(F) Proof of work: ① Make computationally costly for network users to validate txns

② Reward them for not helping to validate txns (incentive)

(1) Check txn valid
(2) Solve crypto puzzle (proof of work)

\[h = \text{sha-256 hashing fn.} \]

Find nonce \(n \) s.t. \(h(\text{block}) \leq \text{target} \)

or, think of \(n \) as \# of leading zeros = target

i.e., get \(h(\text{block}) = \text{000...000000000} \)

size of nonce \(\leq \text{target} \)

Exploration from [16x16x16...]

After 2140 txns fee as incentive specified by

Reward (generating BT)

Until ~2140

Chance 1/2^n of finding nonce random

Real finding nonce = compute power \(\Rightarrow \) Sybils ineffective!

(G) Missing: ordering of txns (\(\text{txn}_1 \leq \text{txn}_2 \))?

Include hash of previous block

But, can create a fork in this Chain

Rule: (1) Only work to extend longest fork
(2) Keep track of all forks

txn not "confirmed"

Unless (3) It's part of longest chain
(4) It has 5 blocks follow it

("6 confirmations")

Key: Difficult to create a fork + reorganize all 7 txns.

(Note: Requires controlling >50% of comp.)
Key ideas:
- Proof of work
- Blockchain
- P2P transactions ledger

Alice \rightarrow Bob

"I'm giving Bob 1 Bitcoin"

Key Challenges:
- Double spending
- Proof of work
- Trust in the network
- Incentives

(A) Formable \Rightarrow Sign the message with private key from Alice
difficult to forge

(B) Replay attack \Rightarrow sign and replay with Alice's identity
B could claim 10 Bitcoin + Bank central

(C) Centralized
Rely all trust \Rightarrow Make everyone the Bank
in any entity

(D) Have everyone keep track
F. who owns which BT.
i.e., shared ledger with all trans.

(E) \Rightarrow Proof of work
Big problem: A could still rock puppet = sybil attack / double spend by installing worth 10 BTC.
More details:
* Multiple inputs/outputs / All inputs "spent", w/ change given to outputs
* "just ledger of transactions"

Following:
Chain of transactions

Going:
1. Generate block: no inputs, 50 BTC output
2. Coinbase tx: reward to a miner

* Merkle tree data structure compact representation
* Network - join/leave protocol
* BT Scripting language: each tx have script
A Hard Fork: Non-Updated Nodes Reject the New Rules, Diverging the Chain.