

RAID, Feb 26 2018

Thanks to Greg Ganger and Remzi Arapaci-Dusseau for slides

- Using multiple disks
 - Why have multiple disks?
 - problem and approaches
- **RAID** levels and performance

RAID Taxonomy

- Redundant Array of Inexpensive Independent Disks
 - Constructed by UC-Berkeley researchers in late 80s (Garth)
- RAID 0 Coarse-grained Striping with no redundancy
- RAID 1 Mirroring of independent disks
- RAID 2 Fine-grained data striping plus Hamming code disks
 - Uses Hamming codes to detect and correct multiple errors
 - Originally implemented when drives didn't always detect errors
 - Not used in real systems
- RAID 3 Fine-grained data striping plus parity disk
- RAID 4 Coarse-grained data striping plus parity disk
- RAID 5 Coarse-grained data striping plus striped parity
- RAID 6 Coarse-grained data striping plus 2 striped codes

RAID-0: Striping

- Stripe blocks across disks in a "chunk" size
 - How to pick a reasonable chunk size?

How to calculate where chunk # lives? Disk #: Offset within disk:

RAID-0: Striping

- Evaluate for D disks
- Performance: How much faster than 1 disk? (best case)
- Reliability: More or less reliable than 1 disk?

RAID-1: Mirroring

- Motivation: Handle disk failures
- Put copy (mirror or replica) of each chunk on another disk

- Capacity
- Reliability
- Performance

RAID-4: Parity

- Motivation: Improve capacity
- Idea: Allocate parity block to encode info about blocks
 - Parity checks all other blocks in stripe across other disks
- Parity block = XOR over others (gives "even" parity)
 - Example: 0 1 0 → Parity value?
- How do you recover from a failed disk?
 - Example: x 0 0 and parity of 1
 - What is the failed value?

RAID-4: Parity

- Capacity:
- Reliability:
- Performance:
 - Reads
 - Writes: How to update parity block?
 - Two ways:
 - Use parity disk
 - Re-compute parity from non-parity disks
 - (Parity disk is the bottleneck)

RAID-5: Rotated/Striped Parity

Rotate location of parity across all disks

- Capacity:
- Reliability:
 - Performance:
 - Reads:
 - Writes:
 - Still requires 4 I/Os per write, but not always to same parity disk

Comparison

S: throughput of 1 disk sequential read/write

R: throughput of 1 disk random read/write D: delay to read/write from 1 disk

RAID-1 RAID-0 RAID-4 RAID-5 N-1N/2Capacity N-1NReliability 0 1 (for sure) 1 1 $\frac{N}{2}$ (if lucky) Throughput $N \cdot S$ Sequential Read $(N/2) \cdot S \qquad (N-1) \cdot S \qquad (N-1) \cdot S$ Sequential Write $N \cdot S$ $(N/2) \cdot S$ $(N-1) \cdot S$ $(N-1) \cdot S$ $N \cdot R$ $(N-1) \cdot R$ $N \cdot R$ Random Read $N \cdot R$ $\frac{N}{A}R$ $\frac{1}{2} \cdot R$ $(N/2) \cdot R$ Random Write $N \cdot R$ Latency Read DDDDWrite DD2D2D

Comparison

S: throughput of 1 disk sequential read/write

R: throughput of 1 disk random read/write

D: delay to read/write from 1 disk

	RAID-0	RAID-1	RAID-4	RAID-5
Capacity	N	N/2	N-1	N-1
Reliability	0	1 (for sure)	1	1
		$\frac{N}{2}$ (if lucky)		
Throughput				
Sequential Read	$N \cdot S$	$(N/2) \cdot S$	$(N-1) \cdot S$	$(N-1) \cdot S$
Sequential Write	$N \cdot S$	$(N/2) \cdot S$	$(N-1) \cdot S$	$(N-1) \cdot S$
Random Read	$N \cdot R$	$N \cdot R$	$(N-1) \cdot R$	$N\cdot R$
Random Write	$N\cdot R$	$(N/2) \cdot R$	$\frac{1}{2} \cdot R$	$\frac{N}{4}R$
Latency			2	Ŧ
Read	D	D	D	D
Write	D	D	2D	2D

