Paxos
(deck based on slides from Lorenzo Alvisi and Tom Anderson)
Safe Replication?

- Suppose using primary/hot standby replication
- How can we tell if primary has failed versus is slow? (if slow, might end up with two primaries!)
- FLP: impossible for a deterministic protocol to guarantee **consensus** in bounded time in an asynchronous distributed system (even if no failures actually occur and all messages are delivered)
2PC vs. Paxos?

- Two phase commit: blocks if coordinator fails after the prepare message is sent, until the coordinator recovers.

- Paxos: non-blocking as long as a majority of participants are alive, provided there is a sufficiently long period without further failures.

By FLP cannot have both safety+liveness

- Paxos guarantees safety, tries to be live.
Operating model

- A set of processes that can propose values
- Processes can crash and recover
- Processes have access to stable storage
- Asynchronous communication via messages
- Messages can be lost and duplicated, but not corrupted
The Game: Consensus

SAFETY

- Only a value that has been proposed can be chosen
- Only a single value is chosen (consistency)
- A process never learns that a value has been chosen unless it has been (~atomicity)

LIVENESS

- Some proposed value is eventually chosen
- If a value is chosen, a process eventually learns it
The Players

- Proposers
- Acceptors
- Learners
Choosing a value

Use a single acceptor
What if the acceptor fails?

6 is chosen!

Choose only when a “large enough” set of acceptors accepts

Using a majority set guarantees that at most one value is chosen
Accepting a value

Suppose only one value is proposed by a single proposer.

That value should be chosen! (if not, then no liveness = cannot make progress)

First requirement:

P1: An acceptor must accept the first proposal that it receives
Accepting a value

Suppose only one value is proposed by a single proposer.

That value should be chosen!

First requirement:

P1: An acceptor must accept the first proposal that it receives

...but what if we have multiple proposers, each proposing a different value?
P1 + multiple proposers

No value is chosen!
Handling multiple proposals

Realization: acceptors must (be able to) accept more than one proposal

To keep track of different proposals, assign a natural number to each proposal

- A proposal is then a pair \((\textit{psn}, \text{value})\)
- Different proposals have different \(\textit{psn}\)
- A proposal is chosen: when it has been accepted by a majority of acceptors
- A value is chosen: when a single proposal with that value has been chosen
Choosing a unique value

We need to guarantee that all chosen proposals result in choosing the same value.

We introduce a second requirement (by induction on the proposal number):

P2. If a proposal with value v is chosen, then every higher-numbered proposal that is chosen has value v.

which can be satisfied by:

P2a. If a proposal with value v is chosen, then every higher-numbered proposal accepted by any acceptor has value v.
What about P1?
(P1: An acceptor must accept the first proposal that it receives)

- How does it know it should not accept?
 - (2,7)

- Do we still need P1?
 - YES, to ensure that some proposal is accepted

- How well do P1 and P2a play together?
 - Asynchrony is a problem...

6 is chosen!
(with psn 1)
Another take on P2

Recall P2a:

If a proposal with value ν is chosen, then every higher-numbered proposal accepted by any acceptor has value ν

We strengthen it to:

P2b: If a proposal with value ν is chosen, then every higher-numbered proposal issued by any proposer has value ν
Implementing P2 (I)

P2b: If a proposal with value v is chosen, then every higher-numbered proposal issued by any proposer has value v

Suppose a proposer p wants to issue a proposal numbered n. What value should p propose?

If (n', v) with $n' < n$ is chosen, then in every majority set S of acceptors at least one acceptor has accepted (n', v)...

...so, if there is a majority set S where no acceptor has accepted (or will accept) a proposal with number less than n, then p can propose any value
Implementing P2 (II)

P2b: If a proposal with value \(v \) is chosen, then every higher-numbered proposal issued by any proposer has value \(v \).

What if for all \(S \) (majority set) some acceptor ends up accepting a pair \((n', v)\) with \(n' < n \)?

Claim (if met, P2b satisfied): \(p \) should propose the value of the highest numbered proposal among all accepted proposals numbered less than \(n \).

Proof: By induction on the number of proposals issued after a proposal is chosen (or by contradiction).
Implementing P2 (III)

P2b: If a proposal with value v is chosen, then every higher-numbered proposal issued by any proposer has value v

Achieved by enforcing the following invariant

P2c: For any v and n, if a proposal with value v and number n is issued, then there is a set S consisting of a majority of acceptors such that either:

- no acceptor in S has accepted any proposal numbered less than n, or
- v is the value of the highest-numbered proposal among all proposals numbered less than n accepted by the acceptors in S
P2c in action

No acceptor in S has accepted any proposal numbered less than $\text{psn } n (=2)$.

