
Distributed File Systems 1
Jan 19, 2018

1

416 Distributed Systems

Outline

• Why Distributed File Systems?

• Basic mechanisms for building DFSs
• Using NFS and AFS as examples

• NFS: network file system
• AFS: andrew file system

• Design choices and their implications
• Caching
• Consistency
• Naming
• Authentication and Access Control

2

Why DFSs are Useful

• Data sharing among multiple users
• User mobility
• Location transparency
• Backups and centralized management

3

What Distributed File Systems
Provide

• Access to data stored at servers using file system
interfaces

• What are the file system interfaces?
• Open a file, check status of a file, close a file
• Read data from a file
• Write data to a file
• Lock a file or part of a file
• List files in a directory, create/delete a directory
• Delete a file, rename a file, add a symlink to a file
• Etc

• (why retain the file system interfaces?)
4

The andrew file system

• First example, AFS: developed and used on
CMU campus

10,000s
of
machines

10,000s
of
people

Goal: Have a consistent namespace for files across
computers. Allow any authorized user to access their
files from any computer

Disk Disk Disk

Terabytes of
disk

Challenges

• Remember our initial list of challenges...
• Heterogeneity (lots of different computers &

users)
• Scale (10s of thousands of peeps!)
• Security (my files! hands off!)
• Failures
• Concurrency
• oh no... We’ve got ‘em all.

How can we build this??

Just as important: non-challenges

• Geographic distance and high latency

• AFS targets the campus network, not the
wide-area

Prioritized goals? / Assumptions

• Often very useful to have an explicit list of prioritized goals.
Distributed filesystems almost always involve trade-offs

• Scale, scale, scale
• User-centric workloads... how do users use files (vs. big

programs?)
• Most files are personally owned
• Not too much concurrent access; user usually only at one or a few

machines at a time
• Sequential access is common; reads much more common that

writes
• There is locality of reference (if you’ve edited a file recently,

you’re likely to edit again)

Outline

• Why Distributed File Systems?

• Basic mechanisms for building DFSs
• Using NFS and AFS as examples

• Design choices and their implications
• Caching
• Consistency
• Naming
• Authentication and Access Control

9

Components in a DFS
Implementation
• Client side:

• What has to happen to enable applications to access a
remote file the same way a local file is accessed?

• Accessing remote files in the same way as accessing local
files à kernel support

• Communication layer:
• Just TCP/IP or a protocol at a higher level of abstraction?

• Server side:
• How are requests from clients serviced?

10

VFS interception

• VFS provides “pluggable” file systems
• Standard flow of remote access

• User process calls read()
• Kernel dispatches to VOP_READ() in some VFS
• dfs_read()

• check local cache
• send RPC to remote Distributed FS server
• put process to sleep

• server interaction handled by kernel process
• retransmit if necessary
• convert RPC response to file system buffer
• store in local cache
• wake up user process

• dfs_read()
• copy bytes to user memory

11

VFS Interception

12

A Simple Approach

• Use RPC to forward every filesystem operation to the server
• Server serializes all accesses, performs them, and sends back result.

• Great: Same behavior as if both programs were running on the
same local filesystem! (ignoring latency/failures)

• Bad: Performance can stink. Latency of access to remote
server often much higher than to local memory.

• For AFS context: bad bad bad: server would get hammered!

Lesson 1: Needing to hit the server for every detail impairs
performance and scalability.

Question 1: How can we avoid going to the server for everything?
What can we avoid this for? What do we lose in the process?

NFS V2 Context and design

• Small number of clients
• Single administrative domain

• “Dumb”, “Stateless” servers w/ smart clients
• Portable across different OSes
• Low implementation cost

14

Some NFS V2 RPC Calls

• NFS RPCs using XDR over, e.g., TCP/IP

• Key: stateless server!
• fhandle: 32-byte opaque data (64-byte in v3)

15

Proc. Input args Results
LOOKUP dirfh, name status, fhandle, fattr
READ fhandle, offset, count status, fattr, data

CREATE dirfh, name, fattr status, fhandle, fattr
WRITE fhandle, offset, count,

data
status, fattr

Server Side Example:
mountd and nfsd

• mountd: provides the initial file handle for the exported
directory
• Client issues nfs_mount request to mountd
• mountd checks if the pathname is a directory and if the

directory should be exported to the client

• nfsd: answers the RPC calls, gets reply from local file
system, and sends reply via RPC
• Usually listening at port 2049

• Both mountd and nfsd use underlying RPC
implementation

16

NFS V2 Operations

• V2:
• NULL, GETATTR, SETATTR
• LOOKUP, READLINK, READ
• CREATE, WRITE, REMOVE, RENAME
• LINK, SYMLINK
• READIR, MKDIR, RMDIR
• STATFS (get file system attributes)

17

NFS V3 and V4 Operations

• V3 added:
• READDIRPLUS, COMMIT (server cache!)
• FSSTAT, FSINFO, PATHCONF

• V4 added:
• COMPOUND (bundle operations)
• LOCK (server becomes more stateful!)
• PUTROOTFH, PUTPUBFH (no separate MOUNT)
• Better security and authentication
• Very different than V2/V3 à stateful

18

Operator Batching

• Should each client/server interaction accomplish
one file system operation or multiple operations?
• Advantage of batched operations?

• Examples of Batched Operators
• NFS v3:

• READDIRPLUS
• NFS v4:

• COMPOUND RPC calls

19

Remote Procedure Calls in NFS

• (a) Reading data from a file in NFS version 3
• (b) Reading data using a compound procedure in

version 4.

20

Outline

• Why Distributed File Systems?

• Basic mechanisms for building DFSs
• Using NFS and AFS as examples

• Design choices and their implications
• Caching
• Consistency
• Naming
• Authentication and Access Control

21

Topic 1: Client-Side Caching

• Many systems (not just distributed!) rely on two
solutions to every problem:
1. Cache it!
2. “All problems in computer science can be solved by

adding another level of indirection. But that will
usually create another problem.” -- David Wheeler

Client-Side Caching

• So, uh, what do we cache?
• Read-only file data and directory data à easy
• Data written by the client machine à when is data

written to the server? What happens if the client
machine goes down?

• Data that is written by other machines à how to know
that the data has changed? How to ensure data
consistency?

• Is there any pre-fetching?
• And if we cache... doesn’t that risk making things

inconsistent?

23

Failures

• Server crashes
• Data in memory but not disk lost
• So... what if client does

• seek() ; /* SERVER CRASH */; read()
• If server maintains file position, this will fail (Why?).

Ditto for open(), read()
• Lost messages: what if we lose

acknowledgement for delete(“foo”)
• And in the meantime, another client created foo anew?

• Client crashes
• Might lose data in client cache

