
Distributed File Systems 2
Jan 18, 2017

1

 416 Distributed Systems

Outline

•  Why Distributed File Systems?

•  Basic mechanisms for building DFSs
•  Using NFS and AFS as examples

•  NFS: network file system
•  AFS: andrew file system

•  Design choices and their implications
•  Caching
•  Consistency
•  Naming
•  Authentication and Access Control

2

VFS Interception

3

A Simple Approach

•  Use RPC to forward every filesystem operation to the server
•  Server serializes all accesses, performs them, and sends back result.

•  Great: Same behavior as if both programs were running on the
same local filesystem!

•  Bad: Performance can stink. Latency of access to remote
server often much higher than to local memory.

•  For AFS context: bad bad bad: server would get hammered!

Lesson 1: Needing to hit the server for every detail impairs
performance and scalability.

Question 1: How can we avoid going to the server for everything?
What can we avoid this for? What do we lose in the process?

NFS V2 Design

•  “Dumb”, “Stateless” servers w/ smart clients
•  Portable across different Oses

•  Low implementation cost
•  Small number of clients
•  Single administrative domain

5

Remote Procedure Calls in NFS

•  (a) Reading data from a file in NFS version 3
•  (b) Reading data using a compound procedure in

version 4.

6

Outline

•  Why Distributed File Systems?

•  Basic mechanisms for building DFSs
•  Using NFS and AFS as examples

•  Design choices and their implications
•  Caching
•  Consistency
•  Naming
•  Authentication and Access Control

7

Topic 1: Client-Side Caching

•  Many systems (not just distributed!) rely on two
solutions to every problem:
1.  Cache it!
2.  “All problems in computer science can be solved by

adding another level of indirection. But that will
usually create another problem.” -- David Wheeler

Client-Side Caching

•  So, uh, what do we cache?
•  Read-only file data and directory data à easy
•  Data written by the client machine à when is data

written to the server? What happens if the client
machine goes down?

•  Data that is written by other machines à how to know
that the data has changed? How to ensure data
consistency?

•  Is there any pre-fetching?

•  And if we cache... doesn’t that risk making things
inconsistent?

9

Failures

•  Server crashes
•  Data in memory but not disk lost
•  So... what if client does

•  seek() ; /* SERVER CRASH */; read()
•  If server maintains file position, this will fail (Why?).

Ditto for open(), read()
•  Lost messages: what if we lose

acknowledgement for delete(“foo”)
•  And in the meantime, another client created foo anew?

•  Client crashes
•  Might lose data in client cache

Server cache
F1:V1 F1:V2

Use of caching to reduce network
load

11

Read (RPC)

Return (Data)
Client

cache

Client

cache

F1:V1

F1:V2

read(f1)

write(f1)

→V1
read(f1)→V1
read(f1)→V1

→OK

read(f1)→V1

read(f1)→V2

Crash! Crash!

Client Caching in NFS v2

•  Cache both clean and dirty file data and file attributes
•  Memory (e.g., DRAM) cache

•  File attributes in the client cache expire after 60
seconds (file data doesn’t expire)

•  File data is checked against the modified-time in file
attributes (which could be a cached copy)
•  Changes made on one machine can take up to 60 seconds

to be reflected on another machine

•  Dirty data are buffered on the client machine until file
close or up to 30 seconds
•  If the machine crashes before then, the changes are lost

12

Implication of NFS v2 Client
Caching

•  Advantage: No network traffic if open/read/write/
close can be done locally.

•  But…. Data consistency guarantee is very poor
•  Simply unacceptable for some distributed applications
•  Productivity apps tend to tolerate such loose

consistency
•  Generally clients do not cache data on local disks

13

NFS’s Failure Handling –
Stateless Server
•  Files are state, but...
•  Server exports files without creating extra state

•  No list of “who has this file open” (permission check on each
operation on open file!)

•  No “pending transactions” across crash
•  Crash recovery is “fast”

•  Reboot, let clients figure out what happened
•  State stashed elsewhere

•  Separate MOUNT protocol
•  Separate NLM locking protocol

•  Stateless protocol: requests specify exact state.
read() à read([position]). no seek on server.

