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Abstract

Data parallel training is commonly used for scaling distributed Deep Neural Net-

work (DNN) training. However, the performance benefits are often limited by the

communication-heavy parameter synchronization step. In this work, we take ad-

vantage of the domain specific knowledge of DNN training and overlap parameter

synchronization with computation in order to improve the training performance.

We make two key observations: (1) the optimal data representation granularity for

the communication may differ from that used by the underlying DNN model imple-

mentation and (2) different parameters can afford different synchronization delays.

Based on these observations, we propose a new synchronization mechanism called

Priority-based Parameter Propagation (P3). P3 synchronizes parameters at a finer

granularity and schedules data transmission in such a way that the training process

incurs minimal communication delay. We show that P3 can improve the training

throughput of ResNet-50, Sockeye and VGG-19 by as much as 25%, 38% and 66%

respectively on clusters with realistic network bandwidth.
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Lay Summary

Deep learning based models are replacing traditional techniques used in machine

learning by providing superior prediction accuracy on fields like computer vision,

speech recognition and machine translation. However, achieving such predictive

power require the models to be iteratively trained on enormous amount of input

data, usually of the order of Giga Bytes. Fortunately, DNN training algorithms like

Stochastic Gradient Descent (SGD) are highly data parallel and training process can

be sped up by distributing the workload on large cluster of machines. This trans-

forms DNN training a communication bound workload from a computation-bound

workload. In this work, we present optimizations to reduce the communication

overhead by taking advantage of the domain specific knowledge about the training

algorithm.
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Chapter 1

Introduction

Deep learning has revolutionized machine learning field with superior predictive

power and adaptability to a wide range of applications such as computer vision

[18], machine translation [40] and speech recognition [7]. However, Deep Neural

Network (DNN)s are notoriously expensive to train because of their high computing

power requirement and need to process large data set. One of the key enabling fac-

tors of the advances in deep learning was the availability of enormous computing

power provided by application specific hardware accelerators like GPUs, FPGAs

and ASICs [21, 28]. These devices can provide massive parallel processing power

of the order trillions of floating point operations per second [29]. The highly paral-

lel nature of DNN training algorithms makes it well suited to scale on such devices.

As modern DNNs keep demanding higher computing power and memory, sin-

gle device training is no longer a sustainable solution because of their computing

and memory resource limitations. This is where distributed training become rel-

evant. Data parallel distribution with synchronous Stochastic Gradient Descent

(SGD) is one of the most popular methods for accelerating the training by paral-

lelizing data processing over a cluster of machines [12].

In data parallel training, the input data set is sharded among the worker ma-

chines and they train a shared DNN model iteratively by independently computing

updates to the parameters of the model and synchronizing the updates at the end

of each iteration. A single iteration on a worker machine involves three steps: (1)

forward propagation to calculate the value of a loss function on a subset of the lo-
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cal data shard, (2) backward propagation to compute the gradients for every model

parameter based on the computed loss, and finally (3) the parameter synchroniza-

tion step to aggregate local gradients from all the worker machines and update the

parameters using optimization algorithms like SGD [9].

In an iteration, each worker machine generates and synchronizes hundreds

of megabytes of gradient values [3]. This often makes data parallel training a

communication-bound workload [42]. Handling this traffic require high bandwidth

networks like Gigabit Ethernet [14] or InfiniBand [33]. However, these technolo-

gies are yet to be widely adopted because of the high deployment cost. Moreover,

the bandwidth requirement data parallel DNN training is increasing with the emer-

gence of larger models and faster hardware accelerators as it leads to increase in

data volume and transmission rate [29, 34]. Most of the major cloud providers and

academic clusters have trouble in catering to such high bandwidth demands [26].

In this work, we propose solutions to scale data parallel training under limited

bandwidth conditions.

Gradient compression is one of the popular approaches aimed at reducing the

communication overhead. Since gradient values are generally represented as float-

ing point numbers, it is challenging to achieve reasonable compression ratios from

lossless compression techniques [10]. Instead, recent studies propose lossy com-

pression techniques like gradient quantization [5, 32, 39] and sparse parameter

synchronization [2, 25]. These methods, however, risk affecting the final conver-

gence accuracy of the model because of the information loss that comes with the

value approximation and stale parameter updates [23].

An orthogonal approach is to utilize the available network bandwidth more ef-

ficiently by leveraging domain specific opportunities in DNN training. The traffic

generated during the training process is generally bursty because of iterative nature

of the training algorithm. Some distributed Machine Learning (ML) frameworks at-

tenuate these traffic bursts by overlapping communication with computation. Since

the training computation is performed as a sequence of operations (layers), during

backward propagation, the gradients for the parameters associated with each layer

are generated one after another. Frameworks such as TensorFlow [1], MXNet [13]

and Caffe2 [20], exploit this sequential layered structure to overlap parameter syn-

chronization with backpropagation by issuing synchronization of each layer imme-
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diately after its gradients are computed.

In this thesis, we find new opportunities to better overlap communication and

computation. Our first observation is that the domain specific knowledge of the

DNN training algorithm allows us to better schedule parameter synchronization,

not only based on when the gradients are generated, but also based on when the

data is consumed. During training, the gradients of the layers are generated from

final to initial layers and subsequently consumed in the reverse order in the next

iteration. Figure 1.1 shows a snapshot of the training process containing the back-

ward propagation of one iteration and the forward propagation of the next one. The

temporal gap between gradients generated and consumed per layer are higher for

final layers compared to the initial ones. Scheduling parameter synchronization

using this information can help to overlap communication with both the forward

and the backward propagation.

