.onion becomes a widely known and trusted domain1.

We use proof of work to defend against sybils and therefore assume that the ad-

versary does not have access to more than half of the computational power relative

to the total computational power across all users in an instance of the TorMentor

training process [3].

We make the same assumptions as Tor [11]; for example, we assume that an

adversary does not control a large fraction of nodes within the Tor network.

1To build further trust the TorMentor service can use an authoritatively signed certificate.

16

Chapter 5

TorMentor Design

TorMentor design has three goals: (1) meet the defined learning objective in a rea-

sonable amount of time, (2) provide both anonymity and data privacy guarantees to

clients and curators, and (3) flexibly support client-specific privacy requirements.

5.1 Design overview
The broker handles all communication between clients and the curator, and acts

as the coordinator in an untrusted collaborative learning setting. Each TorMentor

broker is deployed as a Tor hidden service with a unique and known .onion domain.

Several clients may join a model once a curator defines it, with requirements for

joining specified by both the curator and the clients. Each broker and therefore

each model is associated with a pool of clients among whom the learning procedure

takes place (see Figure 2.1).

Each broker runs a separate aggregator process and validator process. The

aggregator serves the same purpose as a parameter server [29]: storing and dis-

tributing the parameters of the global model. The validator is a novel addition in

our work that observes and validates the values of gradient updates sent by clients

to the aggregator.

Next, we review the TorMentor curator and client API in Tables 5.1 and 5.2.

We also review the training process illustrated in Figure 5.1, and finally detail how

TorMentor defends against adversarial clients and curators.

17

address← curate(mID, maxCli, minCli, validSet)
Curate a new model. Curator provides modelID, client count range, validation set.
TorMentor returns a hidden service address for a newly specified broker.

Table 5.1: TorMentor Curator API.

Padmit ← join(mID)
Client joins a curated model. Client provides modelID; TorMentor returns a SHA-
256 admission hash puzzle Padmit .
conn, Mt ← solve(mID, Sadmit , minCli, schema)
Client finds the solution Sadmit to Padmit and joins. Client provides modelID, solu-
tion to puzzle, min number of clients and its dataset schema; TorMentor returns a
connection and global model state.
Mg,t+1, Pi,t+1← gradientUpdate(mId, Si,t , ∆i,t)
Client pushes a local model update to the global model state. Client i provides
modelID, solution to previous SHA-256 puzzle Si,t and gradient update ∆i,t at iter-
ation t; TorMentor returns new global model state Mg,t+1, and the next SHA-256
puzzle Pi,t+1.

Table 5.2: TorMentor Client API.

5.2 Curator API
Table 5.1 shows the curator API in TorMentor. The curator uses the curate call

to bootstrap a new model by defining a common learning objective: the model

type, the desired training data schema and a validation dataset. These are critical

to perform ML successfully (even in a local setting). We therefore expect that a

curator can provide these.

Once the learning objective is defined, a Tor .onion address is established for

the specified model, and the system waits for clients to contact the hidden service

with a message to join. The validation dataset is used by the validator to reject

adversaries, and to ensure that the ML training is making progress towards model

convergence.

Too few clients may lead to a weak model with biased data, while a large

number of clients will increase communication overhead. The curator can use the

API to adjust an acceptable range for the number of clients contributing to the

18

model.

5.3 Client API
Table 5.2 shows the client API in TorMentor. A client uses the join call to join

a curated model. A client’s data is validated against the objective when joining.

Our prototype only checks that the specified number of features matches those of

the client, but more advanced automatic schema validation techniques [40] can be

used.

The client uses the solve call to perform a proof-of-work validation, similar to

that of the blockchain protocol [37], in which a cryptographic SHA-256 admission

hash is inverted, the solution is verified to contain a required number of trailing

‘0’ digits, and a new puzzle is published. Once the proof-of-work is completed,

the client is accepted as a contributor to the model. Once the desired number of

clients have been accepted to the model, collaborative model training is performed

through the TorMentor protocol: each client computes their SGD update on the

global model and pushes it to the parameter server through the gradientUpdate
call.

Clients compute gradient updates locally. Clients also maintain a personal pri-

vacy level ε and a personal batch size b to tune their differentially-private updates

during model training. With the privacy-utility tradeoff in mind, it is natural for

clients and curators to have different preferences regarding client privacy. Some

clients may value privacy more than others and thus will tune their own privacy

risk, while curators want to maximize their model utility TorMentor is the first

system to support anonymous machine learning in a setting with heterogeneous

user-controlled privacy goals.

5.4 Training process
Training in TorMentor (Figure 5.1 and Algorithm 1) is performed in a fashion sim-

ilar to that of the parameter server [29]: each client pulls the global model, locally

computes a gradient step, and applies the update to the global model. TorMentor

users the differentially private SGD [45] method, which allows clients to select

their own privacy parameter ε and batch size b. We assume that clients understand

19

Curator

Time

Broker Client
curate()

join()
puzzle

solve()

model M0

Mfinal

Solve PoW
cryptopuzzle

Check starting criteria
Start training

gradientUpdate �0

Compute gradient
Apply diff-priv ()
Solve PoW

…

gradientUpdate �n

Check stopping criteria

model Mn

"

…

Validate
ComputeM1

�0

Figure 5.1: Overview of the TorMentor protocol between curator/broker/-
client.

how to properly define these parameters and are aware of their implications on the

privacy-utility tradeoff and their privacy budgets [13].

