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The Accuracy of the Clock Synchronization Achieved 
by TEMPO in Berkeley UNIX 4.3BSD 

Absfract-We discuss the upper and lower bounds on the accuracy 
of the time synchronization achieved by the algorithm implemented in 
TEMPO, the distributed service that synchronizes the clocks of Berke- 
ley UNIX" 4.3BSD systems. We show that the accuracy is a function 
of the network transmission latency, and depends linearly upon the 
drift rate of the clocks and the interval between synchronizations. 
Comparison with other clock synchronization algorithms reveals that 
TEMPO may achieve better synchronization accuracy at a lower cost. 

Index Terms-clock synchronization, distributed systems, fault-tol- 
erance, master-slave, time service. 

I. INTRODUCTION 

HIS paper discusses the upper and lower bounds on T the accuracy of the time synchronization achieved by 
the algorithms implemented in TEMPO, a distributed 
clock synchronizer running on Berkeley UNIX 4.3BSD 
systems. 

TEMPO, which works in a local area network, consists 
of a collection of time daemons (one per machine) and is 
based on a master-slave structure [3], [4]. 

Figs. 1-4 sketch the way TEMPO works. A master time 
daemon measures the time difference between the clock 
of the machine on which it is running and those of all 
other machines. The master computes the network time as 
the average of the times provided by nonfaulty clocks. A 
clock is considered faulty if its value is more than a small 
specified interval away from the values of the clocks of 
the majority of the other machines. (The clock of Slave 3 
in Fig. 2 is faulty.) The master then sends to each slave 
rime daemon, also to those with faulty clocks, the correc- 
tion that should be performed on the clock of its machine. 
Since the correction can be negative, in order to preserve 
the monotonicity of the clocks' time functions, TEMPO 
implements it by slowing down (or speeding up) the clock 
rates [ 11. This process is repeated periodically. Because 
the correction is expressed as a time difference rather than 
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Fig. I The measurements. 
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Fig. 2.  The computation of the average. 

an absolute time, transmission delays do not interfere with 
synchronization. 

When a machine comes up and joins the network, it 
starts a slave time daemon, which asks the master for the 
correct time and resets the machine's clock before any 
user activity can begin. TEMPO therefore maintains a 
single network time in spite of the drift of clocks away 
from each other. 

An election algorithm that elects a new master should 
the machine running the current master crash, the master 
terminate (for example, because of a run-time error), or 
the network be partitioned, ensures that TEMPO provides 
continuous, and therefore reliable service [5]. However, 
in the following discussion we will assume that elections 
do not occur, as we are only concerned with determining 
the accuracy achieved by the clock synchronization al- 
gorithms. 
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Fig. 3 .  The correction of the clocks 
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Fig. 4 .  Clocks are now synchronized. 

11. DEFINITIONS A N D  GENERAL ASSUMPTIONS 
A physical clock generates an approximation, as pre- 

cise as possible, o f t ,  the universal Galilean time. A real- 
valued, continuous, and everywhere derivable function 
C ( t )  describes its behavior. Let p be the absolute value 
of the maximum drift rate over all clocks from the uni- 
versal time; we have 

Two clocks are said to be synchronized at time to if their 
associated functions have the same value, i.e., in case of 
clocks of machines A and B ,  if C A ( t O )  = CB( to ) .  

Let R be a constant. Two or more clocks are within 
range R at time to if the difference between any two of 
them is bounded by R: 

I - c B ( t O )  1 R, 

Lemma I :  For rI 2 to 

( 1  - P)( t l  - to) 5 C(tI) - C(t0)  5 ( 1  + P ) ( t l  - to). 

Proof: Immediate by integrating (1). 0 
Lemma 2: The absolute value of the relative drift rate 

of any two clocks satisfying (1)  is at most 2p 

Proof: From ( l ) ,  we have for CA 

and for Cs 

Adding term by term we obtain 

Lemma 2 follows. 0 
A direct consequence of Lemma 2 is that, if two clocks 

are synchronized at time to, at any later time t l  their values 
can differ at most by f 2 p ( t ,  - t o ) .  

