
Quorum Replication
(Paxos)

Feb 12, 2016
CPSC 416

Goal

• Provide a service

• Survive the failure of up to f replicas

• Provide identical service as a non-replicated version (except
more reliable, and perhaps different performance)

(A lot like your assignment 4 (where f = r-1) except without
durable storage)

We’ll cover
• Primary-backup

• Operations handled by primary, it streams copies to backup(s)

• Replicas are “passive”

• Good: Simple protocol. Bad: Clients must participate in recovery.

• quorum consensus

• Designed to have fast response time even under failures

• Replicas are “active” - participate in protocol; there is no master,
per se.

• Good: Clients don’t even see the failures. Bad: More complex.

Problems with p-b

• Not a great solution if you want very tight
response time even when something has
failed: Must wait for failure detector

• For that, quorum based schemes are used

• As name implies, different result:

• To handle f failures, must have 2f + 1
replicas. Why? so that a majority is still alive

Paxos [Lamport]

• quorum consensus usually boils down to the Paxos algorithm.

• Very useful functionality in big systems/clusters.

• Some notes in advance:

• Paxos is painful to get right, particularly the corner cases. Steal an
implementation if you can. See Yahoo’s “Zookeeper” as a starting point.

• There are lots of optimizations to make the common / no or few failures
cases go faster; if you find yourself implementing, research these.

• Paxos is expensive, as we’ll see. Usually, used for critical, smaller bits of data
and to coordinate cheaper replication techniques such as primary-backup
for big bulk data.

Paxos requirement

• Correctness (safety):
–All nodes agree on the same value
–The agreed value X has been proposed by

some node
• Fault-tolerance:

–If less than N/2 nodes fail, the rest should
reach agreement eventually w.h.p

–Liveness is not guaranteed

Paxos: general approach

• Elect a replica to be the Leader
• Leader proposes a value and solicits

acceptance from others
• If a majority ACK, the leader then

broadcasts a commit message.

• This process may be repeated many times,
as we’ll see.

Paxos slides adapted from Jinyang Li, NYU; some terminology from “Paxos Made Live” (Google)

Why is agreement hard?
• What if >1 nodes think they’re leaders simultaneously?
• What if there is a network partition?
• What if a leader crashes in the middle of solicitation?
• What if a leader crashes after deciding but before

broadcasting commit?
• What if the new leader proposes different values than

already committed value?

Basic two-phase commit

• Coordinator tells replicas: “Value V”
• Replicas ACK
• Coordinator broadcasts “Commit!”

• This isn’t enough
– What if some of the nodes or the coordinator

fails during the communication?
– What if there’s more than 1 coordinator at the

same time? (let’s solve this first)
9

Combined leader election and
two-phase

Propose(N) -- dude, I’m the master

if N >= Nh, Promise(N) -- ok, you’re the boss. (I haven’t seen anyone
with a higher N, the highest N that I observed was Nh)

if majority promised: Accept(V, N) -- please agree on
the value V
if N >= Nh, ACK(V, N) -- Ok!
if majority ACK: Commit(V)

Multiple coordinators
• The value N is basically a lamport clock.
• Nodes that want to be the leader generate an N higher than any

they’ve seen before
• If you get NACK’d on the propose, back off for a while -

someone else is trying to be leader
• Have to check N at later steps, too, e.g.:
• Leader1: N = 5 --> propose --> promise
• Leader2: N = 6 --> propose --> promise
• Leader1: N = 5 --> accept(V1, ...)
• Replicas: NACK! Someone beat you to it.
• Leader2: N = 6 --> accept(V2, ...)
• Replicas: Ok! 11

But...

• What happens if there’s a failure? Let’s
say the coordinator crashes before
sending the commit message

• Or if only one or two of the replicas
received the commit message

12

Paxos solution

• Proposals are ordered by proposal #
• Each acceptor may accept multiple

proposals
–If a proposal with value v is chosen, all higher

proposals must have value v
• 3-round protocol (complex!)

Paxos operation: node state

• Each node maintains:
–na, va: highest proposal # and its

corresponding accepted value for round a
–nh: highest proposal # seen (for round a)
–myn: my proposal # in Paxos round a (leader’s

state when proposing in this round)

Paxos operation: 3-phase
protocol

• Phase 1 (Prepare)
–A node decides to be leader (and proposes)
–Leader choose myn > nh
–Leader sends <prepare, myn> to all nodes
–Upon receiving <prepare, n>

If n < nh
 reply <prepare-reject>
Else
 nh = n
 reply <prepare-ok, na,va>

This node will not accept
any proposal lower than n

See the
relation to
lamport
clocks?

Paxos operation
• Phase 2 (Accept):

–If leader gets prepare-ok from a majority
V = non-empty value corresponding to the highest na received
If V= null, then leader can pick any V
Send <accept, myn, V> to all nodes

–If leader fails to get majority prepare-ok
• Delay and restart Paxos

–Upon receiving <accept, n, V>
If n < nh
 reply with <accept-reject>
else
 na = n; va = V; nh = n
 reply with <accept-ok>

Paxos operation

• Phase 3 (Commit)
–If leader gets accept-ok from a majority

• Send <commit, va> to all nodes
–If leader fails to get accept-ok from a majority

• Delay and restart Paxos

Paxos Examples

• Failure after getting 1 node to accept the
value
–One example where the master hears the

value from one of the nodes
–One example where a new value wins

• Failure after getting > 1/2 nodes to accept
the value

• Simultaneous failure of master and the 1
node that accepted in a 5 node system

18

Paxos operation: an example

Prepare,N1:1

N0 N1 N2

nh=N1:0
na = va = null

nh=N0:0
na = va = null

nh= N1:1
na = null
va = null

ok, na= va=null

Prepare,N1:1

ok, na =va=nulll
nh: N1:1
na = null
va = null

nh=N2:0
na = va = null

Accept,N1:1,val1
Accept,N1:1,val1

nh=N1:1
na = N1:1
va = val1

nh=N1:1
na = N1:1
va = val1

ok
ok

Commit,val1 Commit,val1

Replication Wrap-Up

• Primary/Backup quite common, works well,
introduces some time lag to recovery when
you switch over to a backup. Doesn’t
handle as large a set of failures. f+1 nodes
can handle f failures.

• Paxos is a general, quorum-based
mechanism that can handle lots of failures,
and quick response time. 2f+1 nodes to
handle f failures

