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Abstract—Temporal properties are useful for describing and
reasoning about software behavior, but developers rarely write
down temporal specifications of their systems. Prior work on
inferring specifications developed tools to extract likely program
specifications that fit particular kinds of tool-specific templates.
This paper introduces Texada, a new temporal specification
mining tool for extracting specifications in linear temporal logic
(LTL) of arbitrary length and complexity. Texada takes a user-
defined LTL property type template and a log of traces as
input and outputs a set of instantiations of the property type
(i.e., LTL formulas) that are true on the traces in the log.
Texada also supports mining of almost invariants: properties with
imperfect confidence. We formally describe Texada’s algorithms
and evaluate the tool’s performance and utility.

I. INTRODUCTION

Specifying and reasoning about the temporal behavior of
programs has been extensively studied [15], [16], [26]. One
relatively recent idea is to mine a set of traces generated by a
program to derive likely temporal specifications of the program,
an API, or some other aspect of the software [1], [11], [19],
[38], [46], [47]. For example, consider Figure 1, which lists
a set of traces modeled after the /var/log/secure.log file in
OSX. These traces satisfy the temporal property “guest login
is always followed by authorized”, which indicates that either
the guest account has no password, or guest logins always
succeed. Mined specifications cannot replace manually written
specifications created by an expert since a property mined from
program traces could be a false positive!. Nevertheless, as
many programs lack formal specifications, mined specifications
are valuable and have been shown to be useful for a wide
assortment of tasks, such as testing [10], malware detection [9],
data structure repair [12], supporting program evolution [11],
[17], and debugging [21], [36], [37], [46].

We present Texada, a tool that implements algorithms to
mine linear temporal logic (LTL) [16] properties of arbitrary
length and complexity. Note the property “guestlogin is
always followed by authorized” mined from the log in
Figure 1 can be expressed in LTL as G(guest login —
XFauthorized). Unlike prior specification mining tools that
extract a specific set of pre-defined templates [19]-[21], [46],
[47], Texada (1) mines specifications described by an arbitrary,
user-defined, LTL template, and (2) can mine specifications
that satisfy user-defined support and confidence thresholds.
While it is unclear how to adapt prior miners to extract
new patterns, such as the “1 cause-2 effect precedence chain
between two events” (p precedes s,t between g and r) [15],
Texada handles this pattern and all other LTL-based patterns by
design. We show that Texada’s property types are sufficient to

The property “guest login is always followed by authorized” would be
a false positive if a guest login in which the guest mistyped her password (and
failed to authenticate) is missing from the log.

Trace 1 Trace 2 Trace 3 Trace 4
Log: login attempt | login attempt | login attempt | login attempt
auth failed guest login auth failed auth failed
login attempt | auth failed login attempt | login attempt
auth failed authorized authorized guest login
authorized

Property type: G(z — X F y) or “xalways followed by 1 ”
‘ Texada

Property instances: G (guest login — X F authorized)

Fig. 1: (Top) Example inputs to Texada, including an authentication
log and a property type. (Bottom) Texada’s mined property instances
output: a set of LTL formulas based on the property type input template
that evaluates to true on each trace in the input log.

capture both existing temporal specification taxonomies, like in
Perracotta [47] and Dwyer et al. [15], as well as specification
templates used in custom-built miners like Synoptic [7].
Texada can also mine almost invariants, or temporal
properties that are falsified at some, but not all, locations
in the input traces. Texada provides two controls for this: the
confidence threshold allows a user to control the degree to which
a mined property can be violated and the support threshold
allows a user to control the minimum number of times that a
property was validated. For example, if “a always followed by
b” is mined from a log, the user may interpret this property
differently depending on its support (i.e. the number of a events
in the log): the more a events there are, the less likely that “a
always followed by b” is true by chance. More concretely, the
property G(guest login — XFauthorized) in Figure 1 has
confidence of 1 on each trace in the figure, but a support of 0 on
traces 1 and 3, and a support of 1 on traces 2 and 4. As another
example, the property Fauthorized (eventually authorize
appears in the trace), has confidence of 0.75 over the entire
log. Texada allows users to specify the support and confidence
thresholds that all mined properties must satisfy. Mining of
almost invariants is supported by other specification miners [11],
[18], [31], [47]. Our contribution is the generalization of the
calculation of these statistics to arbitrary LTL properties.
Texada takes two inputs (Figure 1): (1) log: a text file
containing multiple traces, where each trace is a totally ordered
sequence of string events, and (2) property type: an LTL formula
whose atomic propositions are variables. Texada’s output is a set
of LTL formulae, or property instances, that are instantiations
of the input property type. In a property instance, the variable
atomic propositions in the property type are replaced with events
from the log. Texada guarantees that for the given support and
confidence thresholds (1) every returned property instance is
valid on each of the input traces in the input log and (2) it
returns all valid property instances of the input property type.
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Our work makes the following contributions:

* We present two algorithms, a linear miner and a map miner,
for mining arbitrary LTL specifications from logs of program
behavior. We also present an algorithm to compute support,
support potential, and confidence statistics of arbitrary LTL
properties. These algorithms are implemented in the Texada
tool, which is released as open source [40] and includes
ready-to-use property types from [7], [15], [47].

* We evaluate Texada’s performance and show that it outper-
forms the specialized temporal property miner in Synoptic [7].
Texada runs in seconds on logs with hundreds of execution
traces with each trace containing thousands of events.

* We evaluate Texada’s utility by using it to (1) mine patterns
from a log of website activity studied by two previous
tools [23], [35]. We find that Texada-generated property
instances are concise and help to focus attention on the
relevant properties with particular structure. (2) We use
Texada to confirm expected properties of a solution to the
Sleeping Barber problem [13]. And, (3) we combine Texada
with Daikon [17] to infer likely data-temporal properties.

II. FORMAL BACKGROUND
We begin by formally describing what we mean by a log,
a trace, and an event.

Definition 1 (Log, trace, and event). The alphabet of events
is a finite alphabet of strings. An ordered sequence of events
is a trace, and a set of traces is a log.

We use the term event variable to denote a place holder for
an event. In this paper we use the beginning of the alphabet
to denote events (e.g., a,b,c) and the end of the alphabet to
denote event variables (e.g., x,y,z).

We use Linear Temporal Logic [16] to compactly specify
specification templates, which we call property types. LTL
statements assert certain conditions over time and use the
operators until (U), next (X), eventually (F), always (G), weak
until (W), release (R), and strong release (M). In this paper
LTL will refer to a restricted version of Propositional Temporal
Logic (PLTL), in which the non-temporal parts of formulae are
built from atomic propositions and the usual logic operators
A, V, and —. We define LTL formulae in a manner similar to
Emerson [16].

