
416 Distributed Systems

Feb 24, 2016 – DNS and CDNs

Outline

•  DNS Design

•  Content Distribution Networks

2

Naming

•  How do we efficiently locate resources?
•  DNS: name à IP address

•  Challenge
•  How do we scale this to the wide area?

3

Obvious Solutions (1)

Why not use /etc/hosts?
•  Original Name to Address Mapping

•  Flat namespace
•  /etc/hosts
•  SRI kept main copy
•  Downloaded regularly

•  Count of hosts was increasing: machine per
domain à machine per user
•  Many more downloads
•  Many more updates

4

Obvious Solutions (2)

Why not centralize DNS?
•  Single point of failure
•  Traffic volume
•  Distant centralized database
•  Single point of update

•  Doesn’t scale!

5

Domain Name System Goals

•  Basically a wide-area distributed database
•  Scalability
•  Decentralized maintenance
•  Robustness
•  Global scope

•  Names mean the same thing everywhere

•  Don’t need
•  Atomicity
•  Strong consistency

6

Programmer’s View of DNS

• Conceptually, programmers can view the DNS
database as a collection of millions of host entry
structures:

• Functions for retrieving host entries from DNS:
• getaddrinfo: query key is a DNS host name.
• getnameinfo: query key is an IP address.

/* DNS host entry structure */
struct addrinfo {
 int ai_family; /* host address type (AF_INET) */
 size_t ai_addrlen; /* length of an address, in bytes */
 struct sockaddr *ai_addr; /* address! */
 char *ai_canonname; /* official domain name of host */
 struct addrinfo *ai_next; /* other entries for host */
};

7

DNS Records

RR format: (class, name, value, type, ttl)

•  DB contains tuples called resource records (RRs)
•  Classes = Internet (IN), Chaosnet (CH), etc.
•  Each class defines value associated with type

FOR IN class:

•  Type=A
•  name is hostname
•  value is IP address

•  Type=NS
•  name is domain (e.g. foo.com)
•  value is name of authoritative name

server for this domain

•  Type=CNAME
•  name is an alias name for some

“canonical” (the real) name
•  value is canonical name

•  Type=MX
•  value is hostname of mailserver

associated with name

8

Properties of DNS Host Entries

•  Different kinds of mappings are possible:
•  Simple case: 1-1 mapping between domain name and

IP addr:
• kittyhawk.cmcl.cs.cmu.edu maps to 128.2.194.242

•  Multiple domain names maps to the same IP address:
• eecs.mit.edu and cs.mit.edu both map to 18.62.1.6

•  Single domain name maps to multiple IP addresses:
• aol.com and www.aol.com map to multiple IP addrs.

•  Some valid domain names don’t map to any IP
address:

9

DNS Design: Hierarchy Definitions

root

edu net
org

uk com

gwu ucb ubc bu mit

cs ece
ugrad

•  Each node in hierarchy
stores a list of names that
end with same suffix

•  Suffix = path up tree
•  E.g., given this tree, where

would following be stored:
•  Fred.com
•  Fred.edu
•  Fred.cs.ubc.edu
•  Fred.ugrad.cs.ubc.edu
•  Fred.cs.mit.edu

10

DNS Design: Zone Definitions

root

edu net
org

uk com
ca

gwu ucb cmu bu mit

cs ece
cmcl Single node

Subtree

Complete
Tree

•  Zone = contiguous section
of name space

•  E.g., Complete tree, single
node or subtree

•  A zone has an associated
set of name servers

•  Must store list of names and
tree links

11

DNS Design: Cont.

•  Zones are created by convincing owner node to
create/delegate a subzone
•  Records within zone stored at multiple redundant name

servers
•  Primary/master name server updated manually
•  Secondary/redundant servers updated by zone transfer

of name space
•  Zone transfer is a bulk transfer of the “configuration” of a DNS

server – uses TCP to ensure reliability

•  Example:
•  CS.UBC.EDU created by UBC.EDU administrators
•  Who creates UBC.EDU or .EDU?

12

DNS: Root Name Servers

•  Responsible for “root”
zone

•  Approx. 13 root name
servers worldwide
•  Currently {a-m}.root-

servers.net
•  Local name servers

contact root servers
when they cannot
resolve a name
•  Configured with well-

known root servers
•  Newer picture à

www.root-servers.org

13

Physical Root Name Servers

•  Several root servers have multiple physical servers
•  Packets routed to “nearest” server by “Anycast” protocol
•  346 servers total

14

Servers/Resolvers

•  Each host has a resolver
•  Typically a library that applications can link to
•  Local name servers hand-configured (e.g. /etc/

resolv.conf)
•  Name servers

•  Either responsible for some zone or…
•  Local servers

•  Do lookup of distant host names for local hosts
•  Typically answer queries about local zone

