
Distributed File Systems 4
Jan 23, 2017

1

416 Distributed Systems

2

Today's Lecture

•  Wrap up NFS/AFS

•  This lecture: other types of DFS
•  Coda – disconnected operation

Key Lessons

•  Distributed filesystems almost always involve a
tradeoff: consistency, performance, scalability.
•  Notice consistency/performance trade-offs between

NFS and AFS (and different assumptions about
workload)

•  We’ve learned a lot since NFS and AFS (and can
implement faster, etc.), but the general lesson
holds. Especially in the wide-area.

•  Well see a related tradeoff, also involving
consistency, in a while: the CAP tradeoff.
Consistency, Availability, Partition-resilience.

More Key Lessons

•  Client-side caching is a fundamental technique to
improve scalability and performance
•  But raises important questions of cache consistency

•  Timeouts and callbacks are common methods for
providing (some forms of) consistency.

•  AFS picked close-to-open (session) consistency
as a good balance of usability (the model seems
intuitive to users), performance, etc.
•  AFS authors argued that apps with highly concurrent,

shared access, like databases, needed a different
model

Key to Simple Failure Recovery

•  Try not to keep any state on the server
•  If you must keep some state on the server

•  Understand why and what state the server is keeping
•  Understand the worst case scenario of no state on the

server and see if there are still ways to meet the
correctness goals

•  Revert to this worst case in each combination of failure
cases (since on failure server loses state)

5

6

Today's Lecture

•  Wrap up NFS/AFS

•  Other types of DFS
•  Coda – disconnected operation

Background

•  We are back to 1990s.
•  Network is slow and not stable
•  Transition from Terminal à “powerful” client

•  33MHz CPU, 16MB RAM, 100MB hard drive
•  Mobile Users appeared

•  1st IBM Thinkpad in 1992
•  We can do work at client without network!

•  Novel at the time; ubiquitous idea today

7

Hardware Model

•  CODA: Successor of AFS
•  CODA and AFS assume that client workstations

are personal computers controlled by their user/
owner
•  Fully autonomous
•  Cannot be trusted

•  CODA allows owners of laptops to operate them
in disconnected mode (our focus)
•  Opposite of ubiquitous connectivity

8

Accessibility (aka availability)

•  Must handle two types of failures
•  Server failures:

•  Data servers are replicated
•  Communication failures and voluntary

disconnections
•  Coda uses optimistic replication and file

hoarding

9

Design Rationale –Replica
Control
•  Pessimistic

•  Disable all partitioned writes
- Require a client to acquire control of a cached object

prior to disconnection

•  Optimistic
•  Assumes no one else touching the file
-  conflict detection
+ workload fact: low write-sharing in Unix
+ high availability: access anything in range

10

Pessimistic Replica Control

•  Would require client to acquire exclusive (RW) or
shared (R) control of cached objects before
accessing them in disconnected mode:
•  Acceptable solution for voluntary disconnections
•  Does not work for involuntary disconnections

•  What if the laptop remains disconnected for a long
time?

11

Leases mechanism

•  A lease grants exclusive/shared control of the
cached objects for a limited amount of time
•  A popular way to efficiently implement pessimistic

replica control
•  Works very well in connected mode

•  Reduces server workload (how?)
•  Server can keep leases in volatile storage as long as

their duration is shorter than boot time (why?)
•  Would only work for very short disconnection

periods

12

Optimistic Replica Control (I)

•  Optimistic replica control allows access in
every disconnected mode
•  Tolerates temporary inconsistencies
•  Promises to detect them later
•  Provides much higher data availability

13

Optimistic Replica Control (II)

•  Defines an accessible universe: set of files that
the user can access
•  Accessible universe varies over time

•  At any time, user
•  Will read from the latest file(s) in his accessible

universe
•  Will update all files in his accessible universe

14

Coda node states

1.  Hoarding:

Normal operation mode
2.  Emulating:

Disconnected operation mode
3.  Reintegrating:

Propagates changes and detects inconsistencies

Hoarding

Emulating Reintegrating

15

disconnected

disconnected

reconnected

Reintegration
complete

Hoarding

•  Hoard useful data for disconnection
•  Balance the needs of connected and

disconnected operation.
•  Cache size is restricted
•  Unpredictable disconnections

•  Uses user specified preferences + usage patterns
to decide on files to keep in hoard

16

Emulation

•  In emulation mode:
•  Attempts to access files that are not in the client caches

appear as failures to application
•  All changes are written in a persistent log,

the client modification log (CML)
•  Coda removes from log all obsolete entries like those

pertaining to files that have been deleted

17

Reintegration

•  When workstation is reconnected, Coda initiates a
reintegration process
•  Performed one volume at a time
•  Ships replay log to each volumes
•  Each volume performs a log replay algorithm

•  Only care about write/write confliction
•  Conflict resolution succeeds?

•  Yes. Free logs, keep going…
•  No. Save logs to a tar. Ask for help

•  In practice:
•  No Conflict at all! Why?
•  Over 99% modification by the same person
•  Two users modify the same obj. within a day: <0.75%

18

Coda Summary

•  Puts scalability and availability before
data consistency
•  Unlike NFS

•  Assumes that inconsistent updates are very
infrequent

•  Introduced disconnected operation mode and file
hoarding

19