Definition 2 (LTL formula). An atomic proposition, p, is an
LTL formula. If p and g are LTL formulae, so are p A g, —p,
p U g, and X p.

We can then define all other logic operators, like VV and —.
Any non-temporal formula is true on a trace if it is true on the
first event of the trace. The other temporal operators follow:

- Until: p U g, holds if there is an event in the trace where
q holds and if p is true on all events up to the first event
where g holds.

- Next: X p, holds if p is true on the event immediately
following the trace’s first event.

- Finally/Eventually: F p =true U p, holds if there exists a
future event in the trace where p is true.

- Globally/Always: G p = —F(—p), holds on a trace if p holds
on all events in the trace.

The operators W, R, and M are variations of until and are
defined as in [2]. Standard LTL semantics assume an infinite
sequence of events. Since Texada mines specifications from

finite traces, we redefine the LTL semantics to fit our context
(see end of this section).

A property type captures the temporal relationships between
a set of event variables and (optionally) a set of events.

Definition 3 (Property type). A property type is an LTL formula
in which all of the atomic propositions are either event variables
or events.

For example, the property type G(x — XFy) represents
the “x is always followed by y” relationship between x and y.
Referring to events in a property type allows us to, amongst
other things, establish scope. For example, if we are interested
in expressing “x is always followed by y” between open_ file
(denoted of) and close _file (denoted cf), then we can use these
events in the property type to create a scope (as in [15]):
G((of A—ctAFcf) = (x = (mcf U (yA—ct))) U cf

A property instance corresponds to a property type and has
identical LTL structure, but with each event variable in the
property type replaced by an event. Following Beschastnikh et
al. [5], we call the map which associates each variable with
an event a binding. For example, a property instance of the
“x is always followed by y” property type in a program trace
may be “open_file is always followed by close file”, i.e.,
G(open_file — XFclose_file).

Definition 4 (Property instance). Let IT be a property type.
Then, 1t is a property instance of Il (or an instantiation of IT)
if @ is an LTL formula that is identical to IT in structure and
in which all of the atomic propositions are events.

Definition 5 (Binding). Let E be an alphabet of events and
let V be a finite set of event variables. Then, a binding® is a
function b: V — E.

Applying a binding to the variables in a property type creates
a property instance corresponding to that binding: applying
{x — open_file,y — close_file} to G(x — XFy) creates
the property instance G(open_file — XFclose_file). We
use “property” in place of “property instance” and “property
type” when the context makes it clear which one we mean.

We say that a binding and its corresponding property
instance are valid on a log if the property instance holds on
each trace in the log. Generally, we are interested in mining all
of the valid property instances. But, we may also be interested
in those instances that are most likely (e.g., because a log is
incomplete or contains anomalous or buggy executions). To
help with these cases we generalize the notion of validity.

Definition 6 (Trace support potential). The support potential
of a property instance T on a trace ¢ is the number of time
points of ¢ which could falsify .

Definition 7 (Trace support). The support of a property instance
T on a trace ¢ is the number of time points of ¢+ which could
falsify m, but do not falsify .

To explain these further, consider checking Ga on some
trace. One way to do this is to iterate along the trace and
check whether the event at each position is a. If at any time
point —a is found to be true, Ga is falsified. Therefore, for Ga,

2 A binding may bind multiple variables in V to the same event. This may
produce trivial results: for example, G(x — Fy), a common formulation of
always followed by, is true any time x and y bind to the same event. This is
why in this paper we use XFy instead of Fy, i.e., G(x — XFy).



function texada(property type string prop_s, log L, thresholds T)
/I Returns: valid property instances of prop_s on L.
let valid_instances = []
prop = parse—property—type(prop_s)
traces = parse—log(L)
for binding in gen—binding(prop.vars, traces.events)
prop_instance = instantiate(prop, binding)
valid = check(prop_instance, traces, T)
if (valid) valid_instances.add(prop_instance)
return valid_instances

OO 0NN B W~
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Fig. 2: A high-level description of Texada. The two versions of the
check function (line 8) are listed in Figures 3 (linear miner) and
Figure 6 (map miner).

the evaluation of a at each position in the trace is potentially
falsifiable. So the support potential for this property instance
is the length of the trace, and its support is the number of
positions in the trace at which a appears. In general, the number
of falsifiable time points depends on both the structure of the
property instance and the sequence of events in the trace. We
elaborate further on falsifiable time points in Section I'V-A.

We use trace confidence to denote the ratio of trace support
to trace support potential (if both are O, confidence is 1). A
confidence of 1 means that the instance is not falsified at any
time point. We say that a property instance is vacuously true
if its support and support potential are both 0. The global
support and global support potential of a property instance is
the sum of its support/support potential over all traces in the
log; global confidence is the ratio of global support to global
support potential. We use the terms support, support potential,
and confidence when it is clear from the context if we mean
the trace-based or global versions.

We can now formulate Texada’s objective. Texada takes as
inputs a log, a property type, and support, support potential,
and confidence thresholds®. Texada outputs a set of property
instances such that each instance has support/support potential/-
confidence greater than or equal to the corresponding threshold.

Finite trace semantics. To check a property on a finite
trace we effectively transform the finite trace into an infinite
trace by appending an infinite sequence of terminal events
. This extension defines exactly the infinite trace we are
checking on, so more advanced adaptations of LTL to finite
traces are not necessary [3]. For many property types, this
extension does not affect the validity of the property instances.
For example, consider checking “a is immediately followed by
b, G(a — XD), on a finite trace which ends in a. Adding ®s
to the end of this trace does not change the invalidity of this
property instance on that trace: ® is —b and ® immediately
follows a so the property remains invalid. However, Texada
evaluates Ga to true on a finite trace consisting solely of a
events. This is despite the fact that on the extended trace, i.e.,
aa...ano..., Ga does not hold. It this case Texada checks
a U o instead of G a. Effectively, Texada determines the validity
of the property instances before ®. Instead of requiring the user
to incorporate this additional ® bound into the property type,
Texada implicitly evaluates the property type as if it contained
the ® bound.

3When these thresholds are omitted, Texada uses the default confidence
threshold of 1, and support and support potential thresholds of 0. The user
may specify the trace or global versions of each of these three thresholds.

ITI. TEXADA DESIGN OVERVIEW
Figure 2 lists the pseudocode for Texada’s algorithm. We
overview the design behind this code and then explain Texada’s
two property checking algorithms in Sections IV and V.