L4 L3 L2 L1 L1 L2 L3 L4

Backward Propagation Forward Propagation 

Nth 
Iteration 

(N+1)th 
Iteration 

Figure 1.1: Training iterations

Secondly, the layer-wise granularity used by the underlying neural network

implementation may not always be optimal for parameter synchronization. In our

experiments, for certain heavy models (e.g., VGG [36], Sockeye [19]), parameter

synchronization at a finer granularity improves the network utilization and reduces

the communication delay.

Based on these observations, we propose a new synchronization mechanism

3



called Priority-based Parameter Propagation (P3).

1.1 Our Approach
P3 consists of two key components: (1) Parameter Slicing: P3 splits the layers into

smaller slices and synchronize them independently. (2) Priority-based Update: P3

synchronizes the parameter slices based on their priority, where the priority of a

slice is defined by when it is required again in the subsequent iteration. During

backpropagation, P3 always allocates network cycles to the highest priority slices

in the queue, preempting synchronization of the slices from a previous lower pri-

ority layer if necessary.

P3 offers the following advantages over state-of-the-art parameter synchroniza-

tion mechanisms [25, 41]. (1) P3 can provide improved training performance un-

der limited bandwidth conditions by better overlapping communication with com-

putation and utilizing the available network bandwidth more efficiently. (2) P3 is

model-agnostic, its implementation requires minimal programming effort, and all

required changes are localized within the framework. (3) P3 always communicates

full gradients and does not affect model convergence.

In summary, this paper makes the following contributions:

• We show that parameter synchronization at layer-wise granularity can cause

suboptimal resource utilization in heavy models (e.g., VGG, Sockeye). We

also show that the parameter synchronization can be scheduled better to effi-

ciently use the available network bandwidth by taking into account not only

the information on when the gradients are generated, but also when they are

consumed.

• We present a new parameter synchronization mechanism called Priority-

based Parameter Propagation (P3), which uses parameter slicing and priority-

based updates to reduce communication overhead. We demonstrate that P3

has better resiliency towards bandwidth limitations compared to other state-

of-the-art synchronization mechanisms [41].

• We implement and open source P31 on MXNet [13], a popular distributed

1https://github.com/anandj91/p3
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ML framework, and evaluate its performance against the standard MXNet

implementation as the baseline. We observe that, P3 improves the training

performance of several state-of-the-art models like ResNet-50 [18], Sockeye

[19] and VGG-19 [36] by as much as 25%, 38%, and 66% respectively.
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Chapter 2

Background

The fundamental building blocks of DNNs are mathematical operations, such as

convolution, matrix multiplication, and activation functions. These operations per-

form certain transformations ( fθ (x)) on an input vector (x) using the parameters (θ )

associated with the function. A DNN is defined by a sequence of such operations

(layers). In Figure 2.1, the initial layer takes the application-specific data samples

as input and produces a prediction as an output vector at the output layer. The goal

of the training algorithm is to find the parameter values which can make the most

accurate predictions.

L1

L2 L3
L4

Input layer 

Output layer 
Hidden layers 

x

θ1

θ2 θ3

Figure 2.1: Deep neural network structure
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DNN training usually starts from a random parameter initialization and iterates

by randomly sampling input vectors from the training dataset. On every iteration,

the DNN computes the output vector on the inputs and calculates the error asso-

ciated with the prediction (loss) by feeding the output vector to a loss function.

This step is called forward propagation. After that, a backward propagation step is

performed to calculate the error contribution of each parameter by computing gra-

dients of all the layers with respect to the loss. The backward propagation method

for calculating gradients is based on the chain rule of derivatives and is therefore

performed in the reverse order of forward propagation, i.e., gradients of the final

layer are calculated first and the process moves back towards the input layer, hence

the name backward propagation [31]. Once the gradients are calculated, the pa-

rameters are updated using an optimization algorithm like SGD [9]. The iterations

are repeated several times over the training dataset until the model converges to an

acceptable prediction accuracy.

Each iteration is compute-intensive, which makes the training process time

consuming. The total training time can be reduced by distributing the workload

onto multiple machines by taking advantage of the data parallel nature of the SGD

algorithm. Data parallel training [22] involves multiple workers simultaneously

training a shared DNN with the training dataset distributed equally among them.

On each iteration, workers independently calculate the gradients locally for a com-

mon parameter value assignment but on different input data samples. Then, the

gradients are aggregated in a synchronous fashion for performing parameter up-

dates. This method is called a synchronous SGD algorithm [12].

Parameter server architecture [24] is one of the most popular methods used in

practice for parameter synchronization and it is widely supported in most of the

distributed ML frameworks (e.g., MXNet [13], TensorFlow [1], Caffe2 [20]). The

parameter server keeps track of the up-to-date values of all the model parameters.

Before every iteration, each worker machine reads the latest parameter values (θ )

from the parameter server and locally computes gradients for the inputs sampled

from its data shard. The workers then send the local gradients (O) to the parameter

server. The parameter server waits until it receives gradient updates from all worker

machines, then aggregates the gradients together and updates the parameters for the

next iteration.
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Figure 2.2 shows parameter server-based data parallel training in a four-node

cluster. The communication between worker machine and parameter server is usu-

ally over a network and often becomes the bottleneck in achieving linear scalability

in data parallel training [35, 42].

