
Whooo’s calling Whooo?
Jodi Spacek

Hootsuite
March 11, 2016

Part 1: Microservice Migration
How we adjust to our ever-changing environment leading to reasons
why microservice calls are hard to track

Part 2: Microservice Mystery
Take a look at a case study and come up with some techniques to
diagnose problems

Hootsuite collects, organizes and interacts with social network data
10+ million users 5000+ requests / sec

Lots of interesting Distributed Systems problems!

Business Uses: customer support, data analytics, predictions

One of our largest concerns today is dealing with legacy code and outdated
infrastructure

The Lounge in HQ 2

#chillax

Part 1: Microservice Migration

The Code

Legacy Code: older code we’ve inherited that is 4-5 years old

Is it a good idea to remove and replace legacy code all at once?

● No, we need to consider how drastic changes affect 10 million users currently in the system
● We need to get all of the developers on board with the changes gradually

#hootdogs Baby Monty!! #hootdogs Wise Monty

How did Hootsuite adjust to hyper-growth?

Hacking together a solution in the monolith to keep up with this drastic growth in the user base

Why are we getting rid of the Monolith?

● PHP monolith doesn’t scale well and is ill-suited for enterprise use
● it’s difficult to keep code neat and tidy, it allows for bad coding behaviour

#hypergrowth

How have we addressed consistent growth in our user base?

● We can take the time now to move away from the PHP monolith code to Service Oriented Architecture
● Microservices fall under the umbrella of SOA

These isolated components help us to (1) distribute network traffic (2) replace legacy code incrementally and
(3) distribute work in our team

We have 5000+ user calls per second. How many microservice calls per user
call? 5000+ requests/s multiplied by the complexity of the type of call

#soaftw

● monolith: these ingredients (components) are baked into one big pie
● microservices: pick and choose your ingredients individually

How easy is it to remove the apple and replace with raspberries?

● Should we remove the apple completely so that there’s a moment of time where nothing is on the plate?
● Should we put all of the raspberries on the plate and then after a certain amount of time remove the

apple?
● Should we put one raspberry on the plate at a time? Remove parts of the apple that match the weight of

the raspberry so that the weight is the same?

Apple Pie Monolith Apple Pie Deconstructed

#deliciousdeliciousmicroservices

blue-green deployments: switch from old to new (blue to green)

What happens if we have problems with the green environment?

● switching environments is a quick change that is less complex than performing rollbacks ~ faster than
a full redeployment of code which must be thoroughly tested before going to production

● the state in the green (new) environment may be corrupted and unusable even if we replace the new
code with the old code version

Blue-green Deployment

#greenmeansgo

canary deployment: Riskier changes where we want to discover the behaviour on production

What happens to the canary server if it starts failing?

● stop routing any requests to the canary
● swap out the canary server with the old version of the service

Canary
Deployment

#goodlucklittlecanary

Part 1: Microservice Migration

Infrastructure
Where the Code Lives

Infrastructure Redesign
Motivation

Volume of retweets causes an outage of our entire system

this guy >>>

#supnotyourapps

Microservice Architecture
Brokers: queue and transform messages

Routers: determine best location to send messages

Service Discovery: automatically detect the location of a microservice

Workers: microservice nodes in a cluster

Fault Tolerance: operates correctly even when component fails

Monolith Infrastructure
Migration

● most of our older services & THE
MONOLITH live in EC2 Classic

● use a bridge to direct traffic to our new
services in VPC (Virtual Private Cloud)

● ASG (auto scaling group) lives in VPC and
it helps us to deal with changes in the
volume of requests

● How? ASG can scale up by adding new
nodes in the cluster, and scale down when
traffic is lower to save $$

#evenmoremigrations

Code Name “Back to the Future”
● HTTP is an oldie but a goodie
● service discovery & load balancing with Nginx &

Consul
● Nginx: HTTP proxy with caching
● Consul: Distributed (K, V) store

If one of the nodes goes down, but the request was already
sent (in-flight), nginx can redispatch it to another node

Can any request ever be dropped?

● If the number of requests sent to a downed node
exceeds the Nginx buffer storage size, requests will be
dropped

HTTP
Request

#backtothefuture

Part 2: Microservice Mystery

What do we know?