$(2,7)$

$(4,8)$

$(1,5)$

$(5,2)$

$(\text{psn}, \text{value})$
$v(2)$ is the value of the highest-numbered proposal (#5) among all proposals numbered less than $n (<18)$ and accepted by the acceptors in S.

$P2c$ in action

$S(18,2)$

$(18,2)$

$(4,8)$

$(3,2)$

$(5,2)$

$(psn, value)$
P2c in action

\(v \) is the value of the highest-numbered proposal among all proposals numbered less than \(n \) and accepted by the acceptors in \(S \)

\[(psn, \text{value})\]
v is the value of the highest-numbered proposal among all proposals numbered less than n and accepted by the acceptors in S.

The invariant is violated.

(psn, value)
Future telling?

P2c: For any \(v \) and \(n \), if a proposal with value \(v \) and number \(n \) is issued, then there is a set \(S \) consisting of a majority of acceptors such that either.....

To maintain P2c, a proposer that wishes to propose a proposal numbered \(n \) must learn the highest-numbered proposal with number less than \(n \), if any, that has been or will be accepted by each acceptor in some majority of acceptors.
Future telling?

To maintain P2c, a proposer that wishes to propose a proposal numbered \(n \) must learn the highest-numbered proposal with number less than \(n \), if any, that has been or will be accepted by each acceptor in some majority of acceptors.

Key strategy: avoid predicting the future by extracting a promise from a majority of acceptors not to subsequently accept any proposals numbered less than \(n \).
A proposer chooses a new proposal number n and sends a request to each member of some (majority) set of acceptors, asking it to respond with:

a. A promise never again to accept a proposal numbered less than n, and

b. The accepted proposal with highest number less than n if any.

...call this a prepare request with number n
The proposer’s protocol (II)

- If the proposer receives a response from a majority of acceptors, then it can issue a proposal with number n and value v, where v is

 a. the value of the highest-numbered proposal among the responses, or
 b. is any value selected by the proposer if responders returned no proposals

A proposer issues a proposal by sending, to some set of acceptors, a request that the proposal be accepted.
...call this an accept request.
The acceptor’s protocol

An acceptor receives prepare and accept requests from proposers. It can ignore these without affecting safety.

- It can always respond to a prepare request.
- It can respond to an accept request, accepting the proposal, iff it has not promised not to, e.g.

P1a: An acceptor can accept a proposal numbered n iff it has not responded to a prepare request having number greater than n

...which subsumes P1.
Initial sys config:

- (2,2)
- (3,2)
- (4,1)
- (4,1)

(psn, value)
Minority fails

Note that if maj. fails, then Paxos is unavailable (not live)

=> as long as maj. alive, there will be some overlap between consecutive majorities
Working with remaining 3/5 majority

\[
\begin{align*}
(18,?) & \rightarrow \text{prepare (18)} \\
(2,2) & \\
(3,2) & \\
(4,1) & \rightarrow \text{prepare (18)} \\
(4,1) & \\
(4,1) & (psn, value)
\end{align*}
\]
Working with remaining $\frac{3}{5}$ majority

(18,?)

prepare (18)

prepare (18)

prepare (18)

S

(2,2) promised (18)

(3,2) promised (18)

(4,1) promised (18)

(4,1) (psn, value)
Working with remaining 3/5 majority

\((18,1)\)

- accept\((18,2,2)\)
- accept\((18,3,2)\)
- accept\((18,4,1)\)

\(S\)

- \((2,2)\) promised \((18)\)
- \((3,2)\) promised \((18)\)
- \((4,1)\) promised \((18)\)

\((4,1)\) (psn, value)
Majority overlap

Note that maj. overlap (does not need to be complete)
Prepare(5) conflicts with promised (18)
Prepare(5) conflicts with promised (18)
Outcome: just one proposer can (temporarily) prepare a majority

Majority
(18,1)

(5,?)

No majority

(4,1)

S

(2,2)
promised (18)

(3,2)
promised (18)

(4,1)
promised (18)

(4,1) (psn, value)
Outcome: just one proposer can (temporarily) prepare a majority.
Outcome: just one proposer can (temporarily) prepare a majority

Majority
(18,1)
accept (18,1)
accept (18,1)
accept (18,1)

(5,?)
No majority

S
(2,2)
(3,2)
(4,1)

disk
promised (18)
disk
promised (18)
disk
promised (18)

(4,1)

(4,1)

(4,1)

(psnn, value)
Small optimizations

- If an acceptor receives a \textit{prepare} request r numbered n when it has already responded to a \textit{prepare} request for $n' > n$, then the acceptor can simply ignore r.