(1) Representing a property type. Texada parses an input
property type into a tree structure whose leaves are atomic
propositions (line 4 of Figure 2). Figure 4(c) shows an example
of such a tree. Texada traverses this tree when checking the
validity of a property instance.

This style of checking contrasts with other pattern-mining
tools that use automata to represent temporal properties
(e.g., [7], [35], [39]). Critically, we use the tree representation
to memoize and re-use evaluation results (see Section VI).
Since the sub-trees of two different property instances may be
identical, the memoization significantly speeds up the checking
of many (potentially thousands of) similar property instances.

(2) Representing a trace. Texada parses each input trace into
one of two representations (line 5 of Figure 2): (1) a linear
array form, or (2) a map form in which each event is mapped
to a sorted list of trace locations where the event appears. For
example, the linear form of the trace a,a,b,b is [a,a,b,b,®).
Its map form is {a — [0,1],b — [2,3],® — [4]}. The map form
allows the property checking algorithm to avoid traversing
sections of the trace that do not contain relevant events.

(3) Representing the space of property instances. In line 6
of Figure 2 Texada iterates over the set of property instances
(represented by bindings of variables V to events E). Texada
considers all possible bindings*, or the space of all |V |-element
permutations of E. Texada generates instantiations dynamically,
which bounds space usage.

(4) Checking property instances over traces. Finally, Texada
checks the validity of each property instance on all traces in
the log (line 8, Figure 2) before moving on to the next instance.
The check function on line 8 has two variants, one for each of
the two trace representations (linear/map).

IV. LINEAR MINER

A natural way to evaluate a property instance on a linear
trace is to iterate over the trace and recursively evaluate each
operator according to its semantics (Section II). The core section
of this linear checking algorithm is listed in Figure 3.

We describe the algorithm by checking a property instance
on trace 2 in Figure 1. The linear trace representation is listed
in Figure 4(a) and the property instance we will check is:

(—authorized W guest login) A
G(guest login — XFauthorized)

This is the “guest login always followed by authorized”
property with the added restriction that authorized cannot
occur before guest login (the CauseFirst pattern in Table I).
Internally, Texada represents this property as a tree (Figure 4(c))
and checks this property instance by traversing this tree. The
root of the tree is A; to check it, we check its children on the
first event of the trace (see Figure 3, lines 7-8).

Left sub-tree of A: To check —authorized W guest login,
we follow the checking code for U in Figure 3, lines 25-34 (but
as W is a weak until, we will return true on line 29). We begin

4Texada explores the space of permutations generated without replacement
by default, and has a flag to consider permutations with replacement.



function check—linear(property instance prop, trace t)
// Returns: true if prop holds on ¢, false otherwise.

1
2
3
4 /I Operations that do not require trace traversal:

5 if (prop is event)

6 return (z.first’event() == prop)

7 else if (prop == pAq)

8 return check—linear(p, t) && check—linear(q, 1)
9 else if (prop == pVq)

10 return check—linear(p, t) || check—linear(q, 1)
11 else if (prop == —p)

12 return !check—linear(p, )

13

14 /I Operations that require trace traversal:

15 else if (prop == X p)

16 if (z.first’event().is"terminal())

17 // this creates the infinite sequence of terminal events.

18 return check—linear(p, t)

19 return check—linear(p, t.next event())

20

21 else if (prop == Gp)

22 if (¢.first’event().is' terminal()) return true

23 return check—linear(p, t) && check—linear(prop, t
.next event())

24

25 else if (prop == p U ¢g)

26 if (z.first’event().is"terminal())

27 /I If we get here, we have not seen q:

28 /I need q to occur for until to hold.

29 return false

30 else if (¢ holds on ) return true

31 else if (—p holds on t) return false

32 /I Here, p and !q hold, so we need to look

33 // for a !p or q further down the trace.

34 return check—linear(prop, t.next event())

Fig. 3: A section of the linear checking algorithm.

traversing the linear representation of the trace in Figure 4(a)
at the first event, which is login attempt. Since this does
not evaluate to true on guest login nor on —(—authorized),
we check (—authorized W guest login) on the next event.
Here we return true because guest login has been reached
without violating —authorized.

Right sub-tree of A: In general, to check G p we must check
p on each event in the trace (Figure 3, lines 21-23), recursing
until —p is found or the trace ends. The implication operator
p — q works like =pV g, short-circuiting if —p is found. So, to
check G(guest login — XFauthorized)), we recurse down
the trace. When we reach guest login, we need to check the
implication, XF authorized. At this point the X operator takes
a step along the trace. Then, checking Fauthorized involves

stepping down the trace once more until we find authorized.
We find it at position 4 and return that XFauthorized holds.

Continuing, we find the G sub-property is not violated, and
the full property holds on this trace (it does not hold on the
log in Figure 1 as it is violated in trace 3).

Boolean operators omitted from Figure 3, such as the —, <>,
and @ are implemented by combining the results of checking
p and g with the corresponding operator, as with the other
boolean operators. Evaluation can short-circuit on A, V, and —
operators. The W operator evaluation is identical to U except
that it evaluates to true in the base case.

In both the linear miner and the map miner (Section V),
we take special care to check property types at the end of the
trace to satisfy the finite trace semantics (see Section II). Most
operators have a simple boolean base case for the terminal
event ®. The next operator, X p, requires a more extensive base

1 login attempt

2 guest login A/@\‘
3 anth failed

4 authorized

5 w

guest
(a) login

login attempt —[0],

guest login —[1],
auth failed —[2],
authorized —[3]

(b)

e

(c)

Fig. 4: (a) Linear and (b) map representations of trace 2 from Figure 1.
(c) Syntactic tree for property: (—authorized W guest login) A
G(guest login — XFauthorized).

guest
login

case, since evaluating X p on ® requires evaluating p on ®
(creating the appearance of an infinite trace). This evaluation
terminates because the formula tree for any p is finite, thus
Texada will eventually reach an event at a leaf node, whose
checking does not recurse.

A. Computing support and support potential

The linear miner returns property instances that are never
falsified. We now describe an algorithm to calculate the trace
support for a property instance. Interestingness measures of
temporal properties have been considered previously [11], [27].
However, these measures were restricted to property types of the
form “a is always followed by b” or “a always precedes b”, or
nested variations of these. Texada computes an approximation
of support and support potential for arbitrary LTL formulae,
whose definitions are not captured in this previous work.

Figure 5 lists the pseudocode for the support algorithm?. It
has the same recursive structure as the linear mining algorithm
in Figure 3, but instead of combining boolean values, the
calculation in the recursive call combines counts. The support
potential algorithm (not shown for space reasons) deviates from
the support algorithm in Figure 5 at the atomic propositions:
support returns 1 at satisfied falsifiable time points while support
potential returns 1 at all time points.

