Networks review; Day 1 of 2
Jan 11, 2016
Distributed Systems vs. Networks

- Low level (c/go)
- Run forever
- Support others
- Adversarial environment
- Distributed & concurrent
- Resources matter

- And have it implemented/run by vast numbers of different people with different goals/skills
Keep an eye out for…

• Modularity, Layering, and Decomposition:
 • Techniques for dividing the work of building systems
 • Hiding the complexity of components from each other
 • Hiding implementation details to deal with heterogeneity

• Naming/lookup/routing

• Resource sharing and isolation

• Models and assumptions about the environment and components
Today’s Lecture

- Network links and LANs
- Layering and protocols
- Internet design
Basic Building Block: Links

- Electrical questions
 - Voltage, frequency, ...
 - Wired or wireless?

- Link-layer issues: How to send data?
 - When to talk – can either side talk at once?
 - What to say – low-level format?
Model of a communication channel

- Latency - how long does it take for the first bit to reach destination

- Jitter - how much variation in latency?

- Capacity - how many bits/sec can we push through? (often termed “bandwidth”)

- Loss / Reliability - can the channel drop packets?

- Reordering
Basic Building Block: Links

• ... But what if we want more hosts?

One wire

Wires for everybody!

• Scalability?!
Multiplexing

- Need to share network resources

- How? Switched network
 - Party “A” gets resources sometimes
 - Party “B” gets them sometimes

- Interior nodes act as “Switches”

- What mechanisms to share resources?
In the Old Days…Circuit Switching
Packet Switching

• Source sends information as self-contained packets that have an address.
 • Source may have to break up single message in multiple

• Each packet travels independently to the destination host.
 • Switches use the address in the packet to determine how to forward the packets
 • Store and forward

• Analogy: a letter in surface mail.
Packet Switching – Statistical Multiplexing

- Switches arbitrate between inputs
- Can send from *any* input that’s ready
 - Links never idle when traffic to send
 - (Efficiency!)
What if Network is Overloaded?

Problem: Network Overload

• Short bursts: buffer
• What if buffer overflows?
 • Packets dropped
 • Sender adjusts rate until load = resources → “congestion control”

Solution: Buffering and Congestion Control
Example: Ethernet Packet

- Sending adapter encapsulates IP datagram (or other network layer protocol packet) in Ethernet frame
Ethernet Frame Structure

- Each protocol layer needs to provide some hooks to upper layer protocols
 - Demultiplexing: identify which upper layer protocol packet belongs to
 - E.g., port numbers allow TCP/UDP to identify target application
 - Ethernet uses Type field

- **Type**: 2 bytes
 - Indicates the higher layer protocol, mostly IP but others may be supported such as Novell IPX and AppleTalk
Ethernet Frame Structure (cont.)

• **Addresses:** 6 bytes
 • Each adapter is given a globally unique address at manufacturing time
 • Address space is allocated to manufacturers
 • 24 bits identify manufacturer
 • E.g., 0:0:15:* → 3com adapter
 • Frame is received by all adapters on a LAN and dropped if address does not match
 • Special addresses
 • Broadcast – FF:FF:FF:FF:FF:FF is “everybody”
 • Range of addresses allocated to multicast
 • Adapter maintains list of multicast groups node is interested in
Packet Switching

- Source sends information as self-contained packets that have an address.
 - Source may have to break up single message in multiple

- Each packet travels independently to the destination host.
 - Switches use the address in the packet to determine how to forward the packets
 - Store and forward

- Analogy: a letter in surface mail.
Frame Forwarding

- A machine with MAC Address lies in the direction of number port of the bridge.
- For every packet, the bridge “looks up” the entry for the packet's destination MAC address and forwards the packet on that port.
 - Other packets are broadcast – why?
- Timer is used to flush old entries.
Learning Bridges

- Manually filling in bridge tables?
 - Time consuming, error-prone
- Keep track of source address of packets arriving on every link, showing what segment hosts are on
 - Fill in the forwarding table based on this information
Today’s Lecture

• Network links and LANs
• Layering and protocols
• Internet design
Internet

• An inter-net: a network of networks.
 • Networks are connected using routers that support communication in a hierarchical fashion
 • Often need other special devices at the boundaries for security, accounting, ..

