416 Distributed Systems

Distributed File Systems 2
Jan 22, 2018

Outline

« Why Distributed File Systems?

« Basic mechanisms for building DFSs
* Using NFS and AFS as examples

* Design choices and their implications
« Caching
« Consistency
* Naming
 Authentication and Access Control

Topic 1: Client-Side Caching “

« Many systems (not just distributed!) rely on two
solutions to every problem:

1. Cache it!

2. “All problems in computer science can be solved by
adding another level of indirection. But that will
usually create another problem.” -- David Wheeler

Use of caching to reduce network
load (not AFS from assignment 2)

read(f1) /1
read(f1)—>V1
read(f1)—>V1
read(f1)—>V1

write(f1)>O0K
read(f1)—»>V2

cache

Return (Data)
G

o\

WS

cache

\ S

D

Client

Server

cache

Client Caching in NFS v2 <N

« Cache both clean and dirty file data and file attributes
 Memory (e.g., DRAM) cache

 File attributes in the client cache expire after 60
seconds (file data doesn’t expire)

* File data is checked against the modified-time in file
attributes (which could be a cached copy)

« Changes made on one machine can take up to 60 seconds
to be reflected on another machine

 Dirty data are buffered on the client machine until file
close or up to 30 seconds
+ |f the machine crashes before then, the changes are lost

Implication of NFS v2 Client
Caching “‘

* Advantage: No network traffic if
open/read/write/close can be done locally.

- But.... Data consistency guarantee is very poor
« Simply unacceptable for some distributed applications

* Imagine an application that modifies/reads a lot of
shared state across multiple instances (e.g., distributed

Game)
* Generally clients do not cache data on local disks

NFS’ s Failure Handling —
Stateless Server “‘

* Files are state, but...

Server exports files without creating extra state

* No list of “who has this file open” (permission check on each
operation on open file!)

* No “pending transactions” across crash
« Crash recovery is “fast”

* Reboot, let clients figure out what happened
« State stashed elsewhere

« Separate MOUNT protocol
« Separate NLM locking protocol

« Stateless protocol: requests specify exact state.
read() - read([file], [position]). no seek on server.

NFS’ s Failure Handling

* Operations are idempotent
 How can we ensure this?

NFS’ s Failure Handling i‘.

* Operations are idempotent

 How can we ensure this? Unique IDs on
files/directories. It’ s not delete(“foo™), it’ s
delete(1337f00f), where that ID won’ t be reused (e.g.,
by same/other clients)

NFS’ s Failure Handling i‘.

* Operations are idempotent

« How can we ensure this? Unique IDs on files/directories.
It" s not delete(“foo”), it’ s delete(1337f00f), where that ID
won’ t be reused.

« Write-through caching: When file is closed, all
modified blocks sent to server. close() does not
return until bytes safely stored.

* Close failures?
* retry until things get through to the server
* return failure to client
« Most client apps can’ t handle failure of close() call.
« Usual option: hang for a long time trying to contact server

NFS Results “

NFS provides transparent, remote file access

Simple, portable, really popular
« (it’ s gotten a little more complex over time, but...)
Weak consistency semantics

Requires hefty server resources to scale (write-
through, server queried for lots of operations)