PS

Worker
1

Worker
2

Worker
3

Worker
4

θ'
∇3

θ'
θ'

∇1

∇2

∇4

θ'

Data 1 Data 2

Data 3 Data 4

Figure 2.2: Parameter server architecture

The state-of-the-art ML framework MXNet is designed specifically for making

data parallel training efficient and easy to execute. It comes with a built-in imple-

mentation of a parameter server called KVStore. In MXNet, worker machines send

gradients of a layer to the KVStore as soon as they are calculated, and issue param-

eter pull requests once all the other workers have finished sending the gradients for

that layer. This aggressive parameter synchronization makes data parallel training

efficient in MXNet.

TensorFlow, on the other hand, is designed as a more generic ML framework.

Hence it does not have an explicit parameter server implementation. However, a

parameter server can be implemented on top of the graph computation framework

provided by TensorFlow. Since the parameter server is a part of the computation

graph, the communication between the worker subgraph and parameter server sub-

graph is handled by the framework itself. TensorFlow automatically places Send

and Recv operations on the edges of the computation graph that crosses the device

boundaries. Similar to MXNet, the worker subgraph executes the send operation

as soon as the gradients are computed. However, since every training iteration is a
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separate graph execution, the parameter pull request is not issued until the start of

the next iteration. This disconnection in sending gradients and receiving parameter

updates could cause underutilization of bidirectional network bandwidth.

Despite small differences described above, we observe that state-of-the-art ML

frameworks (e.g., MXNet, TensorFlow, Caffe2.) have two common characteris-

tics. For performance reasons, the operations in the DNN implementation usually

perform computations on large data representations. Therefore, the gradients for

all the parameters within a layer are usually generated in a single shot. We observe

that, because the gradients are generated at the layer level granularity, frameworks

perform parameter synchronization at the same granularity as well. We also ob-

serve that since the DNN implementation is written as a dependency graph in these

frameworks, the gradients of the layers are sent out to the parameter server over

the network as soon as the backward propagation of that layer has completed. In

this work, we analyze the limitations associated with these two characteristics of

ML frameworks and propose a mechanism for more efficient parameter synchro-

nization.

Apart from parameter server architecture, there are other mechanisms used for

gradient aggregation. For example, there are many variations of Message Pass-

ing Interface (MPI) all reduce operation specifically designed for ML workloads

[8, 15]. In this work, we implement P3 over the parameter server architecture in

MXNet. However, we believe, P3 design principles (namely, parameter slicing

and priority-based propagation) are general enough to be applied to any gradient

aggregation method.
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Chapter 3

Limitations of parameter
synchronization

Current parameter synchronization mechanisms have major limitations in effec-

tively utilizing available network bandwidth for two main reasons. First is because

of the aggressive synchronization performed by the frameworks where the gradi-

ents of the layers are sent to the parameter server immediately after finishing the

backward propagation of that layer. Since the backward propagation progresses

from the final to the initial layer, the gradients are also generated and propagated in

that order. However, the next forward propagation can only start after receiving the

updated parameters of the first layer. We observe that, under limited bandwidth,

gradient propagation of the final layers can induce queuing delay onto the gradient

propagation of the initial layers and subsequently delay the next iteration. This

prevents the communication from overlapping with the forward propagation.

Figure 3.1a shows the parameter synchronization of a 3-layer DNN, where the

forward and backward propagation of each layer takes one time unit and param-

eter synchronization takes two time units. With aggressive synchronization, the

total delay between the two iterations is twice the time taken for synchronizing the

first layer because of the additional queuing delay induced by the previous layers.

Moreover, during forward propagation the network remains idle.

This effect becomes even more noticeable when the communication time re-

quired for individual layers varies due to the presence of Fully Connected (FC)

10



L3 L2 L1 L1 L2 L3

Time

1 2 3 4 5 6 7 8 9 10 110

L3

L2

L1

Backward
propagation

Forward  
propagation

  Delay  

Computation Parameter Synchronization 

(a) Aggressive synchronization

Time

1 2 3 4 5 6 7 8 9 10 110

L3

L2

L1

Receive Parameters Parameter Update Send Gradients 

(b) Layer level granularity

Figure 3.1: Current parameter synchronization mechanism

layers in the DNN, as the synchronization time needed for such dense layers is

relatively higher. Figure 3.2 shows the parameter distribution of two popular im-

age classification models: ResNet-50, VGG-19, and a machine translation model:

Sockeye. The skewed parameter size distribution is a general trend in image clas-

sification models where the final FC layers are usually heavier and can potentially

induce higher queuing delay for the lighter initial convolution layers.

The second limitation associated with current parameter synchronization mech-

anisms comes from conducting synchronization at a layer-level granularity. The

communication time of parameter synchronization consists of three parts: (1) gra-

dient propagation time for the worker machine to send the gradients to the param-

11



 0

 0.5

 1

 1.5

 2

 2.5

 20  40  60  80  100  120  140  160N
o
. 

o
f 

p
a
ra

m
e
te

rs
 (

m
il
li
o
n
s
)

Layer index

(a) ResNet-50
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(c) Sockeye

Figure 3.2: Parameter distribution

eter server, (2) parameter update time taken by the parameter server to aggregate

the gradients and update the parameters, and (3) parameter propagation time taken

by the parameter server to send the updated parameters back to worker machine(s).

As we describe in Section 2, current distributed ML frameworks overlap gradient

propagation of one layer with the backward propagation of the next one. On top of

this, at the parameter server side, the gradient propagation of a layer is overlapped

with the parameter update of the previous layer. This type of communication-

computation pipelining is effective only if the size of the layers are more or less

uniform. Unfortunately, this is usually not the case. For example, Figure 3.2b

shows that VGG-19 contains a single FC layer which has 71.5% of all the parame-

ters in the entire network. We observe that the disproportionately heavy layers like

this can negatively affect the utilization of network bidirectional bandwidth.

