
416 Distributed Systems

Jan 31, Peer-to-Peer

Outline

• P2P Lookup Overview

• Centralized/Flooded Lookups

• Routed Lookups – Chord

• BitTorrent

2

Scaling Problem

• Millions of clients Þ server and network meltdown

3

P2P System

• Leverage the resources of client machines (peers)
• Traditional: Computation, storage, bandwidth
• Non-traditional: Geographical diversity, mobility, sensors!

4

Peer-to-Peer (storage) Networks

• Typically each member stores/provides access to
content

• Basically a replication system for files
• Always a tradeoff between possible location of files and

searching difficulty
• Peer-to-peer allow files to be anywhere à searching is

the challenge
• Dynamic member list makes it more difficult

• What other systems have similar goals?
• Routing, DNS

5

The Lookup Problem

Internet

N1
N2 N3

N6N5
N4

Publisher

Key=“title”
Value=MP3 data… Client

Lookup(“title”)

?

6

Searching

• Needles vs. Haystacks
• Searching for top 40, or an obscure punk track from

1981 that nobody’s heard of?
• Search expressiveness

• Whole word? Regular expressions? File names?
Attributes? Whole-text search?

7

Framework

• Common Primitives:
• Join: how do I begin participating?
• Publish: how do I advertise my file?
• Search: how to I find a file?
• Fetch: how to I retrieve a file?

8

Outline

•P2P Lookup Overview

•Centralized/Flooded Lookups

•Routed Lookups – Chord

•BitTorent

9

Napster: Overiew

• Centralized Database:
• Join: on startup, client contacts central server
• Publish: reports list of files to central server
• Search: query the server => return someone that

stores the requested file
• Fetch: get the file directly from peer

10

Napster: Publish

I have X, Y, and Z!

Publish

insert(X,
123.2.21.23)

...

123.2.21.23

11

Napster: Search

Where is file A?

Query Reply

search(A)
-->
123.2.0.18Fetch

123.2.0.18

12

Napster: Discussion

• Pros:
• Simple
• Search scope is O(1)
• Controllable (pro or con?)

• Cons:
• Server maintains O(N) State
• Server does all processing
• Single point of failure

13

“Old” Gnutella: Overview

• Query Flooding:
• Join: on startup, client contacts a few other nodes;

these become its “neighbors”
• “unstructured overlay”

• Publish: no need
• Search: ask neighbors, who ask their neighbors, and

so on... when/if found, reply to sender.
• TTL limits propagation

• Fetch: get the file directly from peer

14

I have file A.

I have file A.

Gnutella: Search

Where is file A?

Query

Reply

15

Gnutella: Discussion

• Pros:
• Fully de-centralized
• Search cost distributed
• Processing @ each node permits powerful search semantics

• Cons:
• Search scope is O(N)
• Search time is O(???)
• Nodes leave often, network unstable

• TTL-limited search works well for haystacks.
• For scalability, does NOT search every node. May have to

re-issue query later; no guarantee that it will find the file!

16

• Modifies the Gnutella protocol into two-level hierarchy
• Hybrid of Gnutella and Napster

• Supernodes
• Nodes that have better connection to Internet
• Act as temporary indexing servers for other nodes
• Help improve the stability of the network

• Standard nodes
• Connect to supernodes and report list of files
• Allows slower nodes to participate

• Search
• Broadcast (Gnutella-style) search across supernodes

• Disadvantages
• Kept a centralized registration à allowed for law suits L

17

Flooding: Gnutella, Kazaa

Outline

•P2P Lookup Overview

•Centralized/Flooded Lookups

•Routed Lookups – Chord

•BitTorent

18

BitTorrent: Overview

• File swarming:
• Join: contact centralized “tracker” server, get a list of

peers.
• Publish: Run a tracker server.
• Search: Out-of-band. E.g., use Google to find a tracker

for the file you want.
• Fetch: Download chunks of the file from your peers.

Upload chunks you have to them.
• Big differences from Napster:

• Chunk based downloading
• “few large files” focus
• Anti-freeloading mechanisms

19

BitTorrent: Publish/Join

Seeder

20

Tracker

BitTorrent: Fetch

21

Seeder

BitTorrent: Sharing Strategy

• Employ “Tit-for-tat” sharing strategy
• A is downloading from some other people

• A will let the fastest N of those download from it
• Be optimistic: occasionally let freeloaders download

• Optimistic unchoke
• Otherwise no one would ever start!
• Also allows you to discover better peers to download from when

they reciprocate

• Goal: Pareto Efficiency
• Game Theory: “No change can make anyone better off

without making others worse off”
• Does it work? How would you cheat?
• (not perfectly, but perhaps good enough?)

22

BitTorrent: Summary

• Pros:
• Works reasonably well in practice
• Gives peers incentive to share resources; avoids

freeloaders
• Cons:

• Pareto Efficiency claim is not true … a lie

• Central tracker server needed to bootstrap swarm
• Alternate tracker designs exist (e.g., DHT-based trackers)

23

A Peer-to-peer Google?

• Complex intersection queries (“the” + “who”)
• Billions of hits for each term alone

• Sophisticated ranking
• Must compare many results before returning a subset

to user
• Very, very hard for a DHT / p2p system

• Need high inter-node bandwidth
• (This is exactly what Google does - massive clusters)

24

Writable, persistent p2p

• Do you trust your data to 100,000 monkeys?
• Node availability hurts

• Ex: Store 5 copies of data on different nodes
• When someone goes away, you must replicate the data

they held
• Hard drives are *huge*, but edge network upload

bandwidth is tiny
• May take days to upload contents of a hard drive. P2P

replication/fault-tolerance expensive.

25

P2P: Summary

• Many different styles; remember pros and cons of each
• centralized, flooding, swarming, and structured routing

• Lessons learned:
• Single points of failure are very bad
• Flooding messages to everyone is bad
• Underlying network topology is important
• Not all nodes are equal
• Need incentives to discourage freeloading
• Privacy and security are important
• Structure can provide theoretical bounds and guarantees

26

