
Distributed File Systems 3
Jan 22, 2015

1

416 Distributed Systems

2

Today's Lecture

•  Last time:
•  Topic 2: file access consistency

•  NFS, AFS
•  Topic 3: name space construction

•  Mount (NFS) vs. global name space (AFS)
•  Topic 4: Security in distributed file systems

•  Kerberos

•  This lecture: other types of DFS
•  Coda – disconnected operation

Topic 4: User Authentication and
Access Control
•  User X logs onto workstation A, wants to access files

on server B
•  How does A tell B who X is?
•  Should B believe A?

•  Choices made in NFS V2
•  All servers and all client workstations share the same <uid,

gid> name space à B send X’s <uid,gid> to A
•  Problem: root access on any client workstation can lead to

creation of users of arbitrary <uid, gid>
•  Server believes client workstation unconditionally

•  Problem: if any client workstation is broken into, the
protection of data on the server is lost;

•  <uid, gid> sent in clear-text over wire à request packets
can be faked easily

3

User Authentication (cont’d)

•  How do we fix the problems in NFS v2
•  Hack 1: root remapping à strange behavior
•  Hack 2: UID remapping à no user mobility
•  Real Solution: use a centralized Authentication/

Authorization/Access-control (AAA) system

4

A Better AAA System: Kerberos

•  Basic idea: shared secrets
•  User proves to KDC (Kerberos key distribution center)

who he is; KDC generates shared secret between client
and file server

5

client

ticket server
generates S

file server

S: specific to {client,fs} pair;
“short-term session-key”; expiration time (e.g. 8 hours)

KDC

encrypt S with
client’s key

Key Lessons

•  Distributed filesystems almost always involve a
tradeoff: consistency, performance, scalability.

•  We’ll see a related tradeoff, also involving
consistency, in a while: the CAP tradeoff.
Consistency, Availability, Partition-resilience.

More Key Lessons

•  Client-side caching is a fundamental technique to
improve scalability and performance
•  But raises important questions of cache consistency

•  Timeouts and callbacks are common methods for
providing (some forms of) consistency.

•  AFS picked close-to-open consistency as a good
balance of usability (the model seems intuitive to
users), performance, etc.
•  AFS authors argued that apps with highly concurrent,

shared access, like databases, needed a different
model

8

Today's Lecture

•  DFS design comparisons continued
•  Topic 2: file access consistency

•  NFS, AFS
•  Topic 3: name space construction

•  Mount (NFS) vs. global name space (AFS)
•  Topic 4: AAA in distributed file systems

•  Kerberos

•  Other types of DFS
•  Coda – disconnected operation

Background

•  We are back to 1990s.
•  Network is slow and not stable
•  Terminal à “powerful” client

•  33MHz CPU, 16MB RAM, 100MB hard drive
•  Mobile Users appeared

•  1st IBM Thinkpad in 1992
•  We can do work at client without network

9

CODA

•  Successor of the very successful Andrew File
System (AFS)

•  AFS
•  First DFS aimed at a campus-sized user community
•  Key ideas include

•  open-to-close consistency (session semantics)
•  callbacks

10

Hardware Model

•  CODA and AFS assume that client workstations
are personal computers controlled by their user/
owner
•  Fully autonomous
•  Cannot be trusted

•  CODA allows owners of laptops to operate them
in disconnected mode
•  Opposite of ubiquitous connectivity

11

Accessibility (aka availability)

•  Must handle two types of failures
•  Server failures:

•  Data servers are replicated
•  Communication failures and voluntary

disconnections
•  Coda uses optimistic replication and file

hoarding

12

Design Rationale –Replica
Control
•  Pessimistic

•  Disable all partitioned writes
- Require a client to acquire control of a cached object

prior to disconnection
•  Optimistic

•  Assuming no others touching the file
-  conflict detection
+ fact: low write-sharing in Unix
+ high availability: access anything in range

13

Pessimistic Replica Control

•  Would require client to acquire exclusive (RW) or
shared (R) control of cached objects before
accessing them in disconnected mode:
•  Acceptable solution for voluntary disconnections
•  Does not work for involuntary disconnections

•  What if the laptop remains disconnected for a long
time?

14

Leases

•  We could grant exclusive/shared control of the
cached objects for a limited amount of time

•  Works very well in connected mode
•  Reduces server workload
•  Server can keep leases in volatile storage as long as

their duration is shorter than boot time
•  Would only work for very short disconnection

periods

15

Optimistic Replica Control (I)

•  Optimistic replica control allows access in
every disconnected mode
•  Tolerates temporary inconsistencies
•  Promises to detect them later
•  Provides much higher data availability

16

Optimistic Replica Control (II)

•  Defines an accessible universe: set of filesthat
the user can access
•  Accessible universe varies over time

•  At any time, user
•  Will read from the latest file(s) in his accessible

universe
•  Will update all files in his accessible universe

17

Coda States

1.  Hoarding:

Normal operation mode
2.  Emulating:

Disconnected operation mode
3.  Reintegrating:

Propagates changes and detects inconsistencies

Hoarding

Emulating Reintegrating

18

Hoarding

•  Hoard useful data for disconnection
•  Balance the needs of connected and

disconnected operation.
•  Cache size is restricted
•  Unpredictable disconnections

•  Uses user specified preferences + usage patterns
to decide on files to keep in hoard

19

Emulation

•  In emulation mode:
•  Attempts to access files that are not in the client caches

appear as failures to application
•  All changes are written in a persistent log,

the client modification log (CML)
•  Coda removes from log all obsolete entries like those

pertaining to files that have been deleted

20

Reintegration

•  When workstation is reconnected, Coda initiates a
reintegration process
•  Performed one volume at a time
•  Ships replay log to each volumes
•  Each volume performs a log replay algorithm

•  Only care about write/write confliction
•  Conflict resolution succeeds?

•  Yes. Free logs, keep going…
•  No. Save logs to a tar. Ask for help

•  In practice:
•  No Conflict at all! Why?
•  Over 99% modification by the same person
•  Two users modify the same obj within a day: <0.75%

21

Coda Summary

•  Puts scalability and availability before
data consistency
•  Unlike NFS

•  Assumes that inconsistent updates are very
infrequent

•  Introduced disconnected operation mode and file
hoarding

22

