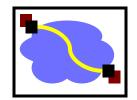
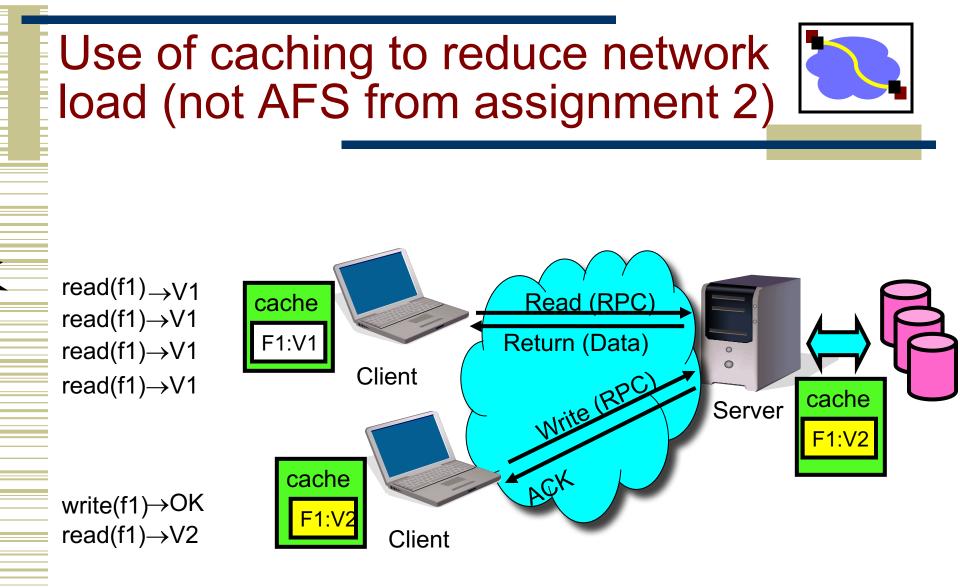
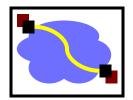


Distributed File Systems 2 Jan 22, 2018

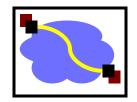

1



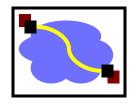
- Why Distributed File Systems?
- Basic mechanisms for building DFSs
 - Using NFS and AFS as examples
- Design choices and their implications
 - Caching
 - Consistency
 - Naming
 - Authentication and Access Control


Topic 1: Client-Side Caching

- Many systems (not just distributed!) rely on two solutions to every problem:
 - 1. Cache it!
 - 2. "All problems in computer science can be solved by adding another level of indirection. But that will usually create another problem." -- David Wheeler



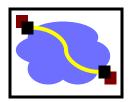
Client Caching in NFS v2


- Cache both clean and dirty file data and file attributes
 - Memory (e.g., DRAM) cache
- File attributes in the client cache expire after 60 seconds (file data doesn't expire)
- File data is checked against the modified-time in file attributes (which could be a cached copy)
 - Changes made on one machine can take up to 60 seconds to be reflected on another machine
- Dirty data are buffered on the client machine until file close or up to 30 seconds
 - If the machine crashes before then, the changes are lost

Implication of NFS v2 Client Caching

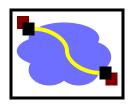
- Advantage: No network traffic if open/read/write/close can be done locally.
- But.... Data consistency guarantee is very poor
 - Simply unacceptable for some distributed applications
 - Imagine an application that modifies/reads a lot of shared state across multiple instances (e.g., distributed Game)
- Generally clients do not cache data on local disks

NFS' s Failure Handling – Stateless Server



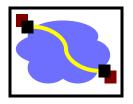
- Files are state, but...
- Server exports files without creating extra state
 - No list of "who has this file open" (permission check on each operation on open file!)
 - No "pending transactions" across crash
- Crash recovery is "fast"
 - Reboot, let clients figure out what happened
- State stashed elsewhere
 - Separate MOUNT protocol
 - Separate NLM locking protocol
- Stateless protocol: requests specify exact state. read() \rightarrow read([file], [position]). no seek on server.

NFS's Failure Handling


- Operations are idempotent
 - How can we ensure this?

NFS's Failure Handling

- **Operations are idempotent**
 - How can we ensure this? Unique IDs on files/directories. It's not delete("foo"), it's delete(1337f00f), where that ID won't be reused (e.g., by same/other clients)


NFS's Failure Handling

Operations are idempotent

- How can we ensure this? Unique IDs on files/directories. It's not delete("foo"), it's delete(1337f00f), where that ID won't be reused.
- Write-through caching: When file is closed, all modified blocks sent to server. close() does not return until bytes safely stored.
 - Close failures?
 - retry until things get through to the server
 - return failure to client
 - Most client apps can't handle failure of close() call.
 - Usual option: hang for a long time trying to contact server

NFS Results

- NFS provides transparent, remote file access
- Simple, portable, really popular
 - (it's gotten a little more complex over time, but...)
- Weak consistency semantics
- Requires hefty server resources to scale (writethrough, server queried for lots of operations)