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Outline 

•  Why Distributed File Systems? 

•  Basic mechanisms for building DFSs 
•  Using NFS and AFS as examples 

•  NFS: network file system 
•  AFS: andrew file system 

•  Design choices and their implications 
•  Caching 
•  Consistency 
•  Naming 
•  Authentication and Access Control 
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VFS Interception 
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A Simple Approach 

•  Use RPC to forward every filesystem operation to the server 
•  Server serializes all accesses, performs them, and sends back result. 

•  Great:  Same behavior as if both programs were running on the 
same local filesystem! 

•  Bad:  Performance can stink.  Latency of access to remote 
server often much higher than to local memory. 

•  For AFS context:  bad bad bad:  server would get hammered! 

Lesson 1:  Needing to hit the server for every detail impairs 
performance and scalability. 

Question 1:  How can we avoid going to the server for everything?  
What can we avoid this for?  What do we lose in the process? 



NFS V2 Design 

•  “Dumb”, “Stateless” servers w/ smart clients 
•  Portable across different OSes 
•  Low implementation cost 
•  Small number of clients 
•  Single administrative domain 
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Remote Procedure Calls in NFS 

•  (a) Reading data from a file in NFS version 3 
•  (b) Reading data using a compound procedure in 

version 4. 
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Topic 1: Client-Side Caching 

•  Many systems (not just distributed!) rely on two 
solutions to every problem: 
1.  Cache it! 
2.  �All problems in computer science can be solved by 

adding another level of indirection.  But that will 
usually create another problem.� -- David Wheeler 



Client-Side Caching 

•  So, uh, what do we cache? 
•  Read-only file data and directory data ! easy 
•  Data written by the client machine ! when is data 

written to the server? What happens if the client 
machine goes down? 

•  Data that is written by other machines ! how to know 
that the data has changed?  How to ensure data 
consistency? 

•  Is there any pre-fetching? 

•  And if we cache... doesn’t that risk making things 
inconsistent? 
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Failures 

•  Server crashes 
•  Data in memory but not disk lost 
•  So... what if client does 

•  seek() ;  /* SERVER CRASH */; read() 
•  If server maintains file position, this will fail (Why?).  

Ditto for open(), read() 
•  Lost messages:  what if we lose 

acknowledgement for delete(�foo�) 
•  And in the meantime, another client created foo anew? 

•  Client crashes 
•  Might lose data in client cache 
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Client Caching in NFS v2 

•  Cache both clean and dirty file data and file attributes 
•  Memory (e.g., DRAM) cache 

•  File attributes in the client cache expire after 60 
seconds (file data doesn’t expire) 

•  File data is checked against the modified-time in file 
attributes (which could be a cached copy) 
•  Changes made on one machine can take up to 60 seconds 

to be reflected on another machine 

•  Dirty data are buffered on the client machine until file 
close or up to 30 seconds (Why 30s?) 
•  If the machine crashes before then, the changes are lost 
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Implication of NFS v2 Client 
Caching 

•  Advantage:  No network traffic if open/read/write/
close can be done locally.  

•  But…. Data consistency guarantee is very poor 
•  Simply unacceptable for some distributed applications 
•  Productivity apps tend to tolerate such loose 

consistency 
•  Generally clients do not cache data on local disks 
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NFS�s Failure Handling –  
Stateless Server 
•  Files are state, but... 
•  Server exports files without creating extra state 

•  No list of “who has this file open” (permission check on each 
operation on open file!) 

•  No “pending transactions” across crash 
•  Crash recovery is “fast” 

•  Reboot, let clients figure out what happened 
•  State stashed elsewhere 

•  Separate MOUNT protocol 
•  Separate NLM locking protocol 

•  Stateless protocol:  requests specify exact state.  
read() ! read( [position]).  no seek on server. 



NFS�s Failure Handling 

•  Operations are idempotent 
•  How can we ensure this? 
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NFS�s Failure Handling 

•  Operations are idempotent 
•  How can we ensure this?  Unique IDs on files/directories.  

It�s not delete(�foo�), it�s delete(1337f00f), where that ID 
won�t be reused. 

•  Write-through caching:  When file is closed, all 
modified blocks sent to server.  close() does not return 
until bytes safely stored. 
•  Close failures?  

•  retry until things get through to the server 
•  return failure to client 

•  Most client apps can�t handle failure of close() call.  
•  Usual option:  hang for a long time trying to contact server 



NFS Results 

•  NFS provides transparent, remote file access 
•  Simple, portable, really popular 

•  (it�s gotten a little more complex over time, but...) 