111. THE CLOCK DIFFERENCE MEASUREMENT 
ALGORITHM 

A time daemon program on machine A measures the 
time difference between the clock of machines A and B by 
timestamping a message at time CA ( f I ) and sending it to 
machine B .  The kernel of machine B timestamps that mes- 
sages at time C, ( t 2 )  and sends it back. I Upon receipt of 
the message from machine B ,  the time daemon reads the 
time C A ( t 3 ) .  This process is represented in Fig. 5 .  As 
derived in Theorem 1 below, the time daemon can then 
estimate AAB( t ) ,  the difference between the clocks of ma- 
chines A and B ,  as 

L 

As indicated, AAs is a function of time, but we assume 
that its variation in the interval t3 - t l  is so small that we 
can write 

A A B ( t 3 )  = A A B ( r l )  = AAB 

Also, notice that AEA = -AAB. 
Theorem I :  Let T,,,, and T,,,, be the minimal possible 

transmission times from A to B and from B to A ,  respec- 
tively. Let us fix a bound, TM L 2 max ( T  ,, TI,,,,), on 
the round-trip time, i.e.,  cA(r3) - CA(t1) 5 T , .  Then, 
the maximum error in the estimation of AAB is 

L 

Proof: Let TsA, and T,,, be the actual transmission 
times from A to B and vice versa. We have 

'TEMPO implements this exchange of messages using the TitwSrmtp 
and TitnrSrunipReply messages of the DARPA Internet Control Message 
Protocol (ICMP) [ 1 I ] .  As soon as the associated interrupt of the network 
interface is served, the kernel of a remote machine processes a TimeStanip 
message by changing its type field to TimeStampReply. writing the clock 
value in the message, and sending i t  back without invoking a user process. 
I t  is simply a variant of an cdio protocol. We can therefore consider that 
the remote time query occurs ; j l . s / ~ / f i r ~ / j i [ , ~ ~ f / . ~ / ~  at the remote inachinc at time 
I ? .  
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and also 

for the hypotheses. 
We can now compute 

If we define 

the relations 

hold for the definition of T M ,  and the theorem, which can 
also be written as 

l E A B  - A A B l  I E ,  (7) 
follows. 0 

In general T,,,,, and T,,, will be different, as in the case 
of a ring network where the information flow moves in 
the same direction. However, these two times can also be 
different in a bus network because, for example, of dif- 
ferent interrupt structures of the two machines. 

In the actual implementation, several round-trip mes- 
sages are exchanged and the minimum values of h ,  and h2 
are used in the computation of EAB. This reduces the var- 

iances of the transmission times in the two directions and 
provides a better estimate of AAB. 

If the estimate EAB is used to correct the clock of ma- 
chine B ,  the two machines’ clocks are, upon synchroni- 
zation, within range E .  

Corollary I :  The lower bound for the error t is 

Proof: Immediate by substituting the expression for 

Corollary 2: The measurement algorithm allows a time 
daemon to compute the clock difference between any two 
other machines with maximum error 26. 

Proof: Let us suppose that A sends clock difference 
measurement messages to any two machines, for instance 
machines B and C ,  then 