Key challenge: equivalence of p — g and —pV g. Note
that the support calculation for V in Figure 5 differs significantly
from Figure 3. This is because the equivalence of p — ¢ and
—pVq is central to our notion of falsifiability. For example,
we would like the support of “a is always followed by b”,
G(a — XFb), to be the number of time points at which a occurs
and is eventually followed by b, and the support potential to
be the total number of time points at which a occurs. For
this formula, the absence of —a designates a falsifiable time
point. However, since a formula like G(aV b) can be re-written
as G(—a — b) or G(—b — a), it is unclear which side of the
implication should determine falsifiability.

The algorithm uses a helper function called interval (not
listed), which takes a proposition and returns the interval
on which this proposition must be checked. This function
returns the interval containing only 7.first event() on atomic
propositions, the interval from ¢.first event() to the terminal

STn our implementation, the algorithm for linear property instance checking
is bundled with support and support potential calculation. We explain them
separately to simplify our presentation.



1 function support(instance prop, trace t)
2 // Returns: the number of atomic proposition evaluations on ¢ which
3 // could have falsified prop on which prop was satisfied
4
5 if (prop is event)
6 if (¢.first’event() == prop) return 1
7 return 0
8
9 else if (prop == pVq)
10 // if a child with an earlier interval is satisfied,
11 // then the property instance is vacuously true
12 if (interval(p, ) > interval(q, 1))
13 if (¢ is satisfied by 7) return O
14 return support(p, t)
15 else if (interval(p, 1) < interval(g, t))
16 if (p is satisfied by 7) return 0
17 return support(q, t)
18 else
19 if (both p and ¢ are satisfied by ¢) return 0
20 else if (support(p,t) >= support(q,t) return support(p.t)
21 return support(q,t)
22
23 else if (prop == —p)
24 if (z.first’event() != p) return 1
25 return 0
26
27 else if (prop == Gq)
28 if (¢.first’event().is'terminal()) return 0
29 return support(g, t) + support(prop, t.next event())
30
31 else if (prop == Fq)
32 if (¢.first’event().is"terminal()) return 0
33 else if (¢ holds on ¢) return support(q, )
34 return support(prop, t.next event())
35
36 else if (prop == Xq)
37 if (z.first’event().is"terminal()) return 0
38 return support(q, t.next event())

Fig. 5: A section of the support calculation algorithm.

event on G,F, U, the interval of X’s child node (in the formula
tree) pushed by one on X, and the union of the interval of the
children of A and V on these operators. An interval i is smaller
than another interval j if i and j are disjoint and i occurs first.

Getting back to the always followed by example, G(—a V
XFb): since the interval for —a is strictly before the interval
for XFb, we execute lines 15-17 in Figure 5 and return the
support of XFb. Here, the algorithm approximates which side’s
falsification indicates a falsifying time point by comparing the
temporal “order” of each side, given by the interval calculation.

The other operators are simpler. The support of Gp is the
sum of support of p at each event. Property instances are in
negative normal form®, so the —p evaluation treats p as an
atomic proposition. The operators not listed for space reasons
correspond in structure to the linear checking algorithm.

Overall, the linear miner and support/support potential
algorithms have a simple recursive structure. Next, we describe
the map miner, which was designed to reduce linear scanning
over traces and reduce redundant computation.

V. MAP MINER
The map miner uses the map trace representation (e.g. Fig-
ure 4(b)). The map-based property instance checker leverages
a key property of LTL: an LTL formula describes the sequence
of events relative to each other. The map checker, therefore,

SPrior to calculating support, Texada converts property instances into negative
normal form, pushing the logical not operators to the leaves.

function check—map(property instance prop, index i)
/I Returns: true if prop holds starting at i, false otherwise.
/I Omitted: boolean connectives, and operators F, R.

1
2
3
4
5 if (prop == Xp)

6 /I Special case for the end of the trace.
7 if (i == omega_pos)

8 return check—map(p, i)

9 /I Else, move forward and check p

10 return check—map(p, i+ 1)

11

12 it (prop == Gp)

13 first_not_p = first—occurrence(—p, [i,omega_pos — 1])
14 /I If p never occurs, G(p) holds.

15 if (first_not_p == false) return true

16 return false

17

18 if (prop ==p U q)

19 // Find q.

20 first_q = first—occurrence(q, [i,omega_pos—1));

21 /I'If q never occurs, until does not hold.

22 if (first_g == false) return false

23 first_not_p = first—occurrence(—p, [i,omega_pos—1])
24 /I'If 'p never occurs, until holds.

25 if (first_not_p == false) return true

26 /I Make sure !p did not occur before q.

27 if (first_not_p < first_q) return false

28 return true

Fig. 6: A section of the map miner checking algorithm.

can skip over the trace between the relevant events (using the
map trace representation). As we will show in Section VII-B,
this makes the map checker much more efficient than the linear
checker, especially on long traces.

The miner is structured as three functions: check-map, first-
occurrence, and last-occurrence. Each one takes a node in the
property instance tree (e.g., Figure 4(c)) and an interval in the
trace, and then traverses the sub-tree rooted at the node. The
check-map function (Figure 6) traverses the tree to implement
operator semantics on a node given the validity of the node’s
sub-trees in the trace at certain positions. This function returns
a boolean and evaluates non-temporal operators identically to
check-linear (Figure 3, lines 7-12).

Temporal operators are implemented by using the first and
last occurrence information provided by the first-occurrence
and last-occurrence functions. first-occurrence (Figure 7)
returns the first position in some interval where a sub-formula
rooted at a node in the property instance tree evaluates to true,
or returns false if no such position exists. For example, in
lines 13-16 of Figure 6, the check-map function evaluates G p
at index i in the trace by using the result of first-occurrence
(—p, [i,omega_pos —1]). If first-occurrence returns false, then
—p never occurs after i, which means that G p is true on this
interval; otherwise G p is false on this interval.