Since clients may fail or be removed from the system by the broker, bulk syn-

chronous computation in TorMentor may be infeasible. Instead, as an alternative

to the synchronous update model in federated learning [33], TorMentor also sup-

ports a total asynchronous model [24, 29], which enables parallelization but allows

clients to compute gradients on stale versions of the global model, potentially com-

promising model convergence. A lock-free approach to parallel SGD is feasible if

the the step size is tuned properly, and the corresponding global loss function meets

certain strong convexity guarantees [41], which we assume is true when using the

20

Data: Training data x,y; batch size b; privacy parameter ε

Result: Returns a single gradient update on the model parameters
while IsTraining do

Pull gradients wt from TorMentor;
Subsample b points (xi,yi) ∈ Bt from training data;
Draw noise Zt from Laplacian distribution;
Compute gradient step through differentially private SGD;
Push gradient to TorMentor

end
Algorithm 1: TorMentor differentially private SGD training algorithm.

total asynchronous model in our brokered learning setting. This approach also

negates the affect of stragglers in a high latency environment (see Section 7).

Clients are free to leave the training process at any time. TorMentor keeps

a registry of the active clients, and checks that the minimum number of clients

condition is met at each gradient update. In the case of clients leaving the system,

TorMentor uses timeouts to detect the clients who drop out of the system. Such

clients do not negatively impact the curator or other clients. As long as the required

minimum number of clients k exists, the learning process will not halt and no work

will be wasted.

5.5 Defending against inversion attacks
Although a direct inversion attack in federated learning has not been realized yet,

we envision a novel potential attack in this scenario. Figure 5.2 shows the pro-

posed ideal situation for an attacker performing an inversion attack: a two client

TorMentor system, one of whom is the adversary.

In this scenario the victim V and attacker A alternate in sending gradient up-

dates to the broker. Since the global model parameters are sent to the adversary

at each iteration, it can ideally observe the difference in the global model between

iterations. As the attacker knows their contribution to the global model at the pre-

21

Client
Victim

Time

Broker

Mt

�a,t

Mt+1

�v,t+1

Mt+2

Compute�v,t+1

Client
Attacker

Figure 5.2: One iteration in an inversion attack in which an attacker observes
the difference between Mt and Mt+2, and infers this difference to be
∆V,t+1. After many iterations, the attacker can discover M∗V , the optimal
model trained on the victim’s data.

vious iteration, they are able to exactly compute the victim’s update by calculating:

Mt+2 = Mt +∆v,t+1 +∆a,t

∆v,t+1 = Mt+1−Mt −∆a,t

By saving and applying ∆v,t at each iteration to a hidden, shadow model, the ad-

versary can compute an approximation to MV , the optimal model trained with only

the victim’s data, similar to a model stealing attack [48]. The adversary can then

perform a model inversion attack [17, 18] and reconstruct the victim’s training data

elements in XV . In the case that the broker carries out the inversion attack, the at-

tack is even stronger: the broker can isolate all updates sent to it through a single

connection.

Differential privacy offers a natural defense against attacks from a broker or

another client by perturbing the victim’s updates ∆V,t that are sent to the broker. An

adversary will find it difficult to recover MV and XV when the privacy parameter ε

22

is closer to 0. An adversary could choose to send any vector as their ∆a,t update,

which allows them to curate specific gradients that elicit revealing responses from

the victim [22].

In the case of attacks from other clients, the effectiveness of the differentially

private SGD protocol is also contingent on a setting in which multiple clients are

simultaneously performing updates. When an adversarial client receives a new

copy of the global model in TorMentor, it has no mechanism to discover which

clients contributed to the model since the last update, making it difficult to derive

knowledge about specific clients in the system.

Thus, TorMentor exposes a privacy parameter k to clients, which clients use to

express the minimum number of clients that must be in the system before training

can begin. Our differentially private SGD only begins when n clients, each with a

parameter k ≤ n exist in the system. Effectively, this means that for an adversarial

client to perform the ideal model inversion against a victim with parameter k the

adversary needs to create k−1 sybil clients.

5.6 Defending against poisoning attacks
In adding the validator process, we propose an active parameter server alternative

to the assumed passive parameter server in current attacks [22]. The parameter

server validates each client’s contribution to the model health and penalizes updates

from suspicious connections.

We develop a distributed RONI defense that uses sets of gradient updates, in-

stead of datasets, and independently evaluates the influence that each gradient up-

date has on the performance of a trusted global model. Validation (Algorithm 2)

executes within the parameter server in TorMentor and validates that iterations

performed by clients have a positive impact. Validation is parameterized by two

variables: the validation rate at which validations are performed, and the RONI

threshold [4] required before a client is flagged.

To ensure that validations are performed in a fair manner, we benchmark all

clients against the same candidate model. The validator intersperses validation iter-

ations within the gradient updates requests in distributed SGD. A validation round

is triggered through a periodic Bernoulli test, with the probability parameterized by

23

Data: Stream of gradient updates from each client i, over t iterations ∆i,t

Result: Reject a client if their updates oppose the defined learning
objective

while IsTraining do
Draw Bernoulli value v;
if v > VALIDATION_RATE then

Set current model Mt to be snapshot model Ms;
Wait for client responses;

end
if Client c contacts TorMentor then

Send Ms instead of Mt ;
Save response ∆c,s

end
if All clients responded then

Find RONI rc: rc = err(Ms,Xval)− err(Ms +∆c,s,Xval);
totalc = totalc + rc;
if totalc > THRESHOLD then

penalize c;
end

end
end

Algorithm 2: RONI validation algorithm.

a validation rate. During a validation round, the current model state is snapshotted,

and a copy of this model is sent to all active clients. The clients’ gradient responses

are collected and the RONI value is calculated and accumulated.