NFS’s Failure Handling

•  Operations are idempotent
•  How can we ensure this?

NFS’s Failure Handling

•  Operations are idempotent
•  How can we ensure this? Unique IDs on files/

directories. It’s not delete(“foo”), it’s delete(1337f00f),
where that ID won’t be reused (e.g., by same/other
clients)

NFS’s Failure Handling

•  Operations are idempotent
•  How can we ensure this? Unique IDs on files/directories.

It’s not delete(“foo”), it’s delete(1337f00f), where that ID
won’t be reused.

•  Write-through caching: When file is closed, all
modified blocks sent to server. close() does not return
until bytes safely stored.
•  Close failures?

•  retry until things get through to the server
•  return failure to client

•  Most client apps can’t handle failure of close() call.
•  Usual option: hang for a long time trying to contact server

NFS Results

•  NFS provides transparent, remote file access
•  Simple, portable, really popular

•  (it’s gotten a little more complex over time, but...)

•  Weak consistency semantics
•  Requires hefty server resources to scale (write-

through, server queried for lots of operations)

AFS Goals

•  Global distributed file system
•  “One AFS”, like “one Internet”

•  Why would you want more than one?
•  LARGE numbers of clients, servers

•  1000 machines could cache a single file,
•  Most local, some (very) remote

•  Goal: O(0) work per client operation
•  O(1) may just be too expensive!

19

AFS Assumptions

•  Client machines are un-trusted
•  Must prove they act for a specific user

•  Secure RPC layer
•  Anonymous “system:anyuser”

•  Client machines have disks(!!)
•  Can cache whole files over long periods

•  Write/write and write/read sharing are rare
•  Most files updated by one user, on one machine

20

Let’s look back at NFS

•  NFS gets us partway there, but
•  Probably doesn’t handle scale (* - you can buy huge NFS

appliances today that will, but they’re $$$-y).
•  Is very sensitive to network latency

•  How can we improve this?
•  More aggressive caching (AFS caches on disk in addition to

just in memory)
•  Prefetching (on open, AFS gets entire file from server,

making later ops local & fast).
•  Remember: with traditional hard drives, large sequential

reads are much faster than small random writes. So
easier to support (client A: read whole file; client B: read
whole file) than having them alternate. Improves
scalability, particularly if client is going to read whole file
anyway eventually.

Client Caching in AFS

•  Callbacks! Clients register with server that they
have a copy of file;
•  Server tells them (calls them back): “Invalidate” if the

file changed (but only does so on file close!)
•  This trades state for improved consistency

•  What if server crashes? Lose all callback state!
•  Reconstruct callback information from clients

•  ask everyone “who has which files cached?”

AFS v2 RPC Procedures

•  Procedures that are not in NFS
•  Fetch: from client to server, return status and optionally

data of a file or directory, and place a callback on it
•  RemoveCallBack: from C to S, specify a file that the

client has flushed from the local machine
•  BreakCallBack: from S to C, revoke the callback on a

file or directory (this is the callback call to client)
•  What should the client do if a callback is revoked?

•  Store: from S to C, store the status and optionally data
of a file

•  Rest are similar to NFS calls

23

Outline

•  Why Distributed File Systems?

•  Basic mechanisms for building DFSs
•  Using NFS and AFS as examples

•  Design choices and their implications
•  Caching
•  Consistency
•  Naming
•  Authentication and Access Control

24

Topic 2: File Access Consistency

•  In UNIX local file system, concurrent file reads
and writes have “sequential” consistency
semantics
•  Each file read/write from user-level app is an atomic

operation
•  The kernel locks the file vnode

•  Each file write is immediately visible to all file readers

•  Neither NFS nor AFS provides such concurrency
control
•  NFS: “sometime within 30 seconds”
•  AFS: session semantics for consistency (next slide)

25

Session Semantics in AFS v2

•  What it means:
•  A file write is visible to processes on the same box

immediately, but not visible to processes on other
machines until the file is closed

•  When a file is closed, changes are visible to new
opens, but are not visible to “old” opens

•  All other file operations are visible everywhere
immediately

•  Implementation
•  Dirty data are buffered at the client machine until file

close, then flushed back to server, which leads the
server to send “break callback” to other clients

26