When first-occurrence is called with an event node (i.e.,
a leaf in the sub-tree) it runs a binary search on the sorted
positions list associated with the event (stored in the map trace
representation) to find the first occurrence of the event in a given
interval (line 5 in Figure 7). However, first-occurrence must
also traverse the sub-tree when it is called with a non-leaf node.
Lines 8-20 in Figure 7 detail the case of first-occurrence
(p U gq,intvl): first-occurrence makes a recursive call first-
occurrence (g,intvl), and uses the returned position in a call
to last-occurrence (—p, [intvl.start, j]). Then the first position
where p U g holds in this interval is the point at which there
are no longer any —p events until g or where g occurs (if ¢



1 function first—occurrence(instance prop, interval intvl)
2 // Returns: first index in intvl where prop is true, false otherwise.

if (prop is event)
return binary—search(prop, intvl)

/I Find first position where ¢ is true.
first_q = first—occurrence(y, [intvl.start,omega_pos —1])

3

4

5

6

7 else if (prop == p U q)

8

9

10 // Until needs ¢ to occur.

11 if (first_g == false) return false

12 /I Find the last !p that occurs before the first ¢

13 last_not_p = last—occurrence(—p, [intvl.start, first_q—1])
14 /I If !p does not occur before the first ¢, p U ¢ holds

15 /I on the first element of the interval.

16 if (last_not_p == false) return intvl.start

17 /I If the last !p before ¢ is after the end of our original

18 /Il interval, p U g holds nowhere on that interval.

19 if (last_not_p > intvl.end) return false

20 return last_not_p+1

Fig. 7: Pseudocode for a section of the first-occurrence function that
facilitates the check-map function in Figure 6.

is the start of the trace, p U g holds trivially since there is
nowhere for —p to occur before g). We omit last-occurrence
for space reasons, but it looks similar to first-occurrence.
Returning to the example used in the linear miner descrip-
tion, consider checking the same CauseFirst property instance
in Figure 4(c). We check the same trace, this time using the
map representation listed in Figure 4(b). check-map starts at
the root node, A, and recursively checks its two children.
Left sub-tree of A: To check mauthorized W guest login
we follow Figure 6, lines 19-28 (with line 22 returning
true for the W operator). We find the first occurrence of
guest login: 1. Then, we find the first occurrence of
—(—authorized) = authorized: 3. Since guest login oc-
curs before authorized (1 < 3), we return true.
Right sub-tree of A: To check G(guest login —
XFauthorized)) we find the first occurrence of
—(guest login — XFauthorized) = (guest login A
XG—authorized). We do this by finding the first occurrence
of guest login and of XG—authorized on our desired
interval; if they do not co-occur, we repeat the process on
an interval with a later start point. Since both do not occur
at one point in the trace, we find no first occurrence of
(guest loginAXG-authorized) and find the right sub-tree
to be true. Both sub-trees of A are true, so the property holds.

VI. CHECKING STATE MEMOIZATION

As Texada may check thousands of bindings for a given
property type, it will check many LTL formulae with similar
syntactic trees. This results in redundant computation. Texada
uses memoization to reduce such duplicate computation. A
benefit of the tree representation of property types is that we can
re-use the result of evaluating one instantiation in evaluating a
similar instantiation. This is possible because two instantiations
will frequently have identical sub-formulae, or sub-trees. For
example, Figure 8 shows two property instances of the property
type “x is always followed by y after w until z” [15] with
nearly identical syntactic trees. The T sub-tree in Figure 8
corresponds to the sub-formula (a — (—e U (bA—e))) W e),
which is common to both property instances.

We have implemented a memoization strategy in the map
checker to store the result of evaluating first —occurrence

(b) G(d N —e — :r)

@ G(cA—e— T)

Fig. 8: (a) Syntactic tree for G(c A—e — ((a — (—e U (bA—e))) W e)),

(b) Syntactic tree for G(d A—e — ((a— (e U (bA—e))) W e)).
The tree on the right differs in a single node (left-most terminal d
node). Therefore, we can determine the truth value of the highlighted
sub-tree by using a memoization of the computation of an identical
sub-tree that appears on the left.

and last —occurrence on a subformula for a given in-
terval. We started with memoizing these functions as they
are frequently invoked. We plan to extend memoization to
other intermediate checking state in our future work. Our
implementation retains memoized state until the mining process
completes. Our evaluation in Section VII-B indicates that on
short formulas the memoized state is small compared to that
of the input log, which must be maintained in memory.

VII. EVALUATION
In this section we show that Texada generalizes over prior
work (Section VII-A), that it is fast (Section VII-B), and that
it is useful (Section VII-C, VII-D, and VII-E).

A. Expressiveness of property types

Our survey of related work indicates that Texada property
types are sufficient to capture both the various temporal
specification taxonomies, like in Perracotta [47] and Dwyer et
al. [15], as well as specification templates used in the numerous
custom-built miners like Synoptic [7].

Perracotta [47] is a tool to mine eight different kinds of
temporal properties. These properties cover common program
patterns. For example, Perracotta’s Response pattern represents
a pattern in which an action x is followed by a response y.
Table I lists the property patterns mined by Perracotta and the
corresponding Texada LTL property types.

Dwyer et al. [15] defined a set of LTL specification
patterns based on a survey of a variety of specifications. A
specification pattern in their formulation consists of a pattern
and a scope over which the pattern must be true. Table II
lists two specification patterns as property types. All of the
specification patterns trivially translate to Texada property types.

Synoptic [7] is a tool to infer an FSM model from a log
of system behavior to support programmer comprehension. Its
algorithm relies on the mining of three temporal property types
listed in Table III. These properties have also been used to
infer more accurate models in InvariMint [5] and CSight [6].

B. Performance evaluation

We evaluated Texada’s performance on a machine running
64-bit Ubuntu 14.04 TLS with 8GB RAM and an Intel i5



TABLE I: Property patterns mined by the Perracotta tool [47] and
their equivalent property types in Texada.

[ Pattern [ Reg. Ex. [ LTL |
Response yHE(xxFyy*)* G(x — XFy)
Alternating (xy)* (=y W x) AG((x = X(—x U y))A
0= X(y W x)))
MultiEffect | (xyy*)* (=y W x)AG(x — X(—x U y))
MultiCause | (xx*y)* (=y W x) AG(x — XFy) A
G(y — X(—y W x))
EffectFirst yH(xy)* G((x = X(—x U y))A
0= X(oy W x)))
CauseFirst (xx*yy*) (—y W x) AG(x — XFy)
OneCause yE(xyy*)* G(x — X(-x U y))
OneEffect yE(xx*y)* G(x — XFy) AG(y — X(—y W x))

TABLE II: Two example specification patterns from [15], each one
demonstrates a different scope.

Pattern ; Scope LTL
p responds to s, t; after ¢ | G(q — G((sAXFr) —

X(~t U (tAFp))))
G((gN—rAFr)— (=p Ur))

never p; between g and r

TABLE III: Property patterns used in Synoptic [7] and their equivalent
LTL property types in Texada.