In addition to the proof of work required to join the system, we implement an

adaptive proof of work mechanism to mitigate sybils in poisoning attacks. A SHA-

256 proof of work puzzle that must be solved on each iteration before an update to

the global model is accepted by the broker. When a client’s RONI score exceeds

a defined negative threshold, the broker increases the required trailing number of

0’s by one, increasing the difficulty of the puzzle for that client. The difficulty of

this puzzle is client- and iteration-specific, making it more expensive for malicious

clients to poison the model and decreasing their influence relative to honest clients.

When the rate of validation is increased, the broker discovers poisoning clients

more quickly, but with a performance overhead. When the RONI threshold is in-

24

creased, the broker is more likely to detect adversaries, but the false positive rate

of flagging honest nodes increases as well.

An important design detail is that a validation request looks just like a gradi-

ent update request. Therefore, adversaries cannot trick the validator by appearing

benign during validation rounds while poisoning the true model. If the snapshot

model Ms is taken close enough to the current model state Mt , it becomes more

difficult for adversaries to distinguish whether the updates they are receiving are

genuine gradient requests or not.

5.7 Modular design
To summarize, TorMentor includes several mechanisms to provide various levels

of client and curator privacy and security. These include:

? Using Tor to provide anonymous communication for all users (clients and

the curator).

? Using proof of work as a form of admission control.

? A validator process that uses RONI and adaptive proof of work to mitigate

poisoning attacks and sybils.

? Differentially private SGD and minimum client enforcement to provide client

privacy and to defend against inversion attacks.

Each of these components operates independently, and if brokered learning is

deployed in a setting where some of the described attacks are out of scope, these

components can be independently disabled.

25

Chapter 6

TorMentor Implementation

We implemented a TorMentor prototype in 600 lines of code (LOC) in Python 2.7

and 1,500 LOC in Go 1.8. All the communication primitives are developed in Go,

while the vector computation and ML are in Python. To facilitate communication

between Go and Python, we use go-python [1], a library that provides communi-

cation bindings between the two languages. We implement differentially-private

SGD [45] in Numpy 1.12. For our noise function, we use a multivariate isotropic

Laplace distribution. As a performance operation, we draw random samples from

this distribution prior to training by using emcee, a Massachusetts Institute of Tech-

nology (MIT) licensed Markov Chain Monte Carlo (MCMC) ensemble sampler [16].

In our evaluation we deploy the TorMentor curator and clients on Azure by

using bash scripts consisting of 371 LOC. These bootstrap VMs with a TorMentor

installation, launch clients, and orchestrate experiments.

26

Chapter 7

Evaluation

We evaluated our TorMentor design by carrying out several local and wide-area

experiments with the TorMentor prototype. Specifically, we answer the following

four research questions:

1. What are the effects of the privacy parameter ε and batch size b on model

convergence? (Section 7.2)

2. What is TorMentor’s overhead as compared to the baseline alternative? (Sec-

tion 7.3)

3. How effective are the privacy parameters ε and minimum number of clients

k in defending against inversion attacks? (Section 7.4)

4. How effective is validation in defending against poisoning attacks, and what

are the effects of its parameters? (Section 7.5)

Next we describe the methodology behind our experiments and then answer

each of the questions above.

7.1 Methodology
Credit card dataset. In our experiments we envision multiple credit card compa-

nies collaborating to train a better model that predicts defaults of credit card pay-

ments. However, the information in the dataset is private, both to the credit card

27

companies and to their customers. In this context, any individual company can act

as the curator, the broker is a commercial trusted service provider, and clients are

the credit card companies with private datasets.

To evaluate this use-case we used a credit card dataset [50] from the University

of California Irvine (UCI) machine learning repository [30]. The dataset has 30,000

examples and 24 features. The features represent information about customers,

including their age, gender and education level, along with information about the

customer’s payments over the last 6 months. The dataset also contains information

about whether or not the given customer managed to pay their next credit card bill,

which is used as the prediction for the model.

Prior to performing the training, we normalized, permuted, and partitioned the

datasets into a 70% training and 30% testing shard. For each experiment, the train-

ing set is further sub-sampled to create a client dataset, and the testing shard is

used as the curator-provided validation set. Training error, the primary metric used

in evaluation, is calculated as the error when classifying the entire 70% training

shard. In brokered learning, no single client would have access to the entire train-

ing dataset, so this serves as a hypothetical metric.

Wide-area deployment on Azure. We evaluated TorMentor at scale by deploying

a geo-distributed set of 25 Azure virtual machines, each running in a separate data

center, spanning 6 continents. Each virtual machine (VM) was deployed using

Azure’s default Ubuntu 16.06 resource allocation. Each VM was provisioned with

a single core Intel Xeon E5-2673 v3 2.40GHz computer processing unit (CPU), and

4 gigabytes of random access memory (RAM). Tor’s default stretch distribution

was installed on each client. We deployed the broker at our home institution as a

hidden service on Tor. The median ping latency (without using Tor) from the client

VMs to the broker was 133.9ms with a standard deviation (SD) of 61.9ms. With

Tor, the median ping latency increased to 715.9ms with a SD of 181.8ms.

In our wide-area experiments we evenly distribute a varying number of clients

across the 25 VMs and measure the training error over time. Each client joins

the system with a bootstrapped sample of the original training set (n = 21,000 and

sampled with replacement), and proceeds to participate in asynchronous model

training.

28

Figure 7.1: Effects of differential privacy and batch size on training loss over
time. As ε and b decrease, model convergence is slower and may not be
guaranteed.

7.2 Model convergence
We evaluate the effect of the privacy parameter ε and the batch size b when per-

forming learning over TorMentor. Figure 7.1 shows training error over time with

a single client performing differentially private SGD [45] to train a logistic regres-

sion model using the entire training shard.

