
Networks review; Day 2 of 2
Fate sharing, e2e principle

And start of RPC
Jan 10, 2018

416 Distributed Systems

1

Last Time

•  Modularity, Layering, and Decomposition
•  Example: UDP layered on top of IP to provide

application demux (“ports”)
•  Resource sharing and isolation

•  Statistical multiplexing - packet switching

•  Dealing with heterogenity
•  IP “narrow waist” -- allows many apps, many network

technologies
•  IP standard -- allows many impls, same proto

3

IP Packets/Service Model

•  Low-level communication model provided by Internet
•  Datagram

•  Each packet self-contained
•  All information needed to get to destination
•  No advance setup or connection maintenance

•  Analogous to letter or telegram
0 4 8 12 16 19 24 28 31

version HLen TOS Length

Identifier Flag Offset

TTL Protocol Checksum

Source Address

Destination Address

Options (if any)

Data

Header
IPv4
Packet
Format

4

Goals [Clark88]

0  Connect existing networks
initially ARPANET and ARPA packet radio network

1. Survivability
ensure communication service even in the presence of

network and router failures
2. Support multiple types of services
3. Must accommodate a variety of networks
4. Allow distributed management
5.  Allow host attachment with a low level of effort
6.  Be cost effective
7.  Allow resource accountability

Goal 1: Survivability

•  If network is disrupted and reconfigured…
•  Communicating entities should not care!
•  No higher-level state reconfiguration

•  How to achieve such reliability?
•  Where can communication state be stored?

5

State in Network State in Host

Failure handing Replication “Fate sharing”
Net Engineering Tough Simple
Routing state Maintain state Stateless
Host trust Less More

Fate Sharing

•  Lose state information for an entity if and only if the entity itself
is lost.

•  Examples:
•  OK to lose TCP state if one endpoint crashes

•  NOT okay to lose if an intermediate router reboots
•  Is this still true in today’s network?

•  NATs and firewalls

•  Tradeoffs
•  Less information available to the network
•  Must trust endpoints more

6

Connection
State State No State

Networks [including end points]
Implement Many Functions

•  Link
•  Multiplexing
•  Routing
•  Addressing/naming (locating peers)
•  Reliability
•  Flow control
•  Fragmentation
•  Etc….

7

Design Question

•  If you want reliability, where should you
implement it?

Host Switch Switch Switch Switch Host

Option 1: Hop-by-hop (at switches)

Option 2: end-to-end (at end-hosts)

Options

•  Hop-by-hop: Have each switch/router along
the path ensure that the packet gets to the
next hop

•  End-to-end: Have just the end-hosts ensure
that the packet made it through

• What do we have to think about to make this
decision??

A question

•  Is hop-by-hop enough?

•  [hint: What happens if a switch crashes?
What if it’s buggy and goofs up a packet?]

11

End-to-End Argument

•  Deals with where to place functionality
•  Inside the network (in switching elements)
•  At the edges

•  Guideline not a law

•  Argument
•  If you have to implement a function end-to-end anyway

(e.g., because it requires the knowledge and help of the
end-point host or application), don’t implement it
inside the communication system

•  Unless there’s a compelling performance enhancement

Further Reading: “End-to-End Arguments in System Design.”
Saltzer, Reed, and Clark.

Questions to ponder

•  If you have a whole file to transmit,
how do you send it over the Internet?
•  You break it into packets (packet-switched medium)
•  TCP, roughly speaking, has the sender tell the receiver “got it!”

every time it gets a packet. The sender uses this to make sure that
the data’s getting through.

•  But by e2e, if you have to acknowledge the correct receipt of the
entire file... why bother acknowledging the receipt of the individual
packets???

Questions to ponder

•  If you have a whole file to transmit,
how do you send it over the Internet?
•  You break it into packets (packet-switched medium)
•  TCP, roughly speaking, has the sender tell the receiver “got it!”

every time it gets a packet. The sender uses this to make sure that
the data’s getting through.

•  But by e2e, if you have to acknowledge the correct receipt of the
entire file... why bother acknowledging the receipt of the individual
packets???

•  The answer: if you want performance, then you better do
it this way (a mixture of e2e and in-network); imagine the
waste if you had to retransmit the entire file because one
packet was lost!

Internet Design: Types of Service

•  Principle: network layer provides one simple service: best effort
datagram (packet) delivery
•  All packets are treated the same

•  Relatively simple core network elements
•  Building block from which other services (such as reliable data

stream) can be built
•  Contributes to scalability of network

•  No QoS support assumed from below
•  In fact, some underlying nets only supported reliable delivery (not

best effort)
•  This made Internet datagram service less useful!