I TrnAB - TrnBA 1 .  
TM into ( 2 ) .  0 

AAB = C A ( [ )  - c/j(f), EAB = AAB f € 9  

AAC = C A ( ~ )  - C c ( r ) ,  

ABC = AAc - A M ,  

EAc = AAc k E ,  

Eric = EAc - E m .  
It follows 

EEC = AAC - AAB f 2~ = ABc f 2 ~ .  0 

IV. THE SYNCHRONIZATION ALGORITHM 

The master time daemon, using the clock difference 
measurement algorithm, computes the time differences 
between its clock and the clocks of slave machines. In 
order to prevent malfunctioning clocks as well as clocks 
with abnormally large drift rates to adversely affect other 
clocks, a fault-tolerant averaging function is applied to 
these differences. It selects the largest sets of clocks that 
do not differ from each other more than a small quantity 
y and averages the differences of these clocks. For in- 
stance, in the example of Figs. 1, 2 ,  3 ,  and 4, assuming 
that y is 10 minutes, the fault-tolerant function selects the 
set consisting of the clock of the Master, the clock of Slave 
1 ,  and that of Slave 2. Clocks that are not selected by the 
fault-tolerant function are considered faulty. Last, the 
master time daemon asks each slave to correct its clock 
by a quantity equal to the difference between the average 
value provided by the fault-tolerant function and the pre- 
viously measured difference between the clocks of the 
master and the slave machines. (The master time daemon, 
as suggested in Fig. 3, also corrects the clock of the ma- 
chine on which it runs using the same method.) This pro- 
cess is repeated every Tseconds. Notice that the synchro- 
nization algorithm produces the appropriate correction 
value for every clock, including the faulty ones. 

For TEMPO to be reliable, it is necessary that all prop- 
erly functioning clocks be within y seconds when the 
master starts a synchronization round. The constant y is 
therefore chosen as a function of the clock drift rate; the 
interval between synchronization rounds, T; and the mea- 
surement errors as derived in Theorem 3 below. 

Theorem 2: If the master, using the synchronization al- 
gorithm described above synchronizes a number of ma- 
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chines, then any two nonfaulty clocks are, once the syn- 
chronization is performed, within range 4 ~ .  

Proof: Let Q be the set of machines selected by the 
fault-tolerant averaging function and I Q I its cardinality. 
The average of the measurements is then 

where we have assumed that the clock of the master A is 
also nonfaulty2 and AAA = 0 by definition. (This implies 
that also EAA = 0.) 

If we use the symbols a for (1 / 1 Q 1 )  C J , ,  AAJ and E 
for (1 / I  Q I) E,,, EAJ in order to simplify the notation, 
we can rewrite (8) as 

(9) 
where we have defined E ’  = E .  

The correction performed on the clock of machine K is 
- 

CK = E - EAK, 
- 

from which, by adding the quantity AAK - A ,  and for (7) 
and (9) we obtain 

I E )  + E .  

Let us represent with AAc the difference between the 
clocks of machines B and C after the correction is made 

A k  = (AAC + C C )  - ( A A ,  + C B ) .  

By adding and subtracting 2 we can write 
- 

~b~ = (aAc + cc - A )  - ( A ~ B  + C, - a), 
and also 

which completes the proof. U 
The following theorem summarizes the previous re- 

sults. 
Theorem 3: If the master time daemon synchronizes 

every T seconds a set of machines using the algorithm 
above described, then, at any time, all nonfaulty clocks 
are within range 46 + 2pT. 

Proof: The first term, 4 ~ ,  as per Theorem 2 ,  ac- 
counts for the inaccuracy of synchronization after the 
clocks have been reset. The second term, as per Lemma 

’This is not a necessary assumption. The algorithm and the derivations 
are valid irrespective of whether or not the master’s clock is selected by 
the fault-tolerant averaging function. Refer, however, to the next section 
of this paper for a brief discussion of the types of faults that TEMPO can 
tolerate. 

2 ,  accounts for the maximum possible drift of any two 
clocks during the time betwen two subsequent 
synchronizations. 0 

V. DISCUSSION 

It is important to notice that in the derivation of the 
bounds on the time accuracy we have made no assumption 
whatsoever about the statistical distribution of the trans- 
mission times between two machines, nor have we as- 
sumed that these distributions are the same in the two di- 
rections of communication. 

It should also be noted that the requirements on the 
maximum round-trip time T,,, can be verified by the mas- 
ter, in the notation used above, by computing CA ( 1 3 )  - 

CA ( t , ) .  Even though messages can be arbitrarily delayed, 
the master is always able to reject measurements that do 
not satisfy the conditions of Theorem 1. 