We found that models converge faster and more reliably when the batch size is

higher and when ε is higher (less privacy). These results are expected as they are

confirmations of the utility-privacy tradeoff. In settings with a low ε (more privacy)

and a low batch size we observed that the effect of differential privacy is so strong

and the magnitude of the additive noise is so large that the model itself does not

converge, rendering the output of the model useless. Based on these results, the

experiments in the remainder of the paper use a batch size of 10.

7.3 Scalability and overhead
We also evaluated TorMentor’s scalability by varying the number of participating

clients. We evaluate the overhead of Tor and the wide-area in TorMentor by run-

ning TorMentor experiments with and without Tor. All nodes were honest, held a

subsample of the original dataset, and performed asynchronous SGD.

Figure 7.2 shows that, when updating asynchronously, the model convergences

at a faster rate as we increase the number of clients.

We also compared the convergence time on TorMentor with a baseline wide

area network (WAN) parameter server. For the WAN parameter server we used the

29

Figure 7.2: TorMentor model convergence in deployments with 10, 50, 100,
and 200 clients.

of Clients TorMentor w/o Tor
10 819 s 210 s
50 210 s 34 s
100 135 s 18 s
200 67 s 13 s

Table 7.1: Time to train the model with TorMentor, with and without Tor,
over a varying number of clients.

same clients deployment, but bypassed Tor, thereby sacrificing anonymity.

The results in Table 7.1 show that on average, the overhead incurred from using

Tor ranges from 5-10x. However, as the number of clients increases, the training

time in both deployments drops, while the central deployment slows down.

30

Figure 7.3: TorMentor without Tor model convergence in deployments with
10, 50, 100, and 200 clients.

7.4 Inversion defenses evaluation
We first set up the inversion attack by carefully partitioning the dataset. Of the

30,000 examples in the credit dataset, 9,000 (30%) examples were partitioned into

Xtest , a test dataset. The remaining 21,000 examples were evenly partitioned across

clients. The victim’s dataset Xv was one of these partitions, with all the yi predic-

tion values flipped. This was done to sufficiently separate the victim model from

the globally trained model1. With this victim dataset, a globally trained model

achieved an error of 95.4% when attempting to reconstruct the victim model, and

predicting on the test set.

With this setup we carried out the attack described in Figure 5.2. Each at-

tack was executed for 4,000 gradient iterations, which was long enough for the

global model to reach convergence in the baseline case. We then calculated the

1We originally attempted the inversion with one of the training data shards as the victim dataset,
but we found that even naively comparing the final global model M∗g to the optimal victim model
M∗v resulted in a low reconstruction error of 4.4%. Thus, separating the victim model in a way that
makes it distinguishable is necessary.

31

Figure 7.4: Model agreement between victim model and inverted estimate in
the ideal setting (Fig. 5.2), with varying ε .

reconstruction error by comparing the resulting inversion model to the true victim

model, a model trained with only the victim’s data, by comparing predictions on

the test set. That is, if the inversion model and true victim model classify all test

examples identically, the reconstruction error is 0. The reconstruction error would

also serve as the error when an attacker uses outputs from M̂v to infer the training

examples in Xv [18, 48].

Since the inversion attack is passively performed, it is defended by a client

carefully tuning the privacy parameters ε and the minimum number of clients k.

We evaluate the effects of these parameters in Figures 7.4 and 7.5.

Figure 7.4 shows the effect of the privacy parameter ε on the reconstruction

error, as ε is varied from 0.5 to 5, plotting the median and standard deviation over

5 executions.

In the baseline case the client and curator are alternating gradient updates as

in Figure 5.2, and there is no differential privacy. As ε decreases (increasing pri-

vacy), the reconstruction error of the inversion attack increases. When ε = 1, the

reconstruction error is consistently above 10%.

32

When the attacker sends a vector of zeros as their gradient update, the inver-

sion attack is most effective, as this completely isolates the updates on the global

model to those performed by the victim. Figure 7.4 shows the same experiment

performed when the attack contributes nothing to the global model. As ε increases

beyond 2 (decreasing privacy), the attack performed without sending any gradients

consistently outperforms the attack when performing gradient updates. This behav-

ior, however, is suspicious and a well designed validator would detect and blacklist

such an attacker. Therefore, this case is a worst case scenario as the attacker must

attempt to participate in the model training process.

Inversion attacks are made more difficult when randomness in the ordering of

gradient updates is increases. Two methods for increasing this randomness include

(1) adding random latencies at the broker, and (2) introducing bystanders: clients

other than the attacker and victim. In Figure 7.5, we evaluate both of these methods

by asynchronously training a model on TorMentor with one victim, one attacker

(using the same datasets as in Figure 7.4), and a varying number of bystanders.

When replying to a client response, we sample a random sleep duration uniformly

from 0-500ms at the server before returning a message. All clients choose the same

value for parameter k and the actual number of clients in the system is equal to k.

Thus, in the framework consisting of one victim and one attacker, the number of

bystanders equals k−2.

Introducing even just one bystander (k = 3) into the system increases the re-

construction error during an inversion attack from about 20% to 40%. As k grows,

a model inversion attack becomes more difficult to mount.

Figure 7.5 also illustrates that differential privacy defends client privacy when

the number of bystanders is low. When there are no bystanders in the system, de-

creasing the privacy parameter ε (more private) increases the reconstruction error.

The effects of a low ε value in a model inversion setting have a higher variance

than in executions with higher ε values. Another mechanism that helps to mitigate

inversion attacks is the adaptive proof of work mechanism that counters sybils (an

attacker could spawn k−1 sybils as an alternative way to isolate the victim).