This effect is explained in Figure 3.1b using the previous example of parameter

synchronization of the 3-layered DNN. In this case, gradient propagation, parame-
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ter update, and parameter propagation of the second layer take three times as long

as that of the first and third layers. Because of this imbalance, the communication

delay in this model is dominated by the second layer. The parameter synchroniza-

tion of the first and the third layer can only be partially overlapped with the second

layer. As seen in the example, this severely underutilizes the computing resources

and bidirectional bandwidth by spending the last three time steps just for receiving

parameter updates from the parameter server.

From the above observations we draw two major conclusions. First, the ap-

plication domain-specific knowledge of DNNs can be utilized to schedule commu-

nication not only based on the data is generated in the backward propagation, but

also based on when the data is consumed in the subsequent forward propagation.

Scheduling parameter synchronization based on this information and sending the

gradients conservatively could reduce the delay by better overlapping communi-

cation with both the forward and the backward propagation. Second, the optimal

granularity required for parameter synchronization may differ from the one used

for data representation by the underlying model implementation. Synchronizing

parameters at a finer granularity can better utilize the available computing and net-

working resources as we empirically show in Section 5.4.
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Chapter 4

Design and Implementation

Based on the observations in Chapter 3, we propose a new method for parameter

synchronization called Priority-based Parameter Propagation (P3). As explained in

Section 1.1, P3 has two core components: (1) parameter slicing, and (2) priority-

based update.

Once the gradients are computed, gradient aggregation and updates of each pa-

rameter can be performed independent of each other. We take advantage of this

property of the SGD algorithm for parameter slicing optimization. P3 splits the

layers into smaller slices of parameters and each of these slices are then indepen-

dently synchronized. In Figure 4.1a, applying parameter slicing optimization on

the second layer achieves better overlap between data transmission and parameter

update. Moreover, the bidirectional bandwidth is completely utilized as the syn-

chronization of slices are perfectly pipelined. In this example, parameter slicing

reduces the communication cost by 30%.

After splitting the layers into smaller pieces, P3 assigns priorities to each slice.

The slices inherit priority values from their parent layers. We determine layers’ pri-

orities based on the order in which they are processed in the forward propagation.

The first layer gets the highest priority and the priority decrements moving towards

to the end, with final layer having the lowest priority. During backward propaga-

tion, parameter synchronization of the slices are issued based on their priorities

as illustrated in Figure 4.1b. In this example, with the priority-based update, the

delay between the two iterations has been reduced by half and the communication

14



Time

1 2 3 4 5 6 7 8 9 10 110

L3

L2.1

L1

L2.2

L2.3

Receive Parameters Parameter Update Send Gradients 

(a) Fine granularity

L3 L2 L1 L1 L2 L3

Time

1 2 3 4 5 6 7 8 9 10 110

L3

L2

L1

Backward
propagation

Forward  
propagation

 Delay 

Computation Parameter Synchronization 

(b) Priority based synchronization

Figure 4.1: Coarse and fine granularity

is evenly overlapped with both the forward and the backward propagation.

We implemented P3 by modifying the parameter server module in MXNet

called KVStore. Below, we first explain how the baseline KVStore works, and

then we describe our modifications to support P3.
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4.1 KVStore: Baseline system
KVStore is a wrapper implemented on top of the light-weight parameter server

called ps-lite [24]. KVStore has two components: KVWorker, which runs locally

to the worker machine as part of the training process and a separate server process,

called KVServer. KVServer receives gradients from KVWorkers, aggregates them,

and updates the parameters while ensuring data consistency. The parameters are

stored as key-value pairs, where the key is the index of a layer and the value is an

array of floating points each corresponding to the parameter values of that layer.

For load balancing purposes, more than one KVServer can be used for the training

with the parameters equally sharded between them. For better resource utilization,

a common practice is to run one KVServer on every machine along with the worker

process.

Before starting the training process, KVStore initializes and distributes the pa-

rameters of all the layers among the KVServers. KVStore follows a simple heuris-

tic for fair distribution of parameters. Layers with size smaller than a fixed thresh-

old are assigned to a randomly chosen KVServer. Parameters of larger layers are

split equally among the KVServers. This is different from parameter slicing used

in P3 (explained in Section 4.2). The threshold is a configurable parameter and is

set to 106 parameters by default.

KVServer exposes two interfaces to KVWorker for sending gradients and re-

questing updated parameters: a Push request and a Pull request. During training,

MXNet issues a parameter synchronization request for a layer to the KVServer

through the KVWorker as soon as the backpropagation of that layer has finished.

KVWorker serializes (and fragments in case of large layers) the gradient matrix

and issues a Push request to the corresponding KVServer(s). KVServer waits until

it has received gradient updates from all the workers for that key-value pair. Once

all the updates have been received, KVServer aggregates the gradients and updates

the parameters.

Once the parameters are updated, KVServer notifies all the workers. When KV-

Worker receives a notification, it immediately issues a Pull request to the KVServer(s)

for the corresponding updated parameter values. KVServer then sends the latest

parameter values in response, and KVWorker (reconstructs the parameter array for
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large layers) updates the local parameter values for the next iteration. MXNet over-

laps the parameter synchronization with backward propagation by asynchronously

issuing Push requests for the layers whose gradients are ready to be propagated.

