416 Distributed Systems

Time Synchronization
(Part 2: Lamport and vector clocks)
Jan 27, 2016

Important Lessons .

» Clocks on different systems will always behave differently
« Skew and drift between clocks

» Time disagreement between machines can result in undesirable
behavior

« Clock synchronization
* Rely on a time-stamped network messages
« Estimate delay for message transmission
» Can synchronize to UTC or to local source
« Clocks never exactly synchronized

« Often inadequate for distributed systems
* might need totally-ordered events
* might need millionth-of-a-second precision

Today's Lecture

Need for time synchronization

Time synchronization techniques

Lamport Clocks

Vector Clocks

Logical time

 Capture just the “happens before” relationship
between events
 Discard the infinitesimal granularity of time
« Corresponds roughly to causality

Logical time and logical clocks
(Lamport 1978)

* Events at three processes

P1 o ®

P2

» Physical

P3 o ®

time

Logical time and logical clocks

(Lamport 1978) n

Py ° » Physical
time
C (\

P3 o e >

e .. f .
* Instead of synchronizing clocks, event ordering can be used

1. If two events occurred at the same process p; (i= 1, 2, ... N) then
they occurred in the order observed by p,, that is the definition of:

|
2. When a message, m is sent between two processes, send(m)
happens before receive(m)

3. The happened before relation is transitive

« The happened before relation is the relation of causal ordering

Logical time and logical clocks
(Lamport 1978)

P1 o ®

» Physical

P2 o

P3 ® ®

time

* a—=>b(atp,)c—d (atp,)
b — c because of m,
* also d — fbecause of m,

Logical time and logical clocks
(Lamport 1978) =

P1

P2

P3

e
* Not all events are related by —

» Physical

¢
time
C ;\

f

« Consider a and e (different processes and no chain of
messages to relate them)

 they are not related by — ; they are said to be concurrent
 writtenas al| e

Lamport Clock (1)

1 2
® >
P1 a b m,
0 S 4 » Physical
2 c q time
my
1 5
P3 ® >
e f

* Alogical clock is a monotonically increasing software counter
* It need not relate to a physical clock.

 Each process p; has a logical clock, L; which can be used to
apply logical timestamps to events
* Rule 1: L, is incremented by 1 before each event at process p;
. Rule 2:
« (a) when process p; sends message m, it piggybacks t = L,

* (b) when p, receives (m,t) it sets L, := max(L;, t) and applies rule 1 before
tlmestamplng the event receive (m)

Lamport Clock (1) A

® >
P1 a b m,
S 4 » Physical
P2 c q time
my
1 5
P3 ® >

e f

« each of py, p,, p; has its logical clock initialised to zero,
 the clock values are those immediately after the event.

* e.g.1fora, 2forb.

- form,, 2 is piggybacked and c gets max(0,2)+1 =3

10

Lamport Clock (1) i‘.

o >
P1 a b m,
S 4 » Physical
P2 c g time
my
1 5
P3 ® >

e f

- e —=¢e implies L(e)<L(€)

- The converse is not true, that is L(e)<L(e) does not
Imply e —¢e'. What's an example of this above?

11

Lamport Clock (1) .

° >
P1 a b m,
S 4 » Physical
P2 c g time
my
1 5
P3 ® >

e f

- e —¢€ implies L(e)<L(€’)

- The converse is not true, that is L(e)<L(e) does not
imply e —¢’
- e.g.L(b)>L(e)butbll e

12

Lamport logical clocks

« Similar rules for concurrency
- L(e) =L(e’) implies e| e’ (for distinct e,e)
- e|le’ does notimply L(e) =L(e’)
* I.e., Lamport clocks arbitrarily order some concurrent
events

Total-order Lamport clocks .

« Many systems require a total-ordering of events,
not a partial-ordering

« Use Lamport’ s algorithm, but break ties using the
process |ID; one example scheme:
c Le)=M"~*L(e) +i
* M = maximum number of processes
| = process |ID

Today's Lecture

Need for time synchronization

Time synchronization techniques

Lamport Clocks

Vector Clocks

15

Vector Clocks %

» Vector clocks overcome the shortcoming of
Lamport logical clocks

« L(e) < L(€’) does not imply e happened before €’
» Goal

* Want ordering that matches causality
« V(e)<V(e')ifandonlyife — e’

 Method

- Label each event by vector V(e) [c,, C, ..., C]
* C, = # events in process i that causally precede e

16

Vector Clock Algorithm

Initially, all vectors [0,0,...,0]
For event on process i, increment own c,
Label message sent with local vector

When process | receives message with vector
d,, do, ..., d]:

 Set local each local entry k to max(c,, d,)

* Increment value of ¢

Vector Clocks "
(1,0,0) (2,0,0)

p1 L]

a b m,
) (21.0) (22.0) _ Physical
% . g time

my

(0,0,1) (2,2,2)

P3 ® >
e f

* Atp,
- aoccurs at (1,0,0); boccurs at (2,0,0)
- piggyback (2,0,0) on m,

At p, on receipt of m, use max ((0,0,0), (2,0,0)) = (2, 0, 0)
and add 1 to own element = (2,1,0)

* Meaning of =, <=, max etc for vector timestamps
« compare elements pairwise

18

P1

P2

P3

Vector Clocks %
(1,0,0) (2,0,0)
° '
da b my
(21,0) (2.2.0) .. Physical
. d n, time
(0,0,1) (2,2,2)
. L
o f

Note t

nat e —e’ implies V(e)<V(e'). The converse

IS also true

- Can you see a pair of parallel events?
c |l e (parallel) because neither V(c) <= V(e) nor V(e) <= V(c)

19

Implementing logical clocks “

 Positioning of logical timestamping in distributed
systems.

Application layer

~ Adjust local clock Adjust local clock Middleware layer
and timestamp message
Middleware sends message Message is received

Network layer

20

Distributed time .

* Premise

* The notion of time is well-defined (and measurable) at
each single location

» But the relationship between time at different
locations is unclear

« Can minimize discrepancies, but never eliminate
them

* Reality

« Stationary GPS receivers can get global time with <
1us error

* Few systems designed to use this

Important Points .

* Physical Clocks
« Can keep closely synchronized, but never perfect

* Logical Clocks
* Encode causality relationship
« Lamport clocks provide only one-way encoding

* Vector clocks precedence necessary for causality (but
not sufficient: could have been caused by some event
along the path, not all events)

* Assignment 4 will require you to use vector
timestamps compatible with ShiViz:

http://bestchai.bitbucket.org/shiviz/ (DEMQ!)

