
Replication notes
Feb 28, 2018
CPSC 416

How’d we get here?

• Failures & single systems; fault tolerance techniques
added redundancy (ECC memory, RAID, etc.)

• Conceptually, ECC & RAID both put a “master” in
front of the redundancy to mask it from clients --
ECC handled by memory controller, RAID looks like
a very reliable hard drive behind a (special)
controller

Simpler examples...

• Replicated web sites

• e.g., Yahoo! or Amazon:

• DNS-based load balancing (DNS returns
multiple IP addresses for each name)

• Hardware load balancers put multiple
machines behind each IP address

• (Diagram. :)

Read-only content

• Easy to replicate - just make multiple copies of it.

• Performance boost 1: Get to use multiple servers
to handle the load (scalability!)

• Perf boost 2: Locality. We’ll see this later when we
discuss CDNs, can often direct client to a replica
near it

• Availability boost: Can fail-over (done at both DNS
level -- slower, because clients cache DNS answers
-- and at front-end hardware level)

But for read-write
data...

• Must implement write replication, typically
with some degree of consistency

What consistency model?

• Just like in distributed filesystems, must consider consistency model you
supply

• R/L example: Google mail (mix of consistency models)

• Sending mail is replicated to ~2 physically separated datacenters (users
hate it when they think they sent mail and it got lost); mail will pause
while doing this replication.

• Marking mail read is only replicated in the background - you can mark it
read, the replication can fail, and you’ll have no clue (re-reading a read
email once in a while is no big deal)

• Weaker consistency is cheaper if you can get away with it.

Goal

• Provide a service

• Survive the failure of up to f replicas

• Provide identical service as a non-replicated version (except
more reliable, and perhaps different performance)

• Also known as the “replicated state machine” (RSM) abstraction

• As with other abstractions (e.g., RPC), there are many ways to
achieve/implement a RSM

We’ll cover
• Primary-backup

• Operations handled by primary, it streams copies to backup(s)

• Replicas are “passive”

• Good: Simple protocol. Bad: Clients must participate in recovery.

• Quorum consensus using Paxos (later in the course)

• Designed to have fast response time even under failures

• Replicas are “active” - participate in protocol; there is no master,
per se.

• Good: Clients don’t even see the failures. Bad: More complex.

primary-backup

• Clients talk to a primary

• The primary handles requests, atomically and
idempotently

• Executes them

• Sends the request to the backups

• Backups reply, “OK”

• Primary ACKs to the client

primary-backup

• Note: If you don’t care about strong consistency (e.g., the “mail read”
flag), you can reply to client before reaching agreement with backups
(sometimes called “asynchronous replication”).

• This looks cool. What’s the problem?

• This is OK for some services, not OK for others

• Advantage: With N servers, can tolerate loss of N-1 copies

primary-backup

• Note: If you don’t care about strong consistency (e.g., the “mail read”
flag), you can reply to client before reaching agreement with backups
(sometimes called “asynchronous replication”).

• This looks cool. What’s the problem?

• What do we do if a replica has failed?

• We wait... how long? Until it’s marked dead.

• Primary-backup has a strong dependency on the failure detector

• This is OK for some services, not OK for others

• Advantage: With N servers, can tolerate loss of N-1 copies

implementing primary-
backup

• Remember logging (if you’ve taken
databases)

• Common technique for replication in
databases and filesystem-like things: Stream
the log to the backup. They don’t have to
actually apply the changes before replying,
just make the log durable (i.e., on disk).

• You have to replay the log before you can be
online again, but it’s pretty cheap.

p-b: Did it happen?

Commit!

Client Primary Backup

Log Commit!

Log
OK!

OK!

Failure here:
Commit logged only at primary

Primary dies? Client must re-send to backup
(idempotency important)

OK!

p-b: Happened twice

Commit!

Client Primary Backup

Log

Commit!

Log
OK!

Failure here:
Commit logged at backup

Primary dies? Client must check with backup

OK!

(Seems like at-most-once / at-least-once... :)

Problems with p-b

• Not a great solution if you want very tight
response time even when something has
failed: Must wait for failure detector

• For that, quorum based schemes are used

• As name implies, different result:

• To handle f failures, must have 2f + 1
replicas. Why?

Problems with p-b

• Not a great solution if you want very tight
response time even when something has
failed: Must wait for failure detector

• For that, quorum based schemes are used

• As name implies, different result:

• To handle f failures, must have 2f + 1
replicas. Why? so that a majority (f+1) is still
alive after (f) failures