33

Figure 7.5: Reconstruction error between victim model and inverted model
estimate, with varying privacy parameters: the number of bystanders
and the privacy parameter ε .

7.5 Poisoning defenses evaluation
We evaluate the effect of our proof of work on poisoning attacks. To do this,

we deployed TorMentor in an setting without differential privacy or Tor in a total

asynchronous setting with 8 clients. We then varied the proportion of poisoners and

the RONI threshold. Figure 7.6 shows the training error for the first 250 seconds

for a RONI threshold of 2%, while varying the proportion of poisoning attackers

from 25% to 75%, with a validation rate of 0.1.

As the number of poisoners increases, different effects can be observed. When

the number of poisoners is low (below 25%), the model still converges, albeit at a

slower rate than normal. With 50% poisoning, the model begins to move away from

the optimum, but is successfully defended by the validator, which increases the

proof of work required for all of the poisoners within 30 seconds. From this point,

the poisoners struggle to outpace the honest nodes, and the model continues on a

path to convergence. Lastly, when the proportion of poisoners is 75%, the increase

in proof of work is too slow to react; the model accuracy is greatly compromised

34

0 50 100 150 200 250
Time (s)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

Tr
ai

ni
ng

 E
rro

r

75% poisoners
50% poisoners
25% poisoners
0% poisoners

Figure 7.6: Model training loss over time, when attacked by a varying pro-
portion of poisoners. RONI threshold is maintained at 2%.

0 50 100 150 200 250
Time (s)

0.1

0.2

0.3

0.4

0.5

0.6

Tr
ai

ni
ng

 E
rro

r

5% RONI
2% RONI
1% RONI
0.5% RONI

Figure 7.7: Model training loss over time, when attacked by 50% poisoners.
RONI threshold is varied from 0.5% to 5%.

within 20 seconds and struggles to recover.

From this evaluation, we note that, if a poisoner was able to detect this defense,

and attempt to leave and rejoin the model, an optimal proof of work admission

puzzle should require enough time such that this strategy becomes infeasible.

35

Figure 7.7 shows the execution of model training with 50% poisoning clients

for different RONI validation thresholds. As the threshold decreases, adversaries

are removed from the system more quickly, allowing the model to recover from the

poisoning damage.

Setting the RONI threshold too low is also dangerous as it increases the ef-

fect of false positives. In Figure 7.7, we observe that the model initially performs

poorly, this is due to incorrectly penalizing honest clients. The effect of a low

RONI is especially noticed in combination with differential privacy. To confirm

this, we performed two additional experiments in which the validator had a RONI

threshold of 0.5% (the highest threshold from Figure 7.7), and a full set of honest

clients with differential privacy parameter ε joined the model. When ε was set to 5,

the model converged to an optimal point in 480 seconds. When ε was set to 1, the

validator flagged all of the honest clients, and the model did not reach convergence.

The difference between model convergence, model divergence, and a privacy

violation all rely on a careful interplay between ε , the minimum number of clients

k, the RONI threshold, the proof of work difficulty, and the anticipated attacks that

TorMentor expects to deter. Determining the optimal parameters for a deployment

depends on the anticipated workloads, data distribution, and attack severity. Given

the large scope of potential attacks and attack scenarios in this space [25], we leave

the exploration of such parameter selection to future work.

36

Chapter 8

Discussion

User incentives. Although TorMentor demonstrates that privacy-preserving, un-

trusted collaborative ML is technically feasible, social feasibility remains an open

question [46]. That is, are there application domains in which data providers are

incentivized to contribute to models from anonymous curators? And do these in-

centives depend on the type of data, protections offered by a brokered learning

setting, or something else? Regarding curators, are there cases in which curators

would be comfortable using a model trained on data from anonymous users? We

believe that such application domains exist, partly because of the widespread usage

of federated learning [19] and a growing concern over data privacy [15].

Usability of privacy parameters. Allowing clients and curators to define their

own privacy parameters ε and k allows for more expressive privacy policies, but

these parameters, and their implications, are difficult for users to understand. Fur-

thermore, privacy budgets, a fundamental element in safely implementing and us-

ing differential privacy, are complex and difficult to understand [15], as evidenced

by Apple’s recent struggles in implementing such a system [47].

Machine learning and Tor latency. Table 7.1 shows that Tor adds significant

latency to the machine learning process. On the one hand this (unpredictable)

latency can make it more difficult to mount an attack; for example, the success of

the inversion attack partly depends on predictable timing. On the other hand, it

37

would be desirable to shorten training time.

At the moment Tor’s latency is paid at each iteration, indicating that methods

with a lower iteration complexity would perform better. One solution to this prob-

lem is to locally aggregate gradients [7, 24, 33] over many iterations before sending

them to the broker, trading off potential model staleness for reduced communica-

tion costs.

Outside of aggregating gradients, several iterative alternatives to SGD exist,

such as the Newton-Raphson method [26] or other quasi-Newton methods [21],

which involve computing the second-order Hessian. This provides convergence

with a lower iteration complexity, but with a higher computational cost per itera-

tion. A differentially-private version of the Newton-Raphson method has also been

developed [27].

TorMentor can be extended to generally support iterative ML update methods.

For models and learning objectives where Newton-Raphson is applicable, we ex-

pect that Newton-Raphson will complete faster than SGD when accounting for the

overhead of Tor.

Data-free gradient validation. While we demonstrated that our active validation

approach defends against attacks (e.g., Figure 7.6), it relies on the curator, who

defines the learning objective, to provide the ground truth to determine if an update

is beneficial or not. This approach is not only prone to bias but also opens up a

new avenue for attack from the curator; an adversarial curator could submit a junk

validation set to attack clients.