In our implementation of TEMPO for the Ethernet local 
area network, we have chosen a value of 20 milliseconds 
for T,,,,. Although the Digital Equipment VAX Hardware 
Handbook states that p can be as high as lop4 ,  we have 
verified, using a high-resolution frequency meter, that the 
clocks of the VAX’s used in our experiments display drift 
rates smaller than 2 parts in lo5. Since the minimum 
transmission delay from machine to machine can be esti- 
mated to be 5 milliseconds (including kernel protocol 
handling and the scheduling delays of the master pro- 
cess), and since TEMPO synchronizes the clocks every 4 
minutes, the maximum error in Theorem 3 is 30 milli- 
seconds. 

Let us call the actual error in the measurement of 
the clock difference between machines A and B .  From (6) 
we have --E I I + E .  Therefore, the actual quantity 
that corresponds to E ‘  in (9) is, from (8) (1/1 Q I )  E,,, 
f A J ,  that is the average of the actual errors of the mea- 
surements between the master A and the other machines 
in the set Q.  As such, by the Strong Law of Large Num- 
bers, this quantity converges in probability to the mean of 
the random variables that models the measurement errors. 
Under the condition of identically distributed transmis- 
sion times in the two communication directions, which is 
satisfied in the case of the Ethernet, this mean, as can be 
recognized in (6), is zero. While according to Theorem 3 
the first component of the global error can be as large as 
4 ~ ,  the algebraic manipulations in the proof of Theorem 
2 show that it can be separated into two parts, one of 
which, 2 ~ ’ ,  for what we have just seen, should be very 
small. 

In measurements taken in our environment, where the 
time daemons synchronized the clocks of about 15 ma- 
chines, we rarely found the time difference between clocks 
to be larger than 25 milliseconds, with the mean between 
18 and 20 milliseconds. Since the drift rate of the clocks 
makes them diverge at most 10 milliseconds in 4 minutes, 
we estimated that the synchronization inaccuracies due to 
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the error described in Theorem 2 amount to about 10 
milliseconds on the average. 

As previously observed, a clock is considered faulty if 
it is not selected by the fault-tolerant averaging function. 
Therefore, great attention must be paid to the appropriate 
choice for the value of y. If y is too small, only a few 
clocks may be selected; if it is too large, malfunctioning 
clocks can reduce the precision of the synchronized time. 
In both cases, the reliability of TEMPO decreases. Since 
our measurements showed that most clocks do not diverge 
more than 20 milliseconds from each other, we set y equal 
to 20 milliseconds. 

The fault-tolerant averaging function may reject a clock 
measurement for any of three reasons. First, there may be 
a hardware malfunction. Second, the two sources of error 
of Theorem 3 may combine to generate an above-average 
error. (As we have seen, this should only occur to a small 
fraction of the clocks being synchronized.) Finally, in an 
improperly set-up machine, a series of high-priority in- 
terrupts may prevent the operating system from servicing 
lower-priority timer clock interrupts, causing that ma- 
chine’s clock to slow down. Given that TEMPO was de- 
signed for an environment where Byzantine faults are 
highly improbable, the synchronization algorithm can tol- 
erate ( N  - l ) / 2  faults. However, it should be noted that 
the clock of the master, which is not considered more im- 
portant than any other clock by the fault-tolerant averag- 
ing function, may cause the clock difference measurement 
algorithm to fail if it is “double-faced.” 

VI.  COMPARISON WITH RELATED WORK 
Although TEMPO is a distributed program, it uses a 

centralized approach in directing the synchronization ac- 
tivities. Fault-tolerance is achieved by not giving a priv- 
ileged role to the master’s clock in the synchronization 
algorithm and by providing an election algorithm that 
elects a new master should the old one terminate. Our 
approach therefore contrasts with other existing algo- 
rithms that adopt a fully distributed approach to fault-tol- 
erance. 