#somanycalls

How micro is micro? Microservices are of varying size & complexity, they handle small pieces of logical
functionality that make microservices easier to distribute and replace

How micro is too micro? You don’t want to make your microservices so tiny that the advantages of this
design are overshadowed by having to make so many calls that it’s a networking nightmare

#micromicromicro

Part 2: Microservice Mystery

What can we see?

logstash: centralizes log data and standardizes them for elastic search

elasticsearch: real time data analytics

kibana: visualization tool for elasticsearch

#elkstack

What kinds of problems are caused by decentralization of our logs?
Logs are spread all over our servers and are hard to track

What kinds of features does the ELK stack provide?
Functionality to coordinate different log formats, regardless of the tag placement and format

What can everyone understand in the ELK stack?
Kibana’s visual clues for behaviour changes in graphs

#elkstack

How do we make connections between calls that are logged?
● We need to make the logical connections between microservice calls ourselves by searching for

keywords to view logs in a list

Is this an easy thing to do?
● This could be an easy task if the microservice calls are simple
● But simple calls don’t usually cause complex issues that are difficult to track!

#elkstack

Part 2: Microservice Mystery

The Case

Send a request
to update
Twitter,
Instagram, and
Facebook

What happens after
the first few calls
from the first
microservice?

#sofarsogood

Where would
you start your
investigation?

#whatwouldsherlockdo

#nodehealth

#sensuhealth

#graphite

#kibana

#lastditcheffort

Can we do
any better
than this?

How many different places do we need to check?

How many developers would need to do this?

How would we coordinate their efforts to put together
a hypothesis?

Can we get rid of some of the stress points in this
process?

Can these clues be connected in some way to help
our analysis?

#whatwouldsherlockdo

Activity: Sherlock & Watson
Connect the Clues

Can these microservice clues be connected in some way to
help our analysis?

Let’s take a couple of minutes to work in pairs and brainstorm on a solution!

Microservice Inspiration

What would Sherlock do?

RESEARCH

What are other companies doing?

● Inspiration from Google’s Dapper
● constant deployments means we

need a dynamic solution
● can understand real-time system

behaviour
● helps to understand exceptions

Google’s Dapper Call Tree

#ohsogoogley

Bright Idea: what if we link our
microservice calls?

This will help to:

● Troubleshoot issues
● Find points of stress in the system
● Allocate resources (people and

systems)

Google’s Dapper Call Tree

#brightidea

Hootsuite’s Feather Finder Google’s Dapper

● UUID List in the request header
● in-band: trace is inside of the

request itself
● 2 points of contact with

duration

● Instrument RPC code
● out-of-band: trace is outside of

the request tree
● 4 points of contact
● more accurate timing data

Is this enough information for us to deduce, Sherlock style?

Yes, the duration of each call and the complete list of microservices in a call is helpful for most cases.

#featherfinderlite

Microservice Mystery
Back to the Case: Let’s try out our Call Tree

Can you spot the
microservice call that
failed?

The call from Data to Push has
failed for Instagram.

What are the
implications of this
problem?

This is a very difficult problem to
solve, and can result in a
dangling reference

#featherfindercalltree

Project Feather Finder?
This is a great idea! Let’s code it up!

#socloseyetsofar

How can we show the usefulness of this tool to all
developers?

● 2-day company wide hackathon

● Integrate a tracing system by reusing ELK stack

● Embed information in our requests

● Reuse the existing logging mechanisms in PHP and Scala

#thisisprojectfeatherfinder

Project Feather Finder Growth

Resources
http://code.hootsuite.com/elk-stack-101/

http://code.hootsuite.com/my-first-week-in-hypergrowth/

http://twitter.github.io/zipkin/

The Verification of a Distributed System (short overview from Twitter)

No compromises: distributed transactions with consistency, availability, and
performance (RDMA)

http://code.hootsuite.com/elk-stack-101/
http://code.hootsuite.com/elk-stack-101/
http://code.hootsuite.com/my-first-week-in-hypergrowth/
http://code.hootsuite.com/my-first-week-in-hypergrowth/
http://twitter.github.io/zipkin/
http://twitter.github.io/zipkin/
http://dl.acm.org/citation.cfm?id=2889274
http://dl.acm.org/citation.cfm?id=2889274
http://sigops.org/sosp/sosp15/current/2015-Monterey/printable/227-dragojevic.pdf
http://sigops.org/sosp/sosp15/current/2015-Monterey/printable/227-dragojevic.pdf
http://sigops.org/sosp/sosp15/current/2015-Monterey/printable/227-dragojevic.pdf
http://sigops.org/sosp/sosp15/current/2015-Monterey/printable/227-dragojevic.pdf

Thank you! Questions?

#hazquestions?