It is possible to mitigate these risks by using a data-free solution. An open ques-

tion is whether or not it is possible to achieve the same effect without an explicit

ground truth. We believe that the use of a statistical outlier detection method [23] to

detect and remove anomalous gradient updates may bring the best of both worlds.

This would alleviate the need for and risk of a curator-provided validation dataset,

and this technique would also eliminate the computational overhead of performing

explicit validation rounds. Another alternative would require the use of robust ML

methods that are known to handle poisoning attacks [4, 35], but these methods are

only applicable with stronger assumptions about the curator who now must specify

a ground truth model.

38

Chapter 9

Conclusion

We introduced a novel multi-party machine learning setting called brokered learn-

ing, in which data providers and model curators do not trust one another and inter-

operate through a third party brokering service. All parties define their privacy

requirements, and the broker orchestrates the distributed machine learning process

while satisfying these requirements. To demonstrate that this proposal is practi-

cal, we developed TorMentor, a system for anonymous, privacy-preserving ML in

the brokered learning setting. TorMentor uses differentially private model training

methods to provide the strongest known defenses against attacks in this setting [25]

and to support heterogeneous privacy levels for data owners. We also developed

and evaluated novel ML attacks and defenses for the brokered learning setting.

Using a Tor hidden service as the broker to aggregate and validate client gra-

dient updates, TorMentor collaboratively trains a model across 200 geo-distributed

clients, without ever directly accessing the raw data or de-anonymizing any of the

users. We define a realistic threat model for brokered learning and show that in

contrast to existing solutions for distributed ML, such as Gaia [24] and federated

learning [33], TorMentor’s defenses successfully counter recently developed poi-

soning and inversion attacks on ML.

39

Bibliography

[1] go-python. https://github.com/sbinet/go-python, 2018. → page 26

[2] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, M. Isard, M. Kudlur, J. Levenberg, R. Monga,
S. Moore, D. G. Murray, B. Steiner, P. Tucker, V. Vasudevan, P. Warden,
M. Wicke, Y. Yu, and X. Zheng. TensorFlow: A system for large-scale
machine learning. In 12th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 16), 2016. → page 1

[3] A. Back. Hashcash - A Denial of Service Counter-Measure. Technical
report, 2002. → pages 2, 7, 16

[4] M. Barreno, B. Nelson, A. D. Joseph, and J. D. Tygar. The Security of
Machine Learning. Machine Learning, 81(2), 2010. → pages 2, 3, 6, 23, 38

[5] A. Bellet, R. Guerraoui, M. Taziki, and M. Tommasi. Fast and Differentially
Private Algorithms for Decentralized Collaborative Machine Learning.
2017. → page 6

[6] B. Biggio, B. Nelson, and P. Laskov. Poisoning Attacks Against Support
Vector Machines. In Proceedings of the 29th International Coference on
International Conference on Machine Learning, 2012. → pages 2, 5, 14

[7] K. Bonawitz, V. Ivanov, B. Kreuter, A. Marcedone, H. B. McMahan,
S. Patel, D. Ramage, A. Segal, and K. Seth. Practical secure aggregation for
privacy-preserving machine learning. In Proceedings of the 2017 ACM
SIGSAC Conference on Computer and Communications Security, CCS,
2017. → pages 2, 9, 11, 38

[8] L. Bottou. Large-Scale Machine Learning with Stochastic Gradient
Descent. 2010. → page 4

40

https://github.com/sbinet/go-python

[9] J. A. Calandrino, A. Kilzer, A. Narayanan, E. W. Felten, and V. Shmatikov.
”You Might Also Like: ” Privacy Risks of Collaborative Filtering. In
Proceedings of the 2011 IEEE Symposium on Security and Privacy, S&P,
2011. → page 1

[10] H. Corrigan-Gibbs, D. Boneh, and D. Mazières. Riposte: An Anonymous
Messaging System Handling Millions of Users. In Proceedings of the 2015
IEEE Symposium on Security and Privacy, S&P, 2015. → page 15

[11] R. Dingledine, N. Mathewson, and P. Syverson. Tor: The Second-generation
Onion Router. In Proceedings of the 13th Conference on USENIX Security
Symposium, 2004. → pages 7, 13, 16

[12] J. J. Douceur. The sybil attack. In IPTPS, 2002. → pages 2, 7, 15

[13] C. Dwork and A. Roth. The Algorithmic Foundations of Differential
Privacy. Foundations and Trends in Theoretical Computer Science, 9(3-4),
2014. → pages 2, 3, 6, 20

[14] N. S. Evans, R. Dingledine, and C. Grothoff. A Practical Congestion Attack
on Tor Using Long Paths. In Proceedings of the 18th Conference on
USENIX Security Symposium, 2009. → page 13

[15] L. Fan and H. Jin. A Practical Framework for Privacy-Preserving Data
Analytics. In Proceedings of the 24th International Conference on World
Wide Web, WWW ’15, 2015. → page 37

[16] D. Foreman-Mackey, D. W. Hogg, D. Lang, and J. Goodman. emcee: The
MCMC Hammer. 2013. → page 26

[17] M. Fredrikson, E. Lantz, S. Jha, S. Lin, D. Page, and T. Ristenpart. Privacy
in pharmacogenetics: An end-to-end case study of personalized warfarin
dosing. In Proceedings of the 23rd USENIX Security Symposium, USENIX
SEC, 2014. → pages 2, 3, 5, 9, 22

[18] M. Fredrikson, S. Jha, and T. Ristenpart. Model Inversion Attacks That
Exploit Confidence Information and Basic Countermeasures. In Proceedings
of the 2015 ACM SIGSAC Conference on Computer and Communications
Security, CCS, 2015. → pages 2, 3, 5, 9, 14, 22, 32