[ Pattern [ LTL |
Always followed by | G(x — XFy)
Always precedes Fy— (-y Ux)
Never followed by G(x — XG(—y))

Haswell quad-core 3.2GHz processor. Texada is implemented
in about 7,500 lines of C++, depends on the Boost library’, and
uses the SPOT library [14] to parse and traverse LTL property
types. For all performance experiments comparing to Synoptic,
we use Texada revision a410 [40].

We first compare Texada’s linear and map miners against the
temporal miner in Synoptic [7], which mines the three temporal
property types in Table III%. Synoptic mines instances of these
property types from the input log and guarantees that they are
satisfied in the inferred FSM model. Synoptic is an interesting
point of comparison because although it is implemented in Java,
it is highly optimized for mining the three temporal properties.
We were interested to see if Texada’s general property miners
could out-perform Synoptic’s specialized miner. For a proper
comparison, these experiments used a confidence threshold of
1 and a support threshold of 0.

We generated a set of random synthetic logs, each with a
specific number of traces, unique events, and trace length.
We ran Texada’s map miner, linear miner, and Synoptic’s
miner (using the --onlyMinelnvariants option) 5 times on each
log input and report the average runtime. We compared the
Texada miners against Synoptic’s miner along three dimensions:
varying the number of traces (Figure 9), the length of the
traces (Figure 10), and the number of unique events (Figure 11).
These three dimensions determine both Synoptic’s and Texada’s
performance. The take-away from these experiments is that on
the three Synoptic invariant types in Table III the map miner
dominates the linear miner and the Synoptic miner.

Varying the number of traces (Figure 9). The trace length
was held constant at 10,000 and the number of unique events
was held constant at 50. Synoptic threw an OutOfMemory-
Error at 260 traces. All three miners exhibit a linear slow-
down indicating a fixed performance penalty to processing an

http://www.boost.org
8Synoptic is one of the few miners that was available to us for evaluation.

additional input trace.

Varying trace length (Figure 10). The number of traces per
log was held constant at 20, and the number of unique events
was held constant at 100. This figure is similar to Figure 9
in that all miners slow down linearly. The linear miner has
the worst performance since each additional event in a trace
requires further recursion (e.g., for the G operator for “always
followed by” property in Table III).

Varying number of unique events (Figure 11). The number
of traces per log was held constant at 20 and the length of
a trace was held constant at 10,000. The linear miner does
especially poorly with an exponential slow down, while the
Synoptic and map miners have similarly good performance.

The above results indicate that the map miner generally
outperforms the linear miner. This is because the map miner
often avoids recursive trace traversal that the linear miner is
forced to perform. However, we did find property types on
which the map miner performed worse than the linear miner. We
are working to further characterize their relative performance.
Varying support and confidence thresholds. Texada’s code
is optimized for the default thresholds of support of 0 and
confidence of 1. For example, the linear miner can short-circuit
further recursion along the trace for some of the operators’. Non-
default support and confidence thresholds disable most of these
optimizations. This is because to calculate the exact support
or support potential of a property instance, Texada must count
all possible falsifiable time points. We found that decreasing
the trace confidence threshold generally increases runtime. In
Figure 12 we see that increasing the support threshold causes a
variety of effects while mining the always followed by, always
precedes, and never followed by properties'?. In each case an
increase in support threshold causes an initial jump in runtime,
followed by a flat section and sometimes a decrease in runtime.
Introducing the support threshold forces Texada to stop short-
circuiting on the evaluation of several operands; however, once
the support threshold is set too high, the property instance will
fail the threshold on some trace. At this point Texada will begin
to short-circuit evaluation by moving to the next instantiation,
instead of checking the current instantiation on the remaining
traces in the log. Note that this trace short-circuiting is unsafe
if thresholds are specified at the global level, as this forces
evaluation over the entire log.

We discuss the advantages of introducing support and confi-
dence thresholds despite the large runtime cost in Section VII-C.
Benefit of memoization. To evaluate the effect of memoization,
we carried out an experiment with three instantiations of the
property “p occurs at most twice between ¢ and r and s occurs
at most twice between g and r” [15]. We selected this property
type because we found that the map checker was slower than
usual in evaluating instances of this type. To compare the
runtime of the map checker with and without memoization we
slowed down the checker by using a log containing a single,
especially long, trace that we synthesized. The trace consisted
of 36 million events, sampled at random from a set of 10 event

types. We measured the runtime in checking 3 instantiations'!:

9Some examples of short-circuiting: if one branch is found to be false in
evaluating A, if =p occurs in evaluating Gp, or if a property instance is found
to be false on one trace in the log.

10These properties were mined on a randomly-generated log over 18 events
with 20 event traces, each with 10,000 events.

1We used Texada revision df18 [40]
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Fig. 9: Time to mine the three Synoptic property types using Synoptic
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Fig. 10: Time to mine the three Synoptic property types using Synoptic

and Texada’s linear and map miners for logs with varying number of

events per trace.

A, B, and C. We designed the bindings for these so that the
memoized state of B and C would help in evaluating A, and
vice-versa. However, evaluating B would not help in evaluating
C, and vice-versa.

We ran the map checker on A, B, and C in four configu-
rations: (1) [A, B,C] with memoization, (2) [A,B,C], clearing
memoized state after checking A, (3) [B,C,A] with memoization,
(4) [B,C,A], clearing memoized state after checking C. We ran
each configuration 100 times and report the average runtime.

The two orders that do not clear memoized state had nearly
identical runtimes of about 5.7s, indicating that for this example
the checking order does not matter. We believe that this will
generally hold true since we memoize the evaluation of every
sub-formula. The two orders that cleared the memoized state
also had similar runtimes of about 6.1s. In this experiment,
memoization decreased the total runtime by 7%. In practice,
we expect the speed-up to be significantly higher as many more
(than just three) instantiations would share the memoized state.

Memory use in these experiments peaked at 342MiB and
was primarily used to store the input trace. The experiments
generated 14 KiB of memoized state, or 5 KiB per property
instance. Mining all possible instances of the same property
type (with four variables) over the same log (over 10 event
types) requires checking 5,040 property instances'>. At the rate
of 5 KiB per property instance, this process will generate about
25 MiB of memoized state. We aim to improve on the memory
use of memoized state by developing expiration policies to
regularly delete memoized state that is not going be reused.

