

416 Distributed Systems

Networks review; Day 2 of 2 Fate sharing, e2e principle And start of RPC Jan 10, 2018

Last Time

- Modularity, Layering, and Decomposition
 - Example: UDP layered on top of IP to provide application demux ("ports")
- Resource sharing and isolation
 - Statistical multiplexing packet switching
- Dealing with heterogenity
 - IP "narrow waist" -- allows many apps, many network technologies
 - IP standard -- allows many impls, same proto

IP Packets/Service Model

- Low-level communication model provided by Internet
- Datagram

- Each packet self-contained •
 - All information needed to get to destination
 - No advance setup or connection maintenance
- Analogous to letter or telegram •

	0	4	8	12	16	19	24	28	31			
	version	version HLen		TOS		Length						
IPv4	Identifier				Flag		Offset					
Packet Format	TTL		Protocol		Checksum			·.	Header			
- official												
	Data											

Goals [Clark88]

0 Connect existing networks

initially ARPANET and ARPA packet radio network

1. Survivability

- ensure communication service even in the presence of network and router failures
- 2. Support multiple types of services
- 3. Must accommodate a variety of networks
- 4. Allow distributed management
- 5. Allow host attachment with a low level of effort
- 6. Be cost effective
- 7. Allow resource accountability

Goal 1: Survivability

- If network is disrupted and reconfigured...
 - Communicating entities should not care!
 - No higher-level state reconfiguration
- How to achieve such reliability?
 - Where can communication state be stored?

	State in Network	State in Host			
Failure handing	Replication	"Fate sharing"			
Net Engineering	Tough	Simple			
Routing state	Maintain state	Stateless			
Host trust	Less	More			

- Lose state information for an entity if and only if the entity itself is lost.
- Examples:
 - OK to lose TCP state if one endpoint crashes
 - NOT okay to lose if an intermediate router reboots
 - Is this still true in today's network?
 - NATs and firewalls
- Tradeoffs
 - Less information available to the network
 - Must trust endpoints more

Networks [including end points] Implement Many Functions

- Link
- Multiplexing
- Routing
- Addressing/naming (locating peers)
- Reliability
- Flow control
- Fragmentation
- Etc....

- Hop-by-hop: Have each switch/router along the path ensure that the packet gets to the next hop
- End-to-end: Have just the end-hosts ensure that the packet made it through
- What do we have to think about to make this decision??

- Is hop-by-hop enough?
 - Inint: What happens if a switch crashes? What if it's buggy and goofs up a packet?

End-to-End Argument

- Deals with where to place functionality
 - Inside the network (in switching elements)
 - At the edges
- Guideline not a law
- Argument
 - If you have to implement a function end-to-end anyway (e.g., because it requires the knowledge and help of the end-point host or application), don't implement it inside the communication system
 - Unless there's a compelling performance enhancement

Further Reading: "End-to-End Arguments in System Design." Saltzer, Reed, and Clark.

Questions to ponder

- If you have a whole file to transmit, how do you send it over the Internet?
 - You break it into packets (packet-switched medium)
 - TCP, roughly speaking, has the sender tell the receiver "got it!" every time it gets a packet. The sender uses this to make sure that the data's getting through.
 - But by e2e, if you have to acknowledge the correct receipt of the entire file... why bother acknowledging the receipt of the individual packets???

Questions to ponder

- If you have a whole file to transmit, how do you send it over the Internet?
 - You break it into packets (packet-switched medium)
 - TCP, roughly speaking, has the sender tell the receiver "got it!" every time it gets a packet. The sender uses this to make sure that the data's getting through.
 - But by e2e, if you have to acknowledge the correct receipt of the entire file... why bother acknowledging the receipt of the individual packets???
- The answer: if you want performance, then you better do it this way (a mixture of e2e and in-network); imagine the waste if you had to retransmit the entire file because one packet was lost!