[19] R. M. Frey, T. Hardjono, C. Smith, K. Erhardt, and A. S. Pentland. Secure
Sharing of Geospatial Wildlife Data. In Proceedings of the Fourth
International ACM Workshop on Managing and Mining Enriched
Geo-Spatial Data, GeoRich ’17, 2017. → page 37

41

[20] R. C. Geyer, T. Klein, and M. Nabi. Differentially private federated learning:
A client level perspective. NIPS Workshop: Machine Learning on the Phone
and other Consumer Devices, 2017. → pages 2, 6, 11

[21] R. Haelterman, J. Degroote, D. Van Heule, and J. Vierendeels. The
Quasi-Newton Least Squares Method: A New and Fast Secant Method
Analyzed for Linear Systems. SIAM J. Numer. Anal., 2009. → page 38

[22] B. Hitaj, G. Ateniese, and F. Pérez-Cruz. Deep Models Under the GAN:
Information Leakage from Collaborative Deep Learning. In Proceedings of
the 2017 ACM SIGSAC Conference on Computer and Communications
Security, 2017. → pages 1, 5, 9, 10, 23

[23] V. Hodge and J. Austin. A Survey of Outlier Detection Methodologies.
Artificial Intelligence Review, 22(2), 2004. → page 38

[24] K. Hsieh, A. Harlap, N. Vijaykumar, D. Konomis, G. R. Ganger, P. B.
Gibbons, and O. Mutlu. Gaia: Geo-Distributed Machine Learning
Approaching LAN Speeds. In NSDI, 2017. → pages 4, 20, 38, 39

[25] L. Huang, A. D. Joseph, B. Nelson, B. I. Rubinstein, and J. D. Tygar.
Adversarial Machine Learning. In Proceedings of the 4th ACM Workshop on
Security and Artificial Intelligence, AISec, 2011. → pages 2, 3, 5, 36, 39

[26] R. I. Jennrich and S. M. Robinson. A Newton-Raphson algorithm for
maximum likelihood factor analysis. Psychometrika, 1969. → page 38

[27] Z. Ji, X. Jiang, S. Wang, L. Xiong, and L. Ohno-Machado. Differentially
private distributed logistic regression using private and public data. BMC
Medical Genomics, 2014. → page 38

[28] A. Johnson, C. Wacek, R. Jansen, M. Sherr, and P. Syverson. Users Get
Routed: Traffic Correlation on Tor by Realistic Adversaries. In Proceedings
of the 2013 ACM SIGSAC Conference on Computer and Communications
Security, CCS, 2013. → page 13

[29] M. Li, D. G. Andersen, J. W. Park, A. J. Smola, A. Ahmed, V. Josifovski,
J. Long, E. J. Shekita, and B.-Y. Su. Scaling Distributed Machine Learning
with the Parameter Server. In 11th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 14), 2014. → pages
1, 4, 17, 19, 20, 45

[30] M. Lichman. UCI machine learning repository, 2013. URL
http://archive.ics.uci.edu/ml. → page 28

42

http://archive.ics.uci.edu/ml

[31] Y. Low, D. Bickson, J. Gonzalez, C. Guestrin, A. Kyrola, and J. M.
Hellerstein. Distributed GraphLab: A Framework for Machine Learning and
Data Mining in the Cloud. Proceedings of the VLDB Endowment, 2012. →
page 1

[32] H. B. McMahan and D. Ramage. Federated Learning: Collaborative
Machine Learning without Centralized Training Data.
https://research.googleblog.com/2017/04/federated-learning-
collaborative.html, 2017. Accessed: 2017-10-12. → page
1

[33] H. B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas.
Communication-Efficient Learning of Deep Networks from Decentralized
Data. In Proceedings of the 20th International Conference on Artificial
Intelligence and Statistics, 2017. → pages 1, 4, 9, 10, 20, 38, 39

[34] P. Mohassel and Y. Zhang. SecureML: A System for Scalable
Privacy-Preserving Machine Learning. In Proceedings of the 2017 IEEE
Symposium on Security and Privacy, S&P, 2017. → page 2

[35] M. Mozaffari-Kermani, S. Sur-Kolay, A. Raghunathan, and N. K. Jha.
Systematic Poisoning Attacks on and Defenses for Machine Learning in
Healthcare. In IEEE Journal of Biomedical and Health Informatics, 2015.
→ pages 2, 5, 38

[36] S. J. Murdoch and G. Danezis. Low-Cost Traffic Analysis of Tor. In
Proceedings of the 2005 IEEE Symposium on Security and Privacy, S&P,
2005. → page 13

[37] S. Nakamoto. Bitcoin: A peer-to-peer electronic cash system. 2009. →
pages 15, 19

[38] B. Nelson, M. Barreno, F. J. Chi, A. D. Joseph, B. I. P. Rubinstein, U. Saini,
C. Sutton, J. D. Tygar, and K. Xia. Exploiting Machine Learning to Subvert
Your Spam Filter. In Proceedings of the 1st Usenix Workshop on
Large-Scale Exploits and Emergent Threats, 2008. → pages 3, 5

[39] O. Ohrimenko, F. Schuster, C. Fournet, A. Mehta, S. Nowozin, K. Vaswani,
and M. Costa. Oblivious Multi-Party Machine Learning on Trusted
Processors. In USENIX SEC, 2016. → page 2

[40] E. Rahm and P. A. Bernstein. A Survey of Approaches to Automatic
Schema Matching. The VLDB Journal, 2001. → page 19