- An acceptor can also ignore \textit{prepare} requests for proposals it has already accepted...
 so an acceptor needs only remember the highest numbered proposal it has accepted and the number of the highest-numbered \textit{prepare} request to which it has responded.

This information needs to be stored on stable storage to allow restarts.
Summary: Choosing a value: Phase 1

- A proposer chooses a new n and sends $\langle \text{prepare}, n \rangle$ to a majority of acceptors.

- If an acceptor a receives $\langle \text{prepare}, n' \rangle$, where $n' > n$ of any $\langle \text{prepare}, n \rangle$ to which it has responded, then it responds to $\langle \text{prepare}, n' \rangle$ with:
 - a promise not to accept any more proposals numbered less than n'
 - the highest numbered proposal (if any) that it has accepted.
Summary: Choosing a value: Phase 2

- If the proposer receives a response to `<prepare, n>` from a majority of acceptors, then it sends to each `<accept, n, v>`, where `v` is either
 - the value of the highest numbered proposal among the responses
 - any value if the responses reported no proposals

- If an acceptor receives `<accept, n, v>`, it accepts the proposal unless it has in the meantime responded to `<prepare, n'>`, where `n' > n`
Learning chosen values (I)

Once a value is chosen, learners should find out about it. Many strategies are possible:

i. Each acceptor informs each learner whenever it accepts a proposal.

ii. Acceptors inform a distinguished learner, who informs the other learners

iii. Something in between (a set of not-quite-as-distinguished learners)
Learning chosen values (II)

Because of failures (message loss and acceptor crashes) a learner may not learn that a value has been chosen.

Was 6 chosen?

Propose something!
Liveness

Progress is not guaranteed:

\[n_1 < n_2 < n_3 < n_4 < ... \]

\[\langle \text{propose}, n_1 \rangle \]

\[\langle \text{accept}(n_1, v_1) \rangle \]

\[\langle \text{propose}, n_3 \rangle \]

\[\langle \text{propose}, n_2 \rangle \]

\[\langle \text{accept}(n_2, v_2) \rangle \]

\[\langle \text{propose}, n_4 \rangle \]

Time
Implementing State Machine Replication (RSM)

- Implement a sequence of separate instances of consensus, where the value chosen by the i^{th} instance is the i^{th} message in the sequence.

- Each server assumes all three roles in each instance of the algorithm.

- Assume that the set of servers is fixed
RSM: The role of the leader

In normal operation, elect a single server to be a **leader**. The leader acts as the distinguished proposer in all instances of the consensus algorithm.

- Clients send commands to the leader, which decides where in the sequence each command should appear.

- If the leader, for example, decides that a client command is the k^{th} command, it tries to have the command chosen as the value in the k^{th} instance of consensus.
RSM: A new leader λ is elected...

Since λ is a learner in all instances of consensus, it should know most of the commands that have already been chosen. For example, it might know commands 1-10, 13, and 15.

- It executes phase 1 of instances 11, 12, and 14 and of all instances 16 and larger.
- This might leave, say, 14 and 16 constrained and 11, 12 and all commands after 16 unconstrained.
- λ then executes phase 2 of 14 and 16, thereby choosing the commands numbered 14 and 16.
RSM: Stop-gap measures

- All replicas can execute commands 1-10, but not 13-16 because 11 and 12 haven't yet been chosen.

- \(\lambda \) can either take the next two commands requested by clients to be commands 11 and 12, or can propose immediately that 11 and 12 be no-op commands.

- \(\lambda \) runs phase 2 of consensus for instance numbers 11 and 12.

- Once consensus is achieved, all replicas can execute all commands through 16.
RSM: To infinity, and beyond

- λ can efficiently execute phase 1 for infinitely many instances of consensus! (e.g. command 16 and higher)

- λ just sends a message with a sufficiently high proposal number for all instances

- An acceptor replies non trivially only for instances for which it has already accepted a value
Paxos and FLP

- Paxos is always safe—despite asynchrony
- Once a leader is elected, Paxos is live.
- “Ciao ciao” FLP?
 - To be live, Paxos requires a single leader
 - “Leader election” is impossible in an asynchronous system (gotcha!)
- Given FLP, Paxos is the next best thing: always safe, and live during periods of synchrony
Delegation

- Paxos is expensive compared to primary/backup; can we get the best of both worlds?
- Paxos group leases responsibility for order of operations to a primary, for a limited period
- If primary fails, wait for lease to expire, then can resume operation (after checking backups)
- If no failures, can refresh lease as needed
Byzantine Paxos

- What if a Paxos node goes rogue? (or two?)

- Solution sketch: instead of just one node in the overlap between majority sets, need more: $2f + 1$, to handle f byzantine nodes