
Distributed File Systems 2
Jan 22, 2018

1

416 Distributed Systems

Outline

• Why Distributed File Systems?

• Basic mechanisms for building DFSs
• Using NFS and AFS as examples

• Design choices and their implications
• Caching
• Consistency
• Naming
• Authentication and Access Control

2

Topic 1: Client-Side Caching

• Many systems (not just distributed!) rely on two
solutions to every problem:
1. Cache it!
2. “All problems in computer science can be solved by

adding another level of indirection. But that will
usually create another problem.” -- David Wheeler

Server cache
F1:V1F1:V2

Use of caching to reduce network
load (not AFS from assignment 2)

4

Read (RPC)
Return (Data)

Client

cache

Client

cache

F1:V1

F1:V2

read(f1)

write(f1)

®V1
read(f1)®V1
read(f1)®V1

®OK

read(f1)®V1

read(f1)®V2

Crash!Crash!

Client Caching in NFS v2

• Cache both clean and dirty file data and file attributes
• Memory (e.g., DRAM) cache

• File attributes in the client cache expire after 60
seconds (file data doesn’t expire)

• File data is checked against the modified-time in file
attributes (which could be a cached copy)
• Changes made on one machine can take up to 60 seconds

to be reflected on another machine
• Dirty data are buffered on the client machine until file

close or up to 30 seconds
• If the machine crashes before then, the changes are lost

5

Implication of NFS v2 Client
Caching

• Advantage: No network traffic if
open/read/write/close can be done locally.

• But…. Data consistency guarantee is very poor
• Simply unacceptable for some distributed applications
• Imagine an application that modifies/reads a lot of

shared state across multiple instances (e.g., distributed
Game)

• Generally clients do not cache data on local disks

6

NFS’s Failure Handling –
Stateless Server
• Files are state, but...
• Server exports files without creating extra state

• No list of “who has this file open” (permission check on each
operation on open file!)

• No “pending transactions” across crash
• Crash recovery is “fast”

• Reboot, let clients figure out what happened
• State stashed elsewhere

• Separate MOUNT protocol
• Separate NLM locking protocol

• Stateless protocol: requests specify exact state.
read() à read([file], [position]). no seek on server.

NFS’s Failure Handling

• Operations are idempotent
• How can we ensure this?

NFS’s Failure Handling

• Operations are idempotent
• How can we ensure this? Unique IDs on

files/directories. It’s not delete(“foo”), it’s
delete(1337f00f), where that ID won’t be reused (e.g.,
by same/other clients)

NFS’s Failure Handling

• Operations are idempotent
• How can we ensure this? Unique IDs on files/directories.

It’s not delete(“foo”), it’s delete(1337f00f), where that ID
won’t be reused.

• Write-through caching: When file is closed, all
modified blocks sent to server. close() does not
return until bytes safely stored.
• Close failures?

• retry until things get through to the server
• return failure to client

• Most client apps can’t handle failure of close() call.
• Usual option: hang for a long time trying to contact server

NFS Results

• NFS provides transparent, remote file access
• Simple, portable, really popular

• (it’s gotten a little more complex over time, but...)
• Weak consistency semantics
• Requires hefty server resources to scale (write-

through, server queried for lots of operations)