4.2 P3: Implementation

Priority-based Parameter Propagation (P3)
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Figure 4.2: P3Worker and P3Server

To implement P3, we modified KVWorker and KVServer into P3Worker and

P3Server as shown in Figure 4.2. On the worker side (Figure 4.2a), when a pa-

rameter synchronization is issued, P3Worker splits the gradient matrix of the layer

based on a predefined size threshold (explained in more details in Section 5.7). Un-

like in KVStore, this threshold defines the maximum granularity into which layers

can be split. This is the parameter slicing part of P3. Each of these slices are

assigned to P3Servers in a round-robin fashion.

The priority-based gradient propagation is implemented using a producer-consumer

mechanism through a priority queue. After parameter slicing, the producer part of

P3Worker assigns priorities to the individual slices and pushes them into the pri-

ority queue. A separate consumer thread in the P3Worker continuously polls the

highest priority slice from the queue and sends the slice to the P3Server through

the network with its priority added to the packet header. The consumer thread uses

blocking network calls. Hence the rate at which the priority queue polled is au-

tomatically adjusted based on networking delay. This simple producer-consumer
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model makes sure that the network does not experience bursty traffic flow from the

P3Worker, and that the backward propagation is not hindered at the worker side.

Also the slice with the highest priority in the queue always gets the first preference

for transmission.

We also introduce similar producer-consumer mechanism at the receiver in the

P3Server in order to deal with the in-network delays as illustrated in Figure 4.2b.

The packets received at the P3Server are pushed into a priority queue along with

the priority assigned by the P3Worker. A server consumer thread then polls from

this queue and processes the packets the same way as in a KVServer. Prioritization

at the P3Server ensures highest priority parameters are processed first.

Apart from these modifications, we remove the explicit update notification and

pull requests from the KVServer. P3Server immediately broadcasts the updated

parameters to all workers once it has received all of the updates. Since workers

always issue a pull request after every push, this change does not affect the correct-

ness of the training algorithm. This modification was necessary, because otherwise

MXNet only issues a pull request once it has received the update notification for all

the slices of a layer. Eliminating this helped to improve the bidirectional bandwidth

utilization.
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Chapter 5

Evaluation

5.1 Methodology
We have evaluated the P3 implementation on three image classification models:

ResNet-50 [18], InceptionV3 [37], VGG-19 [36] and on a machine translation

model, Sockeye [19]. We chose the standard MXNet KVStore implementation

described in Section 4.1 as the baseline in all performance evaluation experiments.

Since P3 implementation does not interfere with the model implementation or

the training algorithm, the model convergence is not affected in any way. This

means that the baseline and the P3 would follow the same training curve for a

given hyper-parameter set. The improvement in training performance is completely

determined by the rate at which input data is processed. Therefore the primary

performance comparison metric we use is the training throughput, which is the

number of total training samples processed by the worker machines in one second.

We measure the throughput after training the models for a few iterations until the

throughput has become stable and then averaged over thousand iterations. In all

the experiments, we set the number of KVServers/P3Servers equal to the number

of worker machines.
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5.2 Summary of the experiments
We conduct performance evaluation of P3 in three different experiments. Section

5.3 shows P3 ’s resiliency towards the bandwidth constraints in the network. We

perform this experiment by training the model on a four machine cluster, each

equipped with one Nvidia P4000 GPU [28] and interconnected with a 100Gbps In-

finiBand network [27]. We measure throughput variation while artificially limiting

the network interface transmission rate. This simulates more realistic networking

infrastructure in modern cloud services where bandwidth is usually between 1Gbps

and 25Gbps [16]. Section 5.4 shows how well P3 utilizes the available bandwidth

and reduces the network idle time. Finally, in Section 5.5 we test the scalability

of P3 on different cluster sizes. This experiment is conducted on Amazon Web

Services (AWS) [6] using g3.4xlarge machine instances on a 10Gbps network.

In Section 5.6, we compare the convergence accuracy for models trained using

P3 and compression based techniques. For this comparison study, we pick the

state-of-the-art compression technique Deep Gradient Compression (DGC) [25].

We implemented DGC on MXNet based on the details provided in the original

paper and information collected from the authors. In addition to these experiments,

we have also evaluated the effects of different parameter slice sizes on the training

throughput in Section 5.7. We have also included additional results in Appendix

A.

5.3 Bandwidth vs. throughput
In this experiment, we measure the training throughput of ResNet-50, InceptionV3,

VGG-19, and Sockeye on a tightly controlled four-machine cluster by setting dif-

ferent transmission rates on the network interface on all the machines using Linux’s

tc qdisc utility [4]. Figure 5.1 compares the throughput from P3 against the base-

line system for different network bandwidths between 1Gbps and 30Gbps. We also

measured the performance benefits achieved from the parameter slicing optimiza-

tion alone.

In Figure 5.1a and 5.1b, both baseline and P3 give similar training perfor-

mance when the network bandwidth is sufficiently high (over 6Gbps and 4Gbps

respectively) for scaling these models on four machines. However, the baseline
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Figure 5.1: Bandwidth v.s. Throughput

throughput starts to drop in ResNet-50 below 6Gbps. At the same time, P3 main-

tains the linear throughput until the bandwidth drops below 4Gbps. This is because

P3 reduces the peak bandwidth required for the model by efficiently overlapping

communication with the computation. At 4Gbps, P3 provides 26% more through-

put than the baseline. For InceptionV3, the maximum speed up obtained is 18%.

It is interesting to note that these models do not benefit from parameter slicing, as

the layer sizes are relatively small in these DNNs (see Figure 3.2a).

