416 Distributed Systems

Distributed File Systems 1
Jan 16, 2017



Outline

* Why Distributed File Systems?

» Basic mechanisms for building DFSs
* Using NFS and AFS as examples

* NFS: network file system
« AFS: andrew file system

» Design choices and their implications
Caching

Consistency

Naming

Authentication and Access Control



Why DFSs are Useful

« Data sharing among multiple users
User mobility

Location transparency

Backups and centralized management




What Distributed File Systems 4
Provide n

* Access to data stored at servers using file system
interfaces

* What are the file system interfaces?
* Open a file, check status of a file, close a file
* Read data from a file
« Write data to a file
* Lock a file or part of a file
« List files in a directory, create/delete a directory

* Delete a file, rename a file, add a symlink to a file
 Efc

* (why retain the file system interfaces?)



The andrew file system “

® First example, AFS: developed and used on
CMU campus

10,000s

of
people
Terabytes of

disk

Goal: Have a consistent namespace for files across
computers. Allow any authorized user to access their
files from any computer

10,000s
of
machines




Challenges A

 Remember our initial list of challenges...

* Heterogeneity (lots of different computers & users)
« Scale (10s of thousands of peeps!)

« Security (my files! hands off!)

* Failures

« Concurrency

 oh no... We've got ‘em all.

How can we build this??



Just as important: non-challenges

® Geographic distance and high latency

® AFS targets the campus network, not the
wide-area



Prioritized goals? / Assumptions .

« Often very useful to have an explicit list of prioritized goals.
Distributed filesystems almost always involve trade-offs

 Scale, scale, scale

« User-centric workloads... how do users use files (vs. big
programs'?)
Most files are personally owned
* Not too much concurrent access; user usually only at one or a few
machines at a time
. Seguential access is common; reads much more common that
writes

* There is locality of reference (if you’ ve edited a file recently,
you’ re likely to edit again)



Outline

* Why Distributed File Systems?

» Basic mechanisms for building DFSs
* Using NFS and AFS as examples

* Design choices and their implications
« Caching
« Consistency
* Naming
 Authentication and Access Control



Components in a DFS
Implementation

* Client side:

« What has to happen to enable applications to access a
remote file the same way a local file is accessed?

» Accessing remote files in the same way as accessing local
files = kernel support

« Communication layer:
« Just TCP/IP or a protocol at a higher level of abstraction?

« Server side:
« How are requests from clients serviced?

10



VES interception

* VFS provides “pluggable” file systems

« Standard flow of remote access
« User process calls read()
Kernel dispatches to VOP_READ() in some VFS
dfs_read()
 check local cache
« send RPC to remote Distributed FS server
* put process to sleep
server interaction handled by kernel process
 retransmit if necessary
« convert RPC response to file system buffer
« store in local cache
« wake up user process
dfs_read()
* copy bytes to user memory

11




VFES Interception

Client

System call layer

v

Virtual file system
(VFS) layer

v 2

Server

Local file NFS client

System call layer

v

Virtual file system

system interface

RPC client
stub

(VFS) layer
Local file
NFS server system interface
RPC server
stub

N\

)

Network

12



A Simple Approach n

« Use RPC to forward every filesystem operation to the server
» Server serializes all accesses, performs them, and sends back result.

« Great: Same behavior as if both programs were running on the
same local filesystem!

- Bad: Performance can stink. Latency of access to remote
server often much higher than to local memory.

« For AFS context: bad bad bad: server would get hammered!

Lesson 1: Needing to hit the server for every detail impairs
performance and scalability.

Question 1: How can we avoid going to the server for everything?
What can we avoid this for? What do we lose in the process?



NFS V2 Context and design

« Small number of clients
« Single administrative domain

 “Dumb’, “Stateless” servers w/ smart clients
 Portable across different OSes
* Low implementation cost

14



Some NFS V2 RPC Calls

* NFS RPCs using XDR over, e.g., TCP/IP

Proc. Input args

Results

LOOKUP |dirth, name

status, thandle, fattr

READ thandle, offset, count

status, fattr, data

CREATE |dirth, name, fattr

status, thandle, fattr

WRITE fhandle, offset, count,
data

status, fattr

« fhandle: 32-byte opaque data (64-byte in v3)

15




Server Side Example:

mountd and nfsd n

* mountd: provides the initial file handle for the exported
directory

* Client issues nfs_mount request to mountd

« mountd checks if the pathname is a directory and if the
directory should be exported to the client

« nfsd: answers the RPC calls, gets reply from local file
system, and sends reply via RPC

» Usually listening at port 2049

« Both mountd and nfsd use underlying RPC
implementation

16



NFS V2 Operations

o \V2:

NULL, GETATTR, SETATTR
LOOKUP, READLINK, READ
CREATE, WRITE, REMOVE, RENAME
LINK, SYMLINK

READIR, MKDIR, RMDIR

STATFS (get file system attributes)

17



NFS V3 and V4 Operations

* V3 added:
« READDIRPLUS, COMMIT (server cache!)
« FSSTAT, FSINFO, PATHCONF

V4 added:

« COMPOUND (bundle operations)

LOCK (server becomes more stateful!)
PUTROOTFH, PUTPUBFH (no separate MOUNT)
Better security and authentication

Very different than V2/V3 - stateful

18



Operator Batching A

« Should each client/server interaction accomplish
one file system operation or multiple operations?

« Advantage of batched operations?
* How to define batched operations

« Examples of Batched Operators
 NFS va:
- READDIRPLUS
 NFS v4:
« COMPOUND RPC calls

19



Remote Procedure Calls in NFS

Client

Time

v

LOOKUP

Server

-
~

'\ Lookup name
(/

-

\‘/. Read file data
(/

Client

Time

v

LOOKUP
OPEN
READ

- ———

Server

b

\\
) Lookup name

-
~

\) Open file
1 Read file data
</

(b)

* (a) Reading data from a file in NFS version 3

* (b) Reading data using a compound procedure in
version 4.

20