• The Internet: the interconnected set of networks of the Internet Service Providers (ISPs)
 • About 17,000 different networks make up the Internet
Challenges of an internet

- Heterogeneity
 - Address formats
 - Performance – bandwidth/latency
 - Packet size
 - Loss rate/pattern/handling
 - Routing
 - Diverse network technologies → satellite links, cellular links, carrier pigeons
 - In-order delivery
How To Find Nodes?

Computer 1 Internet Computer 2

Need naming and routing
Naming

What’s the IP address for www.cmu.edu?
It is 128.2.11.43

Computer 1
Local DNS Server

Translates human readable names to logical endpoints
Routing

Routers send packet towards destination

H: Hosts
R: Routers
Network Service Model

- What is the service model?
 - Ethernet/Internet: *best-effort* – packets can get lost, etc.

- What if you want more?
 - Performance guarantees (QoS)
 - Reliability
 - Corruption
 - Lost packets
 - Flow and congestion control
 - Fragmentation
 - In-order delivery
 - Etc…
Failure models

- Fail-stop:
 - When something goes wrong, the process stops / crashes / etc.
- Fail-slow or fail-stutter:
 - Performance may vary on failures as well
- Byzantine:
 - Anything that can go wrong, will.
 - Including malicious entities taking over your computers and making them do whatever they want.
- These models are useful for proving things;
- The real world typically has a bit of everything.
- Deciding which model to use is important!
Fancier Network Service Models

- What if network had reliable, in-order, mostly no-corruption, stream-oriented communication (i.e. TCP)

- Programmers don’t have to implement these features in every application

- But note limitations: this can’t turn a byzantine failure model into a fail-stop model…
What if the Data gets Corrupted?

Problem: Data Corruption

Solution: Add a checksum
What if the Data gets Lost?

Problem: Lost Data

Solution: Timeout and Retransmit
What if the Data is Out of Order?

Problem: Out of Order

Solution: Add Sequence Numbers

GET x.htindeml

GET index.html
Networks [including end points] Implement Many Functions

- Link
- Multiplexing
- Routing
- Addressing/naming (locating peers)
- Reliability
- Flow control
- Fragmentation
- Etc....
What is Layering?

- Modular approach to network functionality
- Example:

```
+------------------+
| Application      |
+------------------+
| Application-to-application channels |
+------------------+
| Host-to-host connectivity |
+------------------+
| Link hardware    |
```
What is Layering?

Modular approach to network functionality
Layering Characteristics

• Each layer relies on services from layer below and exports services to layer above
• Interface defines interaction with peer on other hosts
• Hides implementation - layers can change without disturbing other layers (black box)
What are Protocols?

• An agreement between parties on how communication should take place

• Module in layered structure

• Protocols define:
 • Interface to higher layers (API)
 • Interface to peer (syntax & semantics)
 • Actions taken on receipt of a messages
 • Format and order of messages
 • Error handling, termination, ordering of requests, etc.

• Example: Buying airline ticket
IP Layering

- Relatively simple
The Internet Protocol Suite

The waist facilitates interoperability
Layer Encapsulation

User A

User B

- Get index.html
- Connection ID
- Source/Destination
- Link Address
Multiplexing and Demultiplexing

- There may be multiple implementations of each layer.
 - How does the receiver know what version of a layer to use?
- Each header includes a demultiplexing field that is used to identify the next layer.
 - Filled in by the sender
 - Used by the receiver
- Multiplexing occurs at multiple layers. E.g., IP, TCP, …

![Diagram showing TCP and IP headers with fields like V/HL, TOS, Length, ID, Flags/Offset, TTL, Prot., H. Checksum, Source IP address, Destination IP address, Options..]
Multiplexing and Demultiplexing

List of IP protocol numbers

From Wikipedia, the free encyclopedia

This is a list of IP numbers used in the *Protocol* field of the IPv4 header.