It is difficult to compare the various clock synchroni- 
zation algorithms because, as observed by Lamport and 
Melliar-Smith [ 81, different algorithms require different 
methods of reading clocks and each method generates a 
different error. In addition, the various authors describe 
the bounds on their algorithms using parameters not al- 
ways easily convertible to those of our system of vari- 
ables. However, in general, the errors in clock synchro- 
nization, as in Theorem 3 ,  depend on the uncertainty in 
the elapsed time between the generation and the receipt 
of a message and on the time between synchronization 
rounds. 

In the remainder of this section, in order to compare the 
bounds on the accuracy of different algorithms, we make 
the following three additional assumptions: 1 )  there are N 
= 3F + 1 machines, where F is the number of machines 

with faulty clocks; 2 )  the message delivery time is in the 
range [ T  - q, T + 171, where T is the median delay time 
and 7 is the uncertainty; and 3 )  the transmission times 
between any two machines are equally distributed. 

Lundelius and Lynch [lo] describe an algorithm that 
executes in a series of rounds; each round is started when 
a clock reaches a certain predefined value. When this hap- 
pens, a machine broadcasts that value to all other ma- 
chines. Meanwhile, it collects within a particular bounded 
amount of time measured on its own clock, messages from 
other machines. Then, each machine computes the cor- 
rection for its clock using a fault-tolerant averaging func- 
tion. The bound analysis shows that clocks can be syn- 
chronized as closely as 47 + 4pT, but the authors suggest 
that, with a slight modification of their algorithm, they 
can reduce the second term to 2pT. 

The algorithm designed by Halpern er al.  [6] is also 
based on the periodic broadcasting of clock values. In their 
method however, a machine that receives a message with 
a value that its clock has not reached yet, updates the clock 
to that value and broadcast the corresponding message. 
This algorithm generates an error of T + q + 2pT. 

The three algorithms introduced by Lamport and Mel- 
liar-Smith [ 7 ] ,  CON, COM, and CSM, are based on 
broadcast as well and achieve the following accuracy, re- 
spectively 2Nq + N p T ,  2 ( N  + l ) q  + pT, and ( N  + 
1 7 ) / 3 q  + pT.  Although Lamport and Melliar-Smith do 
not give the synchronization error in a form comparable 
to ours-they analyze how closely in real time clocks 
reach the same value whereas we measure how close 
clocks are at the same real time-the two quantities appear 
to be similar. 

Cristian, Aghili, and Strong [2] propose an algorithm 
in which nonfaulty clocks periodically generate synch 
waves that are propagated to all nodes of a point-to-point 
network of diameter D. (The network diameter is defined 
as the maximum distance between any two nodes. Notice 
that in an Ethernet local area network D = 1 . )  Indepen- 
dently generated synch waves eventually merge into a 
winning wave that distributes the time of the fastest clock 
to all the nodes. If we identify their maximum fink d e h y  
with T + 7, clocks can be as close as D ( T  + q)( 1 + p )  
upon synchronization, but can drift apart as much as D (  7 

+ (7 + q ) ]  during the interval T between two synch 
waves. 

The algorithm presented by Srikanth and Toueg [ 121 is 
based on the assumption that a known upper bound exists 
on the time required for a message to be prepared by a 
process, sent to all processes, and processed by them. As 
in some other algorithms discussed above, the synchro- 
nization takes place in rounds, which in this case start at 
multiples of a specified interval. Each process broadcasts 
a resynchronization message, and after receiving F + 1 
resynchronization messages (so that at least one of them 
is from a nonfaulty process) accepts the resynchronization 

+ V ) ( l  + P )  + [ P ( 2  + P ) / ( l  + P)I  [ T ( 1  + P )  
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and resets its time to the correct multiple of the interval, 
plus a constant conveniently chosen to avoid setting the 
time backwards. The clever way in which clocks reset 
their local times makes the accuracy achieved optimal, 
i .e.,  as close to the real time as that of a single clock. 
Identifying with r + 17 the maximum link delay, the time 
required for a message to reach all processes is D (  r + 
q), where D is the diameter of the network. The paper 
shows that at any time any two clocks will differ by no 
more than D ( r  + v ) [ (  1 + P ) ~  + p ( 2  + p ) / (  1 + p ) ] .  

