
Distributed Systems
CPSC 416

Winter 2018
Course: January 3 - April 6, 2018

Jan 3, 2018 Lecture (first class!)

1

Course staff
• Ivan Beschastnikh, instructor

• TAs

• Anna Zheltukhina (u)

• Renato Costa (g)

• Gleb Naumenko (g)

• Matthew Do (g)

2

Logistics
• 2016: 77 students (open-ended project)

• 2017: 117 students (assignment hell)

• 2018: 160 students (assignments + projects)

• 4 full TAs

• 2 easier (individual) assignments, one (group)
defined project, one (group) open-ended project

3

Logistics

• Everything on the website, updated continuously:
https://ugrad.cs.ubc.ca/~cs416/

• Use Piazza for all course-related communication

• 5 hrs office hours/week

4

https://piazza.com/class/jbyh5bsk4ez3cn

• Learning goals
• Go programming language (start learning!)
• Schedule (a work in progress)
• Assignment 1 due Jan 15 (week from Monday)

• Exam (‘just’ a final)
• Advice for doing well

• learn Go (a must to pass the course)
• don’t hack, engineer
• choose team, wisely
• reach out on Pizza/email for help.

• Collaboration guidelines

Course overview via the website

5

6

Assignment 1: Proof of work fortune

Distributed system examples

• YouTube

• Videos are replicated (multiple machines host
the same video)

• Scalable wrt. client requests for videos (internally
elastic — can throw more machines at the
service to have it scale out further)

7

Distributed system examples
• DropBox (or google drive)

• Replicated content across personal devices

• Supports disconnected operation (can work
while disconnected, and synchronize when re-
connected)

• Maintaining data consistent across devices

• Supports sharing; access control policies (security!)

8

Distributed system examples

• NASDAQ

• Transactions (e.g., ACID semantics from
databases). Many DBMS concepts apply to
distributed systems!

• Strong consistency and security guarantees
(otherwise people would not trust it with money)

9

Some D.S. challenges
• Synchronizing multiple machines (protocol complexity)

• Performance (how do you define/measure it?)

• Maintaining consistency: strong models (linearizable) to
weak models (eventual) of consistency

• Failures: machine failures (range: failure stop to byzantine);
network failures (just a few: disconnections/loss/corruption/
delay/partitioning)

• Security (how to prevent malicious control of a single host
in a system escalating into control of the entire system?)

10

For Friday

• Install Go on your personal machine

• Work through Tour of Go! and other tutorials.

• Practice Go!

11