Comparison

S: throughput of 1 disk sequential read/write

R: throughput of 1 disk random read/write

D: delay to read/write from 1 disk

	RAID-0	RAID-1	RAID-4	RAID-5
Capacity	N	N/2	N-1	N-1
Reliability	0	1 (for sure)	1	1
		$\frac{N}{2}$ (if lucky)		
Throughput				
Sequential Read	$N \cdot S$	$(N/2) \cdot S$	$(N-1) \cdot S$	$(N-1) \cdot S$
Sequential Write	$N \cdot S$	$(N/2) \cdot S$	$(N-1) \cdot S$	$(N-1) \cdot S$
Random Read	$N \cdot R$	$N\cdot R$	$(N-1) \cdot R$	$N\cdot R$
Random Write	$N \cdot R$	$(N/2) \cdot R$	$\frac{1}{2} \cdot R$	$\frac{N}{4}R$
Latency			2	Ŧ
Read	D	D	D	D
Write	D	D	2D	2D

Comparison

S: throughput of 1 disk sequential read/write

R: throughput of 1 disk random read/write

D: delay to read/write from 1 disk

	RAID-0	RAID-1	RAID-4	RAID-5
Capacity	N	N/2	N-1	N-1
Reliability	0	1 (for sure)	1	1
		$\frac{N}{2}$ (if lucky)		
Throughput				
Sequential Read	$N \cdot S$	$(N/2) \cdot S$	$(N-1) \cdot S$	$(N-1) \cdot S$
Sequential Write	$N \cdot S$	$(N/2) \cdot S$	$(N-1) \cdot S$	$(N-1) \cdot S$
Random Read	$N \cdot R$	$N\cdot R$	$(N-1) \cdot R$	$N\cdot R$
Random Write	$N \cdot R$	$(N/2) \cdot R$	$\frac{1}{2} \cdot R$	$\frac{N}{4}R$
Latency			2	т
Read	D	D	D	D
Write	D	D	2D	2D
				4

Comparison

S: throughput of 1 disk sequential read/write

R: throughput of 1 disk random read/write

D: delay to read/write from 1 disk

	RAID-0	RAID-1	RAID-4	RAID-5
Capacity	N	N/2	N-1	N-1
Reliability	0	1 (for sure)	1	1
		$\frac{N}{2}$ (if lucky)		
Throughput				
Sequential Read	$N \cdot S$	$(N/2) \cdot S$	$(N-1) \cdot S$	$(N-1) \cdot S$
Sequential Write	$N \cdot S$	$(N/2) \cdot S$	$(N-1) \cdot S$	$(N-1) \cdot S$
Random Read	$N\cdot R$	$N\cdot R$	$(N-1) \cdot R$	$N\cdot R$
Random Write	$N \cdot R$	$(N/2) \cdot R$	$rac{1}{2} \cdot R$	$\frac{N}{4}R$
Latency			2	1
Read	D	D	D	D
Write	D	D	2D	2D

Advanced Issues

- What happens if more than one fault?
 - Example: One disk fails plus "latent sector error" on another
 - RAID-5 cannot handle two faults
 - Solution: RAID-6: add multiple parity blocks
- Why is NVRAM useful?
 - Example: What if update 2, don't update P0 before power failure (or crash), and then disk 1 fails?
 - NVRAM solution: Use to store blocks updated in same stripe
 - If power failure, can replay all writes in NVRAM
 - Software RAID solution: Perform parity scrub over entire disk

Conclusions

- RAID turns multiple disks into a larger, faster, more reliable disk
- RAID-0: Striping Good when performance and capacity really matter, but reliability doesn't
- RAID-1: Mirroring
 Good when reliability and write performance matter, but capacity (cost) doesn't
- RAID-4: Parity disk
- RAID-5: Rotating parity Good when capacity and cost matter or workload is read-mostly
 - Good compromise choice