While it is true that most communication protocols are 
designed to provide an upper bound on the communica- 
tion time, perhaps by abnormally terminating the trans- 
mission after a number of retries, it is also true that the 
resulting variance in the transmission times can be much 
larger than the average transmission time. A unique fea- 
ture of our algorithm is that it can bound the round-trip 
time, despite the high variance in transmission times, by 
rejecting those measurements that do not satisfy the re- 
quirements of Theorem 1. In fact, under the assumptions 
introduced above, if we call T,,, the minimum transmission 
time, we have 

and 

TM T M  - 2T, 
7 ’ -  

2 .  2 ’  1 7 =  

By comparing the expression for r] with ( 2 ) ,  we can 
rewrite the result of Theorem 3 as 

417 + 2pT. 

Although the formula for the accuracy of our algorithm 
is the same as the one for the algorithm of Lundelius and 
Lynch, our 17 is much lower than theirs. Using for the 
parameters the values we have introduced in the previous 
section, we obtain r = 10 milliseconds and 17 = 5 milli- 
seconds. In the case of other algorithms, 17 is proportional 
to the standard deviation of the transmission times, which 
for the Ethernet can be rather large when messages col- 
lide. When clocks are synchronized-or almost synchro- 
nized-the simultaneous broadcasting of messages that 
occurs in the algorithms may cause numerous collisions, 
increasing both the median transmission time r and the 
uncertainty 17. Therefore in an Ethernet environment, we 
would expect that our algorithm achieve significantly bet- 
ter synchronization accuracy. In a non-Ethernet environ- 
ment, for instance a ring or point-to-point network, we 
would still expect that r] of the other algorithms would be 
larger than our 17, though the difference between the two 
may be smaller. 

Algorithms COM and CSM were developed in the 
framework of Byzantine clock synchronization and both 
require about N F +  ’ messages. The algorithms of Lunde- 
lius and Lynch, Halpern er al., Cristian, Aghili, and 
Strong, that of Srikanth and Toueg, and algorithm CON 
require in the worst case about N 2  messages. TEMPO, in 

contrast with the other algorithms, employs for each syn- 
chronization round only a linear number of messages. 
However, unlike TEMPO, which needs an election mech- 
anism to ensure that a new master be elected in case the 
current one crashes or the network partitions, those al- 
gorithms are inherently fault-tolerant. Our choice was 
motivated by the fact that in our computing environment 
the kind of faults that require the intervention of the elec- 
tion procedure are rare. We have followed a design prin- 
ciple [9] that calls for simplicity in the most common sit- 
uations and confines complexity and high costs with 
unusual conditions. 

VII. CONCLUSIONS 
We have discussed the upper and lower bounds on the 

accuracy achieved by the clock synchronization algo- 
rithms of TEMPO, which is distributed with Berkeley 
UNIX 4.3BSD. TEMPO keeps the clocks of VAX com- 
puters in a local area network synchronized with an ac- 
curacy comparable to the resolution of single machine 
clocks. Comparison with other clock synchronization al- 
gorithms shows that TEMPO, in an environment with no 
Byzantine faults, may achieve better synchronization at a 
lower cost. 
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Multisystem Coupling by a Combination of Data 
Sharing and Data Partitioning 