•  Hard to implement QoS without network support
•  QoS is an ongoing debate…

14

15

User Datagram Protocol (UDP):
An Analogy

Postal Mail
•  Single mailbox to receive

messages
•  Unreliable J
•  Not necessarily in-order

delivery
•  Each letter is independent
•  Must address each reply

Example UDP applications
Multimedia, voice over IP

UDP
•  Single socket to receive

messages
•  No guarantee of delivery
•  Not necessarily in-order

delivery
•  Datagram – independent

packets
•  Must address each packet

Postal Mail
•  Single mailbox to receive

letters
•  Unreliable J
•  Not necessarily in-order

delivery
•  Letters sent independently
•  Must address each letter

16

Transmission Control Protocol (TCP):
An Analogy

TCP
•  Reliable – guarantee

delivery
•  Byte stream – in-order

delivery
•  Connection-oriented –

single socket per
connection

•  Setup connection
followed by data transfer

Telephone Call
•  Guaranteed delivery
•  In-order delivery
•  Connection-oriented
•  Setup connection

followed by conversation

Example TCP applications
Web, Email, Telnet

Why not always use TCP?

•  TCP provides “more” than UDP
•  Why not use it for everything??

17

Why not always use TCP?

•  TCP provides “more” than UDP
•  Why not use it for everything??

•  A: Nothing comes for free...
•  Connection setup (take on faith) -- TCP requires one round-

trip time to setup the connection state before it can chat...
•  How long does it take, using TCP, to fix a lost packet?

•  At minimum, one “round-trip time” (2x the latency of the network)
•  That could be 100+ milliseconds!

•  If I guarantee in-order delivery,
what happens if I lose one packet in a stream of packets?

•  Has semantics that may be too strong for the app (e.g.,
Netflix streaming) 18

Design trade-off

•  If you’re building an app...

•  Do you need everything TCP provides?
•  If not:

•  Can you deal with its drawbacks to take advantage of the
subset of its features you need?

 OR
•  You’re going to have to implement the ones you need on top

of UDP
•  Caveat: There are some libraries, protocols, etc., that can help

provide a middle ground.
•  Takes some looking around

Client	/	
Server	
Session	

Client	 Server	
socket	 socket	

bind	

listen	

read	

write	read	

write	

Connec4on	
request	

read	

close	

close	 EOF	

open_listenfd	

accept	connect	

open_clien=d	

Socket API Operation Overview

Blocking sockets

•  What happens if an application write()s to a socket
waaaaay faster than the network can send the data?

•  TCP figures out how fast to send the data...

•  And it builds up in the kernel socket buffers at the
sender... and builds...

•  until they fill. The next write() call blocks (by default).

•  What’s blocking? It suspends execution of the blocked
thread until enough space frees up...

In contrast to UDP

•  UDP doesn’t figure out how fast to send
data, or make it reliable, etc.

•  So if you write() like mad to a UDP socket...

•  It often silently disappears. Maybe if you’re
lucky the write() call will return an error. But
no promises.

Summary: Internet Architecture

•  Packet-switched datagram
network

•  IP is the “compatibility
layer”
•  Hourglass architecture
•  All hosts and routers run IP

•  Stateless architecture
•  no per flow state inside

network

23

IP

TCP UDP

ATM

Satellite

Ethernet

24

Summary: Minimalist Approach

•  Dumb network
•  IP provide minimal functionalities to support connectivity

•  Addressing, forwarding, routing

•  Smart end system
•  Transport layer or application performs more sophisticated

functionalities
•  Flow control, error control, congestion control

•  Advantages
•  Accommodate heterogeneous technologies (Ethernet,

modem, satellite, wireless)
•  Support diverse applications (telnet, ftp, Web, X windows)
•  Decentralized network administration

25

RPC: Remote Procedure Calls

Common communication pattern

Client Server Hey, do something

working {

Done/Result

Writing it by hand (in C)

struct foomsg {
 u_int32_t len;
}

send_foo(char *contents) {
 int msglen = sizeof(struct foomsg) + strlen(contents);
 char buf = malloc(msglen);
 struct foomsg *fm = (struct foomsg *)buf;
 fm->len = htonl(strlen(contents));
 memcpy(buf + sizeof(struct foomsg),
 contents,
 strlen(contents));
 write(outsock, buf, msglen);
}

Then wait for response, etc.

RPC land

•  RPC overview

•  RPC challenges

•  RPC other stuff

28

RPC

•  A type of client/server communication

•  Attempts to make remote procedure
calls look like local ones

figure from Microsoft MSDN

{ ...
 foo()
}
void foo() {
 invoke_remote_foo()
}

Go Example

•  Need some setup in advance of this but…

// Synchronous call

args := &server.Args{7,8}

var reply int

err = client.Call("Arith.Multiply", args, &reply)
if err != nil {

 log.Fatal("arith error:", err)

}

fmt.Printf("Arith: %d*%d=%d", args.A, args.B, reply)

30