Internet Design: Types of Service

- **Principle**: network layer provides one simple service: best effort datagram (packet) delivery
 - All packets are treated the same
- Relatively simple core network elements
- Building block from which other services (such as reliable data stream) can be built
- Contributes to scalability of network
- No QoS support assumed from below
 - In fact, some underlying nets only supported reliable delivery (not best effort)
 - This made Internet datagram service less useful!
 - Hard to implement QoS without network support
 - QoS is an ongoing debate...

User Datagram Protocol (UDP): An Analogy

UDP

- Single socket to receive messages
- No guarantee of delivery
- Not necessarily in-order delivery
- Datagram independent packets
- Must address each packet

Postal Mail

- Single mailbox to receive letters
- Unreliable ☺
- Not necessarily in-order delivery
- Letters sent independently
- Must address each letter

Example UDP applications Multimedia, voice over IP

Transmission Control Protocol (TCP): An Analogy

TCP

- Reliable guarantee delivery
- Byte stream in-order delivery
- Connection-oriented single socket per connection
- Setup connection followed by data transfer

Telephone Call

- Guaranteed delivery
- In-order delivery
- Connection-oriented
- Setup connection followed by conversation

Example TCP applications Web, Email, Telnet

Why not always use TCP?

- TCP provides "more" than UDP
- Why not use it for everything??

Why not always use TCP?

- TCP provides "more" than UDP
- Why not use it for everything??
- A: Nothing comes for free...
 - Connection setup (take on faith) -- TCP requires one roundtrip time to setup the connection state before it can chat...
 - How long does it take, using TCP, to fix a lost packet?
 - At minimum, one "round-trip time" (2x the latency of the network)
 - That could be 100+ milliseconds!
 - If I guarantee in-order delivery, what happens if I lose one packet in a stream of packets?
 - Has semantics that may be too strong for the app (e.g., Netflix streaming)

Design trade-off

- If you' re building an app...
- Do you need everything TCP provides?
 - If not:
 - Can you deal with its drawbacks to take advantage of the subset of its features you need?
 OR
 - You' re going to have to implement the ones you need on top of UDP
 - Caveat: There are some libraries, protocols, etc., that can help provide a middle ground.
 - Takes some looking around

Blocking sockets

- What happens if an application write()s to a socket waaaaay faster than the network can send the data?
 - TCP figures out how fast to send the data...
 - And it builds up in the kernel socket buffers at the sender... and builds...
 - until they fill. The next write() call *blocks* (by default).
 - What's blocking? It suspends execution of the blocked thread until enough space frees up...

In contrast to UDP

- UDP doesn't figure out how fast to send data, or make it reliable, etc.
- So if you write() like mad to a UDP socket...
- It often silently disappears. Maybe if you' re lucky the write() call will return an error. But no promises.

Summary: Internet Architecture

- Packet-switched datagram network
- IP is the "compatibility layer"
 - Hourglass architecture
 - All hosts and routers run IP
- Stateless architecture
 - no per flow state inside network

Summary: Minimalist Approach

Dumb network

- IP provide minimal functionalities to support connectivity
 - Addressing, forwarding, routing
- Smart end system
 - Transport layer or application performs more sophisticated functionalities
 - Flow control, error control, congestion control
- Advantages
 - Accommodate heterogeneous technologies (Ethernet, modem, satellite, wireless)
 - Support diverse applications (telnet, ftp, Web, X windows)
 - Decentralized network administration

RPC: Remote Procedure Calls

Writing it by hand (in C)


```
struct foomsg {
    u int32 t len;
```

Then wait for response, etc.

- **RPC** overview
- RPC challenges
- **RPC** other stuff

- A type of client/server communication
- Attempts to make remote procedure calls look like local ones

RPC

figure from Microsoft MSDN

{ ...
foo()
}
void foo() {
invoke_remote_foo()

fmt.Printf("Arith: %d*%d=%d", args.A, args.B, reply)