JOEL L. WOLF, DANIEL M. DIAS, MEMBER, IEEE, BALAKRISHNA R .  IYER, 
A N D  PHILIP s. Yu, SENIOR MEMBER, IEEE 

Abstract-In a multisystem partitioned database system, the data- 
bases are Partitioned among the multiple systems and a facility i s  pro- 
vided to support the shipping of database requests among the systems. 
I n  contrast, in the data sharing multisystem approach, all systems have 
direct access to the shared database. There are a number of tradeoffs 
between these two approaches. I n  this paper we propose and evaluate 
a hybrid architecture that combines the approaches, and offers the ad- 
vantages of each. Some databases are shared between systems, while 
others are retained private by specific systems. The issue i s  to deter- 
mine which databases to share, which to retain private, and how to 
route transactions and partition the private databases among systems 
so as to minimize response time or overheads, while balancing the load 
among systems. A simulated annealing heuristic i s  used to solve this 
optimization problem. Trace data from large mainframe systems run- 
ning IBM’s IMS database management system are used to illustrate 
the methodology and to demonstrate the advantages of the hybrid ap- 
proach. 

Index Terms-Data sharing, function shipping, multiprocessor sys- 
tems, simulated annealing, transaction processing. 

I. INTRODUCTION 
HE large growth rate of the demand for computing T capacity has made the coupling of multiple systems 

important. One method of locally coupling multiple sys- 
tems for transaction processing is to partition the data- 
bases among the multiple systems and provide a facility 
to support the shipping of function requests among sys- 
tems [ 11, [6]. Another approach to local multisystem cou- 
pling is the data sharing approach in which a number of 
systems, each running an independent operating system, 
share a common database at the disk level [ lo] ,  [15]. 
There are a number of tradeoffs between the two ap- 
proaches. In this paper we examine a hybrid approach, 
combining the data partitioning and data sharing ap- 
proaches, and we attempt to provide the best features of 
each. 

In the hybrid approach some databases are shared be- 
tween the systems, while others are retained private by 
one of the systems. Hence it is necessary to determine 
which databases to share and which to retain private. This 
decision is based on the overheads involved in the two 
approaches and on the access patterns to the databases. In 
addition, transactions must be routed among the systems, 
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so as to minimize remote calls to private databases which 
are not locally owned, while balancing the load among 
the systems. This optimization problem is solved by a 
heuristic based on simulated annealing 171, [8]. Traces 
from large mainframe systems running IBM’s IMS data- 
base management system are used to examine the efficacy 
of the hybrid approach. 

Section I1 outlines the data partitioning, data sharing 
and the hybrid approaches to multisystem coupling. The 
approaches are compared qualitatively. The optimization 
problem is formulated in Section 111, and the simulated 
annealing approach to solving it is outlined. A quantita- 
tive comparison of the approaches is presented in Section 
IV. It is demonstrated that the hybrid approach has sig- 
nificant advantages for realistic workloads and system pa- 
rameters. Finally, concluding remarks appear in Section 
V .  

11. HYBRID ARCHITECTURE A N D  QUALITATIVE 
COMPARISON 

In this section we outline the tradeoffs between the data 
partitioning and data sharing approaches that motivate the 
hybrid architecture. The approaches are then compared 
qualitatively. 

In the data partitioning approach, illustrated in Fig. 1, 
the databases are partitioned among multiple systems and 
can only be accessed directly by the owning system. 
Function request shipping is the capability for transac- 
tions executing in one database system to send database 
requests to other database systems (cohorts) for service. 
With such a facility, as in IBM’s Customer Information 
Control System [5], [6], a transaction executing on any 
system can issue function requests referring to any data- 
base without detailed knowledge of how the databases are 
partitioned among systems. However, due to communi- 
cation costs, performance degrades as the fraction of re- 
mote function requests increases. To optimize perfor- 
mance, transactions must be routed to systems so as to 
minimize remote function requests, while balancing the 
workload among systems. A two-phase commit protocol 
[4] is typically introduced to coordinate the updates across 
multiple systems. At termination, a transaction will cause 
two sets of exchanges to take place between the transac- 
tion and all of its cohorts. A failure to complete this pro- 
cessing in any cohort will cause all updates to be backed 
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