<table>
<thead>
<tr>
<th>Decimal</th>
<th>Hex</th>
<th>Keyword</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0x00</td>
<td>HOPOPT IPv6 Hop-by-Hop Option</td>
</tr>
<tr>
<td>1</td>
<td>0x01</td>
<td>ICMP Internet Control Message Protocol</td>
</tr>
<tr>
<td>2</td>
<td>0x02</td>
<td>IGMP Internet Group Management Protocol</td>
</tr>
<tr>
<td>3</td>
<td>0x03</td>
<td>GGP Gateway-to-Gateway Protocol</td>
</tr>
<tr>
<td>4</td>
<td>0x04</td>
<td>IP-in-IP IP in IP (encapsulation)</td>
</tr>
<tr>
<td>5</td>
<td>0x05</td>
<td>ST Internet Stream Protocol</td>
</tr>
<tr>
<td>6</td>
<td>0x06</td>
<td>TCP Transmission Control Protocol</td>
</tr>
<tr>
<td>7</td>
<td>0x07</td>
<td>CBT Core-based trees</td>
</tr>
<tr>
<td>8</td>
<td>0x08</td>
<td>EGP Exterior Gateway Protocol</td>
</tr>
<tr>
<td>9</td>
<td>0x09</td>
<td>IGP Interior Gateway Protocol (and their IGRP))</td>
</tr>
<tr>
<td>10</td>
<td>0x0A</td>
<td>BBN-RCC-MON BBN RCC Monitoring</td>
</tr>
<tr>
<td>11</td>
<td>0x0B</td>
<td>NVP-II Network Voice Protocol</td>
</tr>
<tr>
<td>12</td>
<td>0x0C</td>
<td>PUP Xerox PUP</td>
</tr>
<tr>
<td>13</td>
<td>0x0D</td>
<td>ARGUS ARGUS</td>
</tr>
<tr>
<td>14</td>
<td>0x0E</td>
<td>ECHO ECHO</td>
</tr>
</tbody>
</table>

Diagram

```
TCP -- IP
  |         |
  |         |
  V/HL     TOS
```

<table>
<thead>
<tr>
<th>IP</th>
<th>TCP</th>
</tr>
</thead>
<tbody>
<tr>
<td>V/HL</td>
<td>TOS</td>
</tr>
<tr>
<td>ID</td>
<td>Flags/Offset</td>
</tr>
<tr>
<td>TTL</td>
<td>H. Checksum</td>
</tr>
<tr>
<td>Source IP address</td>
<td>Destination IP address</td>
</tr>
</tbody>
</table>

Number 40
Protocol Demultiplexing

- Multiple choices at each layer
Today’s Lecture

- Network links and LANs
- Layering and protocols
- Internet design
Goals [Clark88]

0. **Connect existing networks**
 Initially ARPANET and ARPA packet radio network

1. **Survivability**
 Ensure communication service even in the presence of network and router failures

2. **Support multiple types of services**

3. **Must accommodate a variety of networks**

4. **Allow distributed management**

5. **Allow host attachment with a low level of effort**

6. **Be cost effective**

7. **Allow resource accountability**
Goal 1: Survivability

- If network is disrupted and reconfigured…
 - Communicating entities should not care!
 - No higher-level state reconfiguration

- How to achieve such reliability?
 - Where can communication state be stored?

<table>
<thead>
<tr>
<th></th>
<th>Network</th>
<th>Host</th>
</tr>
</thead>
<tbody>
<tr>
<td>Failure handing</td>
<td>Replication</td>
<td>“Fate sharing”</td>
</tr>
<tr>
<td>Net Engineering</td>
<td>Tough</td>
<td>Simple</td>
</tr>
<tr>
<td>Routing state</td>
<td>Maintain state</td>
<td>Stateless</td>
</tr>
<tr>
<td>Host trust</td>
<td>Less</td>
<td>More</td>
</tr>
</tbody>
</table>