15

Typical Resolution

Client Local
DNS server

root & edu
DNS server

ns1.cmu.edu
DNS server

www.cs.cmu.edu

NS ns1.cmu.edu www.cs.cmu.edu

NS ns1.cs.cmu.edu

ns1.cs.cmu.edu
DNS

server

16

Typical Resolution

•  Steps for resolving www.cmu.edu
•  Application calls gethostbyname() (RESOLVER)
•  Resolver contacts local name server (S1)
•  S1 queries root server (S2) for (www.cmu.edu)
•  S2 returns NS record for cmu.edu (S3)
•  S1 queries S3 for www.cmu.edu
•  S3 returns A record for www.cmu.edu

17

Lookup Methods

Recursive query:
•  Server goes out and

searches for more info
(recursive)

•  Only returns final answer
or “not found”

Iterative query:
•  Server responds with as

much as it knows
(iterative)

•  “I don’t know this name,
but ask this server”

Workload impact on choice?
•  Local server typically does

recursive
•  Root/distant server does

iterative requesting host
surf.eurecom.fr

gaia.cs.umass.edu

root name server

local name server
dns.eurecom.fr

1

2

3
4

5 6 authoritative name
server

dns.cs.umass.edu

intermediate name server
dns.umass.edu

7

8

iterated query

18

Workload and Caching

•  Are all servers/names likely to be equally popular?
•  Why might this be a problem? How can we solve this problem?

•  DNS responses are cached
•  Quick response for repeated translations
•  Other queries may reuse some parts of lookup

•  NS records for domains

•  DNS negative queries are cached
•  Don’t have to repeat past mistakes
•  E.g. misspellings, search strings in resolv.conf

•  Cached data periodically times out
•  Lifetime (TTL) of data controlled by owner of data
•  TTL passed with every record

19

Typical Resolution

Client Local
DNS server

root & edu
DNS server

ns1.cmu.edu
DNS server

www.cs.cmu.edu

NS ns1.cmu.edu www.cs.cmu.edu

NS ns1.cs.cmu.edu

ns1.cs.cmu.edu
DNS

server

20

Subsequent Lookup Example

Client Local
DNS server

root & edu
DNS server

cmu.edu
DNS server

cs.cmu.edu
DNS

server

ftp.cs.cmu.edu

21

Reliability

•  DNS servers are replicated
•  Name service available if ≥ one replica is up
•  Queries can be load balanced between replicas

•  UDP used for queries
•  Need reliability à must implement this on top of UDP!
•  Why not just use TCP?

•  Try alternate servers on timeout
•  Exponential backoff when retrying same server

•  Same identifier for all queries
•  Don’t care which server responds

22

Reverse DNS

•  Task
•  Given IP address, find its name

•  Method
•  Maintain separate hierarchy based

on IP names
•  Write 128.2.194.242 as

242.194.2.128.in-addr.arpa
•  Why is the address reversed?

•  Managing
•  Authority manages IP addresses

assigned to it
•  E.g., CMU manages name space

128.2.in-addr.arpa

edu

cmu

cs

kittyhawk
128.2.194.242

cmcl

unnamed root

arpa

in-addr

128

2

194

242
23

.arpa Name Server hierarchy/replication

•  At each level of hierarchy, have group
of servers that are authorized to
handle that region of hierarchy

128

2

194

kittyhawk
128.2.194.242

in-addr.arpa a.root-servers.net • • • m.root-servers.net

chia.arin.net
(dill, henna, indigo, epazote, figwort, ginseng)

cucumber.srv.cs.cmu.edu,
t-ns1.net.cmu.edu
t-ns2.net.cmu.edu

mango.srv.cs.cmu.edu
(peach, banana, blueberry)

24

Prefetching

•  Name servers can add additional data to response
•  Typically used for prefetching

•  CNAME/MX/NS typically point to another host name
•  Responses include address of host referred to in

“additional section”

25

Tracing Hierarchy (1)

•  Dig Program
•  Use flags to find name server (NS)
•  Disable recursion so that operates one step at a time

•  All .edu names handled by set of servers

unix> dig +norecurse @a.root-servers.net NS
greatwhite.ics.cs.cmu.edu

;; ADDITIONAL SECTION:
a.edu-servers.net 172800 IN A 192.5.6.30
c.edu-servers.net. 172800 IN A 192.26.92.30
d.edu-servers.net. 172800 IN A 192.31.80.30
f.edu-servers.net. 172800 IN A 192.35.51.30
g.edu-servers.net. 172800 IN A 192.42.93.30
g.edu-servers.net. 172800 IN AAAA 2001:503:cc2c::2:36
l.edu-servers.net. 172800 IN A 192.41.162.30

IP v6 address

26