Figure 5.1c and 5.1d show the throughput of VGG-19 and Sockeye respec-

tively. These models contain one or more very large layers (Figure 3.2b and 3.2c),

and because of the presence of these large layers, the parameter slicing optimiza-

tion alone is giving considerable improvement in performance. At 30Gbps, pa-

rameter slicing can provide 49% speedup on VGG-19. The speedup is further

improved with P3 by as much as 66% at 15Gbps. Sockeye is a special case among

other models. Unlike image classification models, the heaviest layer in this model
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is the initial layer. In Figure 5.1d, Sockeye performance has improved by a maxi-

mum of 38% with P3.

We observe that P3 always performs better than the baseline with relatively

higher performance benefits when bandwidth is limited. Since P3 reduces the peak

network bandwidth required for the training, it is more suitable than baseline on

a shared network cluster where effective bandwidth available for a single train-

ing process is much lower than the maximum capacity of the network. However,

the speed-up diminishes when the network bandwidth is too low. This is because

the communication time is significantly higher than computation and there is little

room for improvement by overlapping communication and computation.

5.4 Network utilization
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Figure 5.2: Network utilization of the baseline system

This experiment compares the network utilization of P3 with the baseline sys-
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Figure 5.3: Network utilization of P3

tem. We conduct this experiment for ResNet-50, VGG-19, and Sockeye and mea-

sure the traffic generated from and received by one of the four worker machines.

The network utilization is measured at the interface level using Linux’s bwm-ng

tool [38] with 10 millisecond precision. Figure 5.2 shows the network utilization

of the baseline system. The baseline implementation has bursty network traffic

generated with regular peaks and crests across all models. This pattern is observed

in other frameworks like TensorFlow [1] and Poseidon [41] as well (see Appendix

A). For Sockeye and VGG-19, the network idle time is extremely dominant because

of the presence of heavy layers. Moreover, the inbound and outbound traffics are

not overlapped as the baseline fails to fully utilize bidirectional bandwidth.

In contrast, Figure 5.3 shows the network utilization graph with P3. We ob-

serve that P3 significantly improves the network utilization compared to the base-

line. In Figure 5.3a and 5.3b, the network idle time is seen to be reduced with P3.

Especially for Sockeye in Figure 5.3c, P3 utilizes bidirectional bandwidth more ef-
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fectively than baseline system. This is one of the key explanations for the speedup

observed in Sockeye despite having heavy initial layers.

5.5 Scalability
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Figure 5.4: Throughput scaling with different number of machines

We perform scalability analysis on ResNet-50, VGG-19, and Sockeye in or-

der to show how well P3 can perform on large clusters compared to the baseline

system. We conduct this experiment by distributing models on AWS g3.4xlarge

clusters of different sizes (2, 4, 8 and 16 machines) over a 10Gbps network.

Figure 5.4a shows that on ResNet-50 both the baseline and the P3 achieve

similar performance. As shown in Section 5.3, a 10Gbps network is more than

enough to linearly scale ResNet-50. The throughput of VGG-19 has also been

considerably improved with P3 ; by as much as 61% on an eight machine cluster

(Figure 5.4b).
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Figure 5.4c shows the scalability of Sockeye. LSTM-based models like Sock-

eye are hard to scale over multiple machines, because of the heavy initial layers

and difference in iteration time in worker machines due to the variable sequence

length of input data. Nevertheless, with P3, we improve throughput of Sockeye by

as much as 18% on an 8-node cluster.

5.6 Training accuracy
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Figure 5.5: P3 v.s. DGC

As we noted in Section 1, there are many compression techniques proposed for

improving data parallel training performance. These methods can provide higher

performance gains compared to P3, however, at the cost of reduction in the model

quality. In this section, we compare convergence accuracy of P3 with the state-of-

the-art compression technique called DGC [25]. DGC reduces the amount of data

transferred by taking advantage of the sparsity in the gradient updates. The key

idea is to synchronize only those parameters with top-k gradients and accumulate

the rest locally. In this experiment, we use a sparsity threshold of 99.9% per layer

based on the configurations used in the original paper [25].
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We trained ResNet-110 on the CIFAR-10 dataset for 160 epochs over a four-

machine cluster with both P3 and DGC using five different hyper-parameter set-

tings. Figure 5.5 shows the validation accuracy range of P3 and DGC from these

experiments. The dark bands represent the gap between the worst and best accu-

racy on the five hyper-parameter setting. We observe that the final accuracy ob-

tained with P3 is always better than DGC. We calculate an average accuracy drop

of 0.4% with DGC.

Unlike compression based mechanisms (like DGC), P3 always communicates

the full gradients with other worker machines and does not make any modification

to the original SGD algorithm. As a result, the performance benefits from P3 comes

without any penalty on model accuracy.

5.7 Parameter slice size selection
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Figure 5.6: Granularity v.s. Throughput
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As we show in Section 4, a small gradient packet size can improve the network

utilization and, in turn, can improve overall training throughput. In this section, we

show how the size of the parameter slice affects training performance. Figure 5.6

shows the throughput obtained for ResNet-50 and VGG-19 with P3 on different

parameter slice sizes.

Initially, the throughput increases as size decreases, and reaches its peak at

50,000 parameters when it starts to drop. This happens because if the size is too

small, the overhead of synchronizing packets at small granularity gets too high,

overshadowing the benefits of parameter slicing. In all our experiments, we use a

maximum granularity of 50,000 parameters per slice as we found this to be optimal

empirically.
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Chapter 6

Related Work

In this thesis, we describe the key limitations in the data parallel deep learning dis-

tribution techniques used in popular ML frameworks (e.g., TensorFlow and MXNet),

and propose solutions to mitigate these limitations by taking advantage of domain

specific characteristics of deep learning models. To the best of our knowledge, this

is the first work to summarize and address these limitations.