•  Weak consistency semantics 
•  Requires hefty server resources to scale (write-

through, server queried for lots of operations) 

•  Design take-away: smart server; dumb clients 



AFS Goals 

•  Global distributed file system 
•  “One AFS”, like “one Internet” 

•  Why would you want more than one? 
•  LARGE numbers of clients, servers 

•  1000 machines could cache a single file, 
•  Most local, some (very) remote 

•  Goal: O(0) work per client operation 
•  O(1) may just be too expensive! 
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AFS Assumptions 

•  Client machines are un-trusted 
•  Must prove they act for a specific user 

•  Secure RPC layer 
•  Anonymous “system:anyuser” 

•  Client machines have disks(!!) 
•  Can cache whole files over long periods 

•  Write/write and write/read sharing are rare 
•  Most files updated by one user, on one machine 
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Let’s look back at AFS 

•  NFS gets us partway there, but 
•  Probably doesn’t handle scale (* - you can buy huge NFS 

appliances today that will, but they�re $$$-y). 
•  Is very sensitive to network latency 

•  How can we improve this? 
•  More aggressive caching (AFS caches on disk in addition to 

just in memory) 
•  Prefetching (on open,  AFS gets entire file from server, 

making later ops local & fast). 
•  Remember:  with traditional hard drives, large sequential 

reads are much faster than small random writes.  So 
easier to support (client a:  read whole file;  client B: read 
whole file) than having them alternate.  Improves 
scalability, particularly if client is going to read whole file 
anyway eventually. 



Client Caching in AFS 

•  Callbacks! Clients register with server that they 
have a copy of file; 
•  Server tells them: �Invalidate��if the file changed (but 

only does so on file close!) 
•  This trades state for improved consistency 

•  What if server crashes? Lose all callback state! 
•  Reconstruct callback information from clients 

•  ask everyone “who has which files cached?” 



AFS v2 RPC Procedures 

•  Procedures that are not in NFS 
•  Fetch: return status and optionally data of a file or 

directory, and place a callback on it 
•  RemoveCallBack: specify a file that the client has 

flushed from the local machine 
•  BreakCallBack: from server to client, revoke the 

callback on a file or directory 
•  What should the client do if a callback is revoked? 

•  Store: store the status and optionally data of a file 
•  Rest are similar to NFS calls 
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Topic 2: File Access Consistency 

•  In UNIX local file system, concurrent file reads 
and writes have “sequential” consistency 
semantics 
•  Each file read/write from user-level app is an atomic 

operation 
•  The kernel locks the file vnode 

•  Each file write is immediately visible to all file readers 

•  Neither NFS nor AFS provides such concurrency 
control 
•  NFS: “sometime within 30 seconds” 
•  AFS: session semantics for consistency (next slide) 
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Session Semantics in AFS v2 

•  What it means: 
•  A file write is visible to processes on the same box 

immediately, but not visible to processes on other 
machines until the file is closed 

•  When a file is closed, changes are visible to new 
opens, but are not visible to “old” opens 

•  All other file operations are visible everywhere 
immediately 

•  Implementation 
•  Dirty data are buffered at the client machine until file 

close, then flushed back to server, which leads the 
server to send “break callback” to other clients 
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AFS Write Policy 

•  Writeback cache 
•  Opposite of NFS “every write is sacred” 
•  Store chunk back to server 

•  When cache overflows 
•  On last user close() 

•  ...or don't (if client machine crashes) 

•  Is writeback crazy? 
•  Write conflicts “assumed rare” 
•  Who wants to see a half-written file? 
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Results for AFS 

•  Lower server load than NFS 
•  More files cached on clients 
•  Callbacks:  server not busy if files are read-only (common 

case) 
•  But maybe slower:  Access from local disk is much 

slower than from another machine�s memory over 
LAN 

•  For both: 
•  Central server is bottleneck:  all reads and writes hit it at 

least once; 
•  is a single point of failure. 
•  is costly to make them fast, beefy, and reliable servers. 



Topic 3: Name-Space 
Construction and Organization 

•  NFS: per-client linkage 
•  Server: export /root/fs1/ 
•  Client: mount server:/root/fs1 /fs1 

•  AFS: global name space 
•  Name space is organized into Volumes 

•  Global directory /afs;  
•  /afs/cs.wisc.edu/vol1/…; /afs/cs.stanford.edu/vol1/… 

•  Each file is identified as fid = <vol_id, vnode #, unique 
identifier> 

•  All AFS servers keep a copy of “volume location database”, 
which is a table of vol_id! server_ip mappings 
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Implications on Location 
Transparency 

•  NFS: no transparency 
•  If a directory is moved from one server to another, client 

must remount 

•  AFS: transparency 
•  If a volume is moved from one server to another, only 

the volume location database on the servers needs to 
be updated 
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Naming in NFS (1) 

•  Figure 11-11. Mounting (part of) a remote file 
system in NFS. 
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Naming in NFS (2) 
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