C. Mining patterns of user activity

To evaluate Texada’s utility we applied it to a web log used
to evaluate the BEAR framework [23] and Perfume [35]. This
log records web requests for a real estate website on which

12The default configuration is to generate bindings without replacement: no
two variables are bound to the same event.
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Fig. 11: Time to mine the three Synoptic property types using Synoptic
and Texada’s linear and map miners for logs with varying number of
unique events.
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Fig. 12: Time to mine each Synoptic property with the Texada linear
miner given different trace support thresholds.

users browse or search for houses and apartments to rent or buy.
Each request has a timestamp and an anonymized IP address;
we use these to interpret the log as separate executions of the
web-site, one execution per client who accesses the site, where
events are the visited site pages.

We reused the event types from the BEAR study by pre-
processing the log to remove irrelevant events, like those
generated by web crawlers, and by assigning semantically
identical events to the same label. The pre-processed log
contained about 12,000 lines, with 13 different events. We
used Texada revision e436 [40] to mine the property types in
Table II with the linear miner. In the analysis we ignored 4
rarely occurring events to simplify inspection. Due to space
constraints we discuss the implications of a select set of mined
property instances. The log had no ground truth to compare
our results to, but we believe the following results show utility.
For each result below we report a runtime that is an average
over 5 runs.

1. F news_page — (!news_page U news_article)

Visits to news article always precede visits to the news page.
(Texada runtime: 1.6s, instances returned: 15, support threshold:
8,000, confidence threshold: 0.98.) This is an instantiation of
“x always precedes y” in Table III and has 0.99 confidence and
9,605 support. This instantiation suggests that the news articles
generate much more initial interest than the news page, and
that this page is only accessed by users who have taken the
time to access an article and want more content. It may indicate
the news page needs to be redesigned for broader appeal.

2. G(sales_page — XF(—sales_anncs))

After visiting a sales page, the sales announcement pages is
always visited. (Texada runtime: 7.5s, instances returned: 3,
confidence threshold: 0.80.) This is an instantiation of “x is
always followed by y” in Table III and has 0.87 confidence and



TABLE IV: Number of instances of G(x — XG(—y)) mined from the
BEAR log with the linear miner using varying global support and
global confidence thresholds. The cell highlighted in the upper left
corresponds to the default Texada thresholds.

conf.
supp. 1 0.95 0.9 0.85 0.8 0.7 0.5 0.3 0.1
0 11 120 141 150 165 169 182 182 182
200 5 105 122 127 142 145 155 155 155
500 2 96 111 116 130 133 143 143 143
5,000 0 87 100 105 118 121 130 130 130
15,000 0 71 78 81 90 93 99 99 99
50,000 0 47 51 53 59 61 64 64 64
100,000 0 29 32 33 35 37 39 39 39
200,000 0 17 18 19 21 21 21 21 21

2,232 support. We expect users interested in buying or selling
a property to navigate from the main sales page to the sales
announcements. However, the lower confidence of the property
suggests there may be a block to easy navigation between the
two. The sales page could be revised to better funnel users
towards announcements.

G(search — G((news_article N XF renting_anncs) —

X(—renting_anncs U (renting_anncs NF sales_anncs))))

Users who visit news article pages eventually visit a sales
announcement page. (Texada runtime: 12.8s, instances returned:
158) We ran this property with confidence threshold 1 and
support threshold 0. This is an instantiation of “p responds
to s, t after ¢” in Table II. This property says that after a
search, every time a user accesses a news article and then a
renting announcement, the user will then subsequently access
a sales announcement (something that does not happen every
time users visit a renting announcement after search). This may
indicate that news articles impact users’ navigation, which can
prompt work on news article accessibility.

The support and confidence thresholds allow the user to
focus on the most likely instantiations. The filtering effect due
to support and confidence is illustrated in Table IV, where
increasing global confidence and support thresholds decreases
the number of instances of the never followed by property found
on the BEAR log. We also see that high support automatically
filters out low-confidence properties; the bottom row of the table
shows that there were no additional properties with support at
least 200K and a confidence value below 0.8. The properties
in the bottom row likely include the key patterns in the log.

Two features distinguish the above properties from results
derived using other tools on the same log [23], [35]. (1) Texada-
generated properties are concise and allow a developer to focus
on and filter by a set of relevant events without needing to
understand other events in the trace. (2) The properties have a
well-defined LTL structure stipulated by the property type.

D. Validating expected behaviour

The sleeping barber problem is a classic concurrency
problem attributed to Edsger Dijkstra [13]. In the problem
a barber alternates between cutting hair, sleeping, and checking
for customers in his waiting room. If a customer walks in and
finds the barber sleeping, the customer wakes up the barber
and gets a haircut. If the customer walks in and the barber is
cutting hair, the customer waits in the waiting room if there is
space, otherwise the customer leaves. When the barber is done
cutting hair, he checks if there are customers in the waiting
room. If there are, then he cuts one of the customer’s hair;
otherwise, he goes to sleep. In our version of the problem, each

customer desires a certain number of haircuts.

Our solution is based on a solution by Teemu Kerola and
represents the barber and each customer as a thread. The
implementation tracks the state of the barber and each customer
and prints the state of each thread whenever (1) a customer
enters, (2) a customer exits, (3) a customer receives the desired
number of haircuts, and (4) the barber retrieves a customer
from the waiting room. We treat the barber’s and customers’
states as events. The resulting trace includes multiple events for
each of the above time points. We call this a multi-propositional
trace: multiple atomic propositions (customer and barber states)
are logged at each time point.

We checked a log from five runs of our solution to the
sleeping barber problem. The runs had seven customers, each
of which desired two haircuts. There were 38 unique events
in the 4874 lines long log, with traces having 892-1036 lines
(99-115 time points). We used Texada to confirm that desired
properties hold over these runs. This analysis is not a proof of
correctness, but as we show below, it can reveal bugs.

No two customers receive haircuts at the same time.
Instantiations of the G(x — —y) will test this property when x
and y are bound to Customer-i-GettingHairCut and Customer-
J-GettingHairCut, respectively, with distinct i and j. Running
this property with the map option took 0.064 seconds and
outputted 424 property instances. We filtered these instances
to find those of the form G(Customer-i-GettingHairCut —
—Customer- j-GettingHairCut), for all distinct i, j pairs, demon-
strating no violations of the mutex in these runs.

Each customer receives 2 haircuts. We check this property
by confirming that each customer transitions to the Getting-
HairCut state from another state exactly twice. A property that
expresses this is an extension of the Bounded Existence property
with global scope [15]: (—x W (x W (—x W (x W G—)))) A
F(x AXF(—x A XFx)). The first half of this property assures
that all transitions to x occur at most twice, and the second
half assures that these transitions occur at least twice'3.