One notable prior work which proposes domain specific optimizations for data

parallel deep learning workloads is Poseidon [41]. This work introduced the idea

of Wait-Free-Back-Propagation (WFBP) which hides the communication overhead

behind backpropagation by independently synchronizing individual layers in the

neural network. We build upon this idea, and show that we can overlap computation

with both forward and backward propagation. We further improve this idea by

using parameter slicing that utilizes network bandwidth better.

Most of the recent papers in this area try to reduce communication overhead by

sending fewer gradients. One popular method to reduce data transmission is gradi-

ent quantization (representing the gradient values using fewer bits). For example,

1-bit SGD [32] represents a 32-bit floating point gradient value in a single bit. Ad-

ditionally, an error feedback is added to the SGD algorithm in order to account for

the information loss that comes with the value approximation. 1-bit SGD can pro-

vide up to 10× speed-up for traditional speech recognition applications. Another

work called QSGD [5] proposes a family of compression schemes which balance

the trade-off between the accuracy and gradient precision to provide good perfor-
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mance. Similar to QSGD, TernGrad [39] uses 3-level numerical compression to

reduce data transfer in data parallel training. Both QSGD and TernGrad provide

mathematical guarantees on the bounds of final model convergence accuracy. In

contrast, P3 always sends the full 32-bit parameter values.

Another approach is the sparse parameter synchronization. The idea is to syn-

chronize only a few parameters on every iteration instead of the whole model.

Gradient dropping method [2] only synchronizes parameters which have gradient

values larger than a selected threshold. The threshold is calculated based on a

fixed compression ratio. AdaComp [11] automatically tunes the compression ratio

depending on the local gradient activity and achieves up to 200× compression.

All the above techniques make the trade-off between training performance and

model accuracy because of the information loss introduced by value approximation

or stale parameter updates [23]. P3 , on the other hand, does not introduce any

information loss since it always sends the full gradient matrix on every iteration.

On the other hand, a more recent work called DGC [25] offers up to 600× com-

pression and around 5× speedup in low bandwidth networks while maintaining the

same baseline accuracy on several DNN models. DGC use local gradient accumu-

lation and momentum correction techniques to maintain the same accuracy. Even

though the authors report no accuracy loss with DGC, there is no formal proof on

the convergence guarantees cited in the paper. And as shown in Section 5.6, we

find it difficult to reproduce their results despite substantial effort.1 In our exper-

iments, P3 always gives better accuracy than the DGC. Based on these results,

we conclude that our mechanism is a safer approach, as P3 does not introduce

information loss in the training algorithm and therefore there is no potential risk

of accuracy loss. Moreover, our proposal is an orthogonal approach to the com-

pression techniques and can be used on top of compression mechanisms to further

improve performance.

A similar work to P3 has been done and published independently by Hashemi

et. al. [17]. Similar to P3, their proposed system called TicTac is also trying to re-

duce the communication overhead in data parallel DNN training by scheduling the

parameter synchronization based on the predetermined priorities of layers. That

1This includes personal communication with the authors in order to get all their experiments
correctly.
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being said, there are a few fundamental differences in the proposed solutions. Tic-

Tac is implemented on Tensorflow and they perform parameter synchronization at a

coarse-grained level, specifically at a granularity of send-recv operations, whereas

P3 does the same at much finer granularity with parameter slicing optimization.

Parameter slicing optimization helps P3 to achieve better control over communi-

cation scheduling and better bandwidth utilization compared to TicTac. Secondly,

TicTac uses static analysis on the DNN computation graph in order to prepare the

optimal scheduling of the send/recv operations. This scheduling strategy is pre-

pared offline and is used throughout the training. P3 on the other hand performs

the communication scheduling at runtime with the help of the producer-consumer

mechanism communicating through a priority queue. We believe this immensely

simplifies our design and also helps to deal with jitters in the network.

30



Chapter 7

Conclusion and Future Work

In this thesis, we analyze the data parallel distributed training methods used in

current ML frameworks and observe that they fail to fully utilize available net-

work bandwidth and induces high penalty on training performance under network

bandwidth limitations. Based on this observation, we propose a new parameter

synchronization method called P3, which improves the training performance by

better utilizing the available network bandwidth. We implement P3 on top of the

state-of-the-art ML framework MXNet and demonstrate it to have higher resiliency

towards bandwidth constraints and better scalability than the baseline MXNet im-

plementation. With P3, we improve training throughput of ResNet-50 by as much

as 25%, Sockeye by 38% and VGG-19 by 66%. We also have made the source

code of P3 publicly available.1

Currently, P3 only supports distributed training on parameter servers. How-

ever, we believe that the optimizations proposed in this work are general enough to

be applied to any gradient aggregation methods. Parameter synchronization using

MPI operations are also used in practice by several ML frameworks (e.g. PyTorch

[30]). We plan to extend P3 to support all reduce operations in the future.

We also plan to further improve P3 in several ways. Currently P3 uses prede-

termined priorities for the parameter slices by statically analyzing the DNN com-

putation graph. This works fine for most of the DNNs as many ML frameworks

represent DNNs as static computation graphs. We believe extending P3 to per-

1https://github.com/anandj91/p3
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form efficient communication scheduling for a generic data flow graph would be

an interesting future work. Computation graphs with dynamic control flows might

require more sophisticated communication prioritization strategy.