43

[41] B. Recht, C. Re, S. Wright, and F. Niu. Hogwild: A Lock-Free Approach to
Parallelizing Stochastic Gradient Descent. In Advances in Neural
Information Processing Systems 24. 2011. → pages 4, 20

[42] B. I. Rubinstein, B. Nelson, L. Huang, A. D. Joseph, S.-h. Lau, S. Rao,
N. Taft, and J. D. Tygar. ANTIDOTE: Understanding and Defending
Against Poisoning of Anomaly Detectors. In Proceedings of the 9th ACM
SIGCOMM Conference on Internet Measurement, 2009. → page 5

[43] R. Shokri and V. Shmatikov. Privacy-preserving deep learning. In
Proceedings of the 2015 ACM SIGSAC Conference on Computer and
Communications Security, CCS, 2015. → page 6

[44] R. Shokri, M. Stronati, C. Song, and V. Shmatikov. Membership inference
attacks against machine learning models. 2017. → page 9

[45] S. Song, K. Chaudhuri, and A. D. Sarwate. Stochastic gradient descent with
differentially private updates. In IEEE Global Conference on Signal and
Information Processing, GlobalSIP 2013, Austin, TX, USA, December 3-5,
2013, 2013. → pages 4, 6, 13, 19, 26, 29, 46

[46] I. Stoica, D. Song, R. A. Popa, D. A. Patterson, M. W. Mahoney, R. H. Katz,
A. D. Joseph, M. Jordan, J. M. Hellerstein, J. Gonzalez, K. Goldberg,
A. Ghodsi, D. E. Culler, and P. Abbeel. A Berkeley View of Systems
Challenges for AI. Technical report, EECS Department, University of
California, Berkeley, 2017. URL
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2017/EECS-2017-159.html.
→ page 37

[47] J. Tang, A. Korolova, X. Bai, X. Wang, and X. Wang. Privacy loss in apple’s
implementation of differential privacy on macos 10.12. 2017. → page 37

[48] F. Tramèr, F. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart. Stealing
Machine Learning Models via Prediction APIs. In USENIX SEC, 2016. →
pages 15, 22, 32

[49] J. van den Hooff, D. Lazar, M. Zaharia, and N. Zeldovich. Vuvuzela:
Scalable private messaging resistant to traffic analysis. In Proceedings of the
25th Symposium on Operating Systems Principles, SOSP, 2015. → page 15

[50] I.-C. Yeh and C.-h. Lien. The comparisons of data mining techniques for the
predictive accuracy of probability of default of credit card clients. Expert
Systems with Applications: An International Journal, 36(2), 2009. → page
28

44

http://www2.eecs.berkeley.edu/Pubs/TechRpts/2017/EECS-2017-159.html

Appendix A: SGD and differential privacy
Stochastic gradient descent (SGD). In SGD at each iteration t, the model param-

eters w are updated as follows:

wt+1 = wt −ηt(λwt +
1
b ∑
(xi,yi)∈Bt

∇l(wt ,xi,yi)) (1)

where ηt represents a degrading learning rate, λ is a regularization parameter

that prevents over-fitting, Bt represents a gradient batch of training data examples

(xi,yi) of size b and ∇l represents the gradient of the loss function.

As the number of iterations increases, the effect of each gradient step becomes

smaller, indicating convergence to a global minimum of the loss function. A typi-

cal heuristic involves running SGD for a fixed number of iterations or halting when

the magnitude of the gradient falls below a threshold. When this occurs, model

training is complete and the parameters wt are returned as the optimal model w∗.

Distributed SGD. In parallelized ML training with a parameter server [29], the

global model parameters wg are partitioned and stored on a parameter server. At

each iteration, client machines, which house horizontal partitions of the data, pull

the global model parameters wg,t , compute and apply one or more iterations, and

push their update ∆i,t back to the parameter server:

∆i,t =−ηt(λwg,t +
1
b ∑
(xi,yi)∈Bt

∇l(wg,t ,xi,yi)) (2)

wg,t+1 = wg,t +∑
i

∆i,t

Differential privacy and SGD. ε-differential privacy states that: given a function

f and two neighboring datasets D and D′ which differ in only one example, the

probability of the output prediction changes by at most a multiplicative factor of

eε . Formally, a mechanism f : D→ R is ε-differentially private for any subset of

45

outputs S⊆ R if

Pr[f (D) ∈ S]≤ eεPr[f (D′) ∈ S].

In differentially private SGD [45] the SGD update is redefined to be the same

as in Equation (2), except with the addition of noise:

∆i,t =−ηt(λwg,t + ∑
(xi,yi)∈Bt

∇l(wg,t ,xi,yi)+Zt

b
) (3)

where Zt is a noise vector drawn independently from a distribution:

p(z) ∝ e(α/2)||z||

46

	Abstract
	Lay Summary
	Preface
	Table of Contents
	List of Tables
	List of Figures
	Glossary
	Acknowledgments
	1 Introduction
	2 Background
	3 Brokered Learning
	3.1 Decoupling federated learning
	3.2 Defining brokered learning
	3.3 Example use cases

	4 Threat model, guarantees, assumptions
	4.1 Security guarantees
	4.2 Assumptions

	5 TorMentor Design
	5.1 Design overview
	5.2 Curator API
	5.3 Client API
	5.4 Training process
	5.5 Defending against inversion attacks
	5.6 Defending against poisoning attacks
	5.7 Modular design

	6 TorMentor Implementation
	7 Evaluation
	7.1 Methodology
	7.2 Model convergence
	7.3 Scalability and overhead
	7.4 Inversion defenses evaluation
	7.5 Poisoning defenses evaluation

	8 Discussion
	9 Conclusion
	Bibliography