With the map miner, Texada took 0.031s to check this
property, returning 13 property instances. These instances bind
x to Customer-i-Waiting and Customer-i-GettingHairCut for
all i, except Customer-4. Examining the log, we found that
in one trace, Customer-4 transitioned to the GettingHairCut
state only once. The second time the customer was observed to
enter, to be the only one in the waiting room when the barber
checked it, and to exit the barbershop. This turned out to be
a bug in our logging code, not the implementation: no time
point was logged during the haircut for Customer-4. Texada
helped us find this bug.

For this example we have also used Texada to validate the
property Customers are served in the order in which they sit
down. In addition, we used Texada in a similar way to validate
an implementation of the dining philosophers problem. We
omit these for space reasons.

E. Mining data-temporal properties

Texada can be used to develop more advanced program
analyses. We prototyped a tool that combines Texada with
Daikon [17] (a tool to infer likely data invariants from program
traces). Our prototype infers likely data-temporal properties.

13This is an example of an LTL property that is checkable with Texada, but
which may be easier to specify as an automaton.



As an example, consider a Queue class with fields size and
capacity, which represent the current size and the maximum
size of the queue, respectively. For this class Daikon may infer a
data invariant like size < capacity. With Texada, we can infer
temporal relations between these data invariants. For example,
the Queue may also have an isFull flag. While Daikon can infer
a data invariant like (isFull ==true) <= (size == capacity)
at some program points, a more powerful property can be for-
mulated temporally: (isFull == false) U (size == capacity).
That is, “isFull is false until size is equal to capacity”; it
is an instance of “x holds until y becomes true”. This data-
temporal property captures an important correctness condition:
the queue is not flagged as full until it reaches capacity.

We prototyped a version of a tool to mine data-temporal
properties. It works as follows. First, it uses one of Daikon’s
frontends to instrument a program to collect data traces
from a set of program executions (e.g., the program’s test
suite). Then, it uses Daikon to infer likely data invariants
from these traces. The Daikon invariants are spliced into the
control flow of the data traces, matching invariants with their
corresponding program points. This generates a set of totally
ordered invariant traces (which are multi-propositional, as
defined in Section VII-D). Finally, the tool runs Texada on
these traces to generate data-temporal properties.

We applied this technique to QueueAr, a program dis-
tributed with Daikon that implements the Queue class discussed
above. We used QueueAr’s test suite to generate invariant
traces, one per Queue instance. Using Texada we mined:
—“this.currentSize > 1”7 W “this.currentSize == 0"

This instantiation reflects an important (but expected) property
of the queue’s test suite: the Queue is always created empty.

We think that data-temporal properties can be useful in
test-case generation and for bug detection. Evaluation of data-
temporal properties is part of our future work.

VIII. RELATED WORK

The problem of checking an LTL formula on a finite trace
has been considered by van der Aalst et al. [42]; their algorithm
is similar to Texada’s linear checker. There are also efficient
techniques for checking an LTL formula on a single trace using
Alternating Finite Automata [39]. However, the generated AFA
depends on both the property instance and the trace, making the
approach not scalable to our context, which requires checking
a large set of LTL properties across many traces.

Many specification mining tools have appeared in prior
work [38]. Existing tools mine LTL properties, but unlike
Texada, these are designed to mine a particular set of property
types. The Perracotta tool by Yang et al. [47] mines several
two variable response patterns and chains alternating properties
together to form multi-variable properties. It also supports
approximate inference to filter out uninteresting properties. Lo
et al. extend Yang et al.’s work with a miner that produces
quantified temporal rules that capture data flow relationships
among events [33]. Li et al. [28] extend Perracotta to mine
simple LTL patterns from traces and merge these to analyze
digital circuits. These same LTL patterns are mined between
data invariants in [4], [8]. Although prior work has not explicitly
mined temporal relationships between data invariants, there has
been work on augmenting models, such as FSMs and Live
Sequence Diagrams, with data invariants [30], [34], [45].

Weimer et al. [46] mine alternating and response pat-

terns on exceptional control-flow to effectively identify bugs.
Javert [19] also mines alternating patterns, along with resource
ownership patterns (i.e., (ab*c)*) and composes them into
more complex properties. Reger et al. use a similar pattern-
composition technique [24] and extend it to accommodate
imperfect traces [25]. Gabel et al. [20] improve the efficiency
of mining the alternating and resource allocation patterns by
using BDDs to represent property types. Like all these miners,
Texada is a dynamic analysis technique and may produce
false positives. One promising approach to validate mined
specifications of programs whose code is available is to use
deductive specification inference [22].

A number of tools mine association rules (response patterns
between events sets): DynaMine [29] examines revision history
of a program and observes program behaviour to filter behaviour
and to avoid blow-up of potential patterns. Thummalapenta
et al. [41] mine such rules to infer exception-handling rules.
Lo et al. [11] develop an algorithm to mine response patterns
between sequences of events.

InvariMint [5] is a declarative model inference specification
approach that requires an algorithm designer to specify model
inference algorithms as parameterized FSM templates with
bindings functions that resemble Texada property types. Texada
can be used to mine the legal bindings in InvariMint.

Recent work on inferring various types of models from
source code, execution traces, and log files, relies on temporal
properties [6], [7], [32], [44]. For example in [44] temporal
properties are specified manually by a user to guide specifi-
cation mining, and in [6], [7] a set of properties are mined
automatically from the input traces. Texada can improve both
types of work — the Texada-mined property instances can be
presented to the user for selection, or used en masse.

The recursive-descent-parsing-style checking of LTL in
Texada does not work for classic LTL with infinite trace
semantics. The standard way to check an LTL formula is
to derive a Biichi Automaton [43] and to intersect it with
the model. Using existing model-checking tools out-of-the-
box (e.g., SPOT [14]) for specification mining is not typically
possible because of the mis-matched trace semantics.

IX. CONCLUSION

Texada is a general LTL miner that is a swiss army knife
of property mining. It replaces a suite of tools that are based
on specific templates and supports tasks ranging from log
exploration to property validation. We presented two algorithms
in Texada that mine arbitrary LTL properties, and an algorithm
to compute the support and confidence for an arbitrary LTL
property. Our evaluation demonstrates that Texada is fast and
can outperform Synoptic, an existing special-purpose miner. We
also demonstrated Texada’s utility by mining properties from a
web log of user activity, by validating expected properties of a
solution to the Sleeping Barber problem, and by mining data-
temporal properties from traces of Daikon invariants. Property
types in Texada encompass those proposed in prior work and
can capture a wide variety of temporal patterns. We encourage
other researchers to build their software analyses on top of
Texada, which is open sourced [40] and includes 67 pre-defined
property types from prior work [7], [15], [47].
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