Another potential area of improvement would be on the estimation of the op-

timal parameter slice. Currently P3 uses a common parameter slice size threshold

for all the models which was obtained after an empirical analysis conducted on

ResNet-50, Sockeye and VGG-19 described in Section 5.7. It would be worth in-

vestigating the generalizablity of such a common fixed threshold on a wide range

of DNNs.

32



Bibliography

[1] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, M. Isard, M. Kudlur, J. Levenberg, R. Monga,
S. Moore, D. G. Murray, B. Steiner, P. Tucker, V. Vasudevan, P. Warden,
M. Wicke, Y. Yu, and X. Zheng. Tensorflow: A system for large-scale
machine learning. In 12th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 16), pages 265–283, Savannah, GA,
2016. USENIX Association. ISBN 978-1-931971-33-1. URL https:
//www.usenix.org/conference/osdi16/technical-sessions/presentation/abadi.
→ pages 2, 7, 23

[2] A. F. Aji and K. Heafield. Sparse communication for distributed gradient
descent. CoRR, abs/1704.05021, 2017. URL
http://arxiv.org/abs/1704.05021. → pages 2, 29

[3] M. Alan, A. Panda, D. Bottini, L. Jian, P. Kumar, and S. Shenker. Network
evolution for dnns. SysML, doc/182, 2018. URL
http://www.sysml.cc/doc/182.pdf. → page 2

[4] Alexey N. Kuznetsov. Linux Traffic Control, 1999. URL
https://linux.die.net/man/8/tc. → page 20

[5] D. Alistarh, D. Grubic, J. Li, R. Tomioka, and M. Vojnovic. Qsgd:
Communication-efficient sgd via gradient quantization and encoding. In
I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus,
S. Vishwanathan, and R. Garnett, editors, Advances in Neural Information
Processing Systems 30, pages 1709–1720. Curran Associates, Inc., 2017. →
pages 2, 28

[6] Amazon. Amazon Web Services, 2019. URL https://aws.amazon.com/. →
page 20

[7] D. Amodei, R. Anubhai, E. Battenberg, C. Case, J. Casper, B. Catanzaro,
J. Chen, M. Chrzanowski, A. Coates, G. Diamos, E. Elsen, J. Engel, L. Fan,

33

https://www.usenix.org/conference/osdi16/technical-sessions/presentation/abadi
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/abadi
http://arxiv.org/abs/1704.05021
http://www.sysml.cc/doc/182.pdf
https://linux.die.net/man/8/tc
https://aws.amazon.com/


C. Fougner, T. Han, A. Y. Hannun, B. Jun, P. LeGresley, L. Lin, S. Narang,
A. Y. Ng, S. Ozair, R. Prenger, J. Raiman, S. Satheesh, D. Seetapun,
S. Sengupta, Y. Wang, Z. Wang, C. Wang, B. Xiao, D. Yogatama, J. Zhan,
and Z. Zhu. Deep speech 2: End-to-end speech recognition in english and
mandarin. CoRR, abs/1512.02595, 2015. URL
http://arxiv.org/abs/1512.02595. → page 1

[8] A. A. Awan, C. Chu, H. Subramoni, and D. K. Panda. Optimized broadcast
for deep learning workloads on dense-gpu infiniband clusters: MPI or nccl?
CoRR, abs/1707.09414, 2017. URL http://arxiv.org/abs/1707.09414. →
page 9

[9] L. Bottou. Large-scale machine learning with stochastic gradient descent. In
in COMPSTAT, 2010. → pages 2, 7

[10] M. Burtscher and P. Ratanaworabhan. Fpc: A high-speed compressor for
double-precision floating-point data. IEEE Trans. Comput., 58(1):18–31,
Jan. 2009. ISSN 0018-9340. doi:10.1109/TC.2008.131. URL
http://dx.doi.org/10.1109/TC.2008.131. → page 2

[11] C. Chen, J. Choi, D. Brand, A. Agrawal, W. Zhang, and K. Gopalakrishnan.
Adacomp : Adaptive residual gradient compression for data-parallel
distributed training. CoRR, abs/1712.02679, 2017. URL
http://arxiv.org/abs/1712.02679. → page 29

[12] J. Chen, R. Monga, S. Bengio, and R. Józefowicz. Revisiting distributed
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Appendix A

Additional Results

A.1 Comparison with other frameworks
In this section, we show that the limitations described in Section 3 exist in other

frameworks as well.
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Figure A.1: Network utilization

Figures A.1a and A.1b show the network utilization measurements of Tensor-

Flow and Poseidon taken while training ResNet-50 and InceptionV3 respectively

on a 4-node cluster. Similar to MXNet, these frameworks also utilize network

poorly even under bandwidth constraints.
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A.2 P3 vs. Asynchronous SGD
ASGD algorithm does not perform synchronous update at the parameter server

which means each worker machine is only blocked by its on parameter updates in

an iteration as opposed to waiting for all the participating workers to finish. ASGD

algorithm runs faster than synchronized SGD, however, at the cost of reduced con-

vergence rate because of the stale parameter updates.
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Figure A.2: ASGD v.s. P3

We measured the accuracy of ResNet-110 on CIFAR-10 on a 4-machine cluster

and 1Gbps network with both P3 and ASGD. P3 reaches a final top-1 accuracy of

93% whereas for ASGD, it is only 88%. Additionally, P3 is able to achieve 80%

accuracy roughly 6× faster than ASGD.
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