
Integration of Static Instruction Analysis with Dynamic

Information Flow Tracking

Ivan Beschastnikh, Ian Post, Joshua Schwartz, Benedict Singer

{ivan,ianp,vegan,singerb} @uchicago.edu

March 13, 2006

Abstract

Computer security is a constant issue for computer
systems; thus, many schemes have been proposed
to stop specific attacks. In this paper, we present
a software implementation of the Dynamic Informa-
tion Flow Tracking (DIFT) system which is designed
to stop a broad range of control flow attacks [9]. We
modified the SimpleScalar/PISA simulator (v.3.0) to
include an extended instruction set implementing tag
operations. Due to the software nature of our scheme
we can apply static analysis of assembly code.

1 Introduction

With the growth of the internet, computer security
vulnerabilities have become an increasing problem,
and researchers have devoted much effort to the prob-
lem of designing secure software and preventing ex-
ploitation in insecure software [10, 6]. In particular,
Suh et al. [9, 10] have proposed a hardware scheme
called dynamic information flow tracking, or DIFT,
that prevents many common forms of attack with
minimal false positives or negatives and small over-
head.

Suh et al. note that, regardless of the attack’s
specific form, the majority of exploits use bugs to
somehow overwrite program control data with user
input, which can then be used to hijack the program
as soon as it uses the malicious control data. Almost
no programs are designed to work in this fashion:
they rarely intend to execute input or use an address
derived from input as a jump target. Note that all in-
put is managed via the operating system. The basic
idea of DIFT is to exploit these observations to iden-
tify security attacks. DIFT introduces tags which

mark registers or bytes in memory as spurious. The
operating system tags all bytes from input as spuri-
ous, and spurious tags propagate across operations
if either of the operands is spurious. The program
is killed if it ever tries to execute code at a spurious
address or use a spurious value as an instruction.

DIFT produces impressive results. On a Sim-
pleScalar simulation, it successfully blocked a vari-
ety of attacks tested against it with no false posi-
tives or negatives. Suh et al. lay out several secu-
rity policies, which define how tags are propagated
across operations. For example, in the case of a load
instruction, a basic security policy would mark the
destination register as spurious if its value came from
spurious memory, while stricter policy would also tag
the destination register as spurious if its new value
was not spurious but the source address was spurious
because the spurious address may have been used to
load an unexpected value. DIFT added only about
1.5% overhead to both performance and memory in
the most strict tagging policy [9]. In an updated ver-
sion of the paper, they investigated different secu-
rity policies and improved checking of pointer arith-
metic by detecting bounds checking of the pointer,
allowing safe pointer arithmetic with spurious data
to pass and preventing unbounded spurious pointer
arithmetic. The simplest security policy tested re-
quired only .25% memory overhead and negligable
performance cost, while the most comprehensive pol-
icy averaged 4.5% memory and 1% performance cost
[10].

One issue with DIFT is that it requires special-
ized, dedicated hardware that does nothing except
update and test tags. Although this hardware im-
proves performance by allowing tag propagation to
be executed in parallel with the regular instructions,
many processors are moving away from specialized

1

hardware and toward microcode or software imple-
mentations. Accordingly, we have implemented the
original DIFT scheme using explicit tag-updating and
checking instructions added to the ISA. Although the
additional instructions result in a large overhead in
performance and code size, they serve as a crude sub-
stitute for a microcode implementation, which we
were unable to simulate. This ISA implementation
opens up the possibility of more flexible or different
forms of tag checking and allows us to investigate how
many of the tag updates are actually necessary and
how many can be optimized away. We propose to
examine both of these issues using static analysis of
assembly code.

2 Motivation

Existing software contains a wide array of bugs that
allow a malicious user to trick the program into trans-
ferring control to a piece of arbitrary code [7, 8, 1, 3].
Although the form and method of exploitation on the
part of these bugs vary greatly, each centers around
a single critical step: a piece of control data—that
is, data used in determining a jump address such as
function return addresses, function pointers, longjmp
buffers, and various system hooks—is overwritten
based on user input. Subsequently, when the pro-
gram makes the appropriate jump, it transfers con-
trol to an exploit pointed to by the corrupt control.
We discuss several types of control flow attack below.

2.1 Stack Smashing

The best-known control flow attack is a form of buffer
overflow known as stack smashing[7], which takes ad-
vantage of inadequate bounds-checking in local arrays
to overwrite a function’s return address. On many
systems, to allow resumption of execution when a
function returns, each function call pushes the cur-
rent program counter onto the stack before transfer-
ring control to the new function, which then expands
the stack to make room for local variables. When the
function returns, it pops the old program counter off
the stack and jumps to that address. As a result, if
the return address has been overwritten during execu-
tion, the program will jump to an arbitrary memory
location.

For instance, in the following code scanf() has
no way of knowing buf’s length. As a result, if it
reads more than 256 bytes of input, it will write past
the end of buf and corrupt adjacent memory.

Overflowed Addr

Malicious
input

(exploit code)

Top of Stack
(Low Address)

Return Address

buf
(256 bytes)

...
(High Addresses)

Attack

...
(High Addresses)

Top of Stack
(Low Address)

Figure 1: Program stack before and after buffer over-
flow

void foo()
{

char buf[256];
...
scanf("%s", buf);
...
return;

}

As shown in Figure 1, the return address is stored
after the buffer and is vulnerable to being overwrit-
ten. The user can then hijack the program by in-
jecting exploit code elsewhere in the program, such
as buf and overwriting the return address with the
location of this code. Buffer overflows are described
in more detail by an anonymous hacker[7].

2.2 Format String Attacks

Format string vulnerabilities arise when a program
directly uses input as a format string in functions
such as printf() or sprintf(), allowing a malicious
user to overwrite arbitrary memory locations through
careful use of formating commands. For example, in
the following code, buf is meant to be interpreted as
a text string, as in printf("%s", buf).

void foo(char *str)
{

char buf[256];
strncpy(buf, str, 256);
...
printf(buf);
...

}

A problem arises because printf(buf) will in-
terpret any %’s in buf as formatting instructions.

2

Fmt Str Addr

????

????

????

"AAAA"

" %8x"

" %8x"

" %8x"

...

Fmt Str Addr

Value for %x

Value for %x

Value for %x

Addr for %n

Expected Stack
Layout

Actual Stack
Layout

0x41414141

Figure 2: Placement of printf()’s arguments on the
stack

For example, if str is "AAAA %8x %8x %8x %n",
printf() will assume the next address after its first
argument will contain the value for the first %x. Af-
ter reading through the return address and old frame
pointer on the stack, it will come to buf, which lies
at the top of the previous stack frame, and it will
read AAAA as the argument for %n, which instructs
it to record the number of characters printed so far
(See Figure 2). As a result, printf() will store 32
in 0x41414141 (the address corresponding to AAAA,
assuming a big endian machine). Through careful
crafting of such a string, an attacker can overwrite
an arbitrary location, such as a return address or
function pointer, with an arbitrary value. Scut [8]
discusses format string attacks at length.

2.3 Heap Corruption Attacks

Heap overflows come in a wide variety of forms and
depend heavily on a number of factors including pro-
gram memory use patterns and the implementation of
malloc() used. One of the simpler forms overwrites
heap metadata in the GNU C library implementation
of malloc to write to arbitrary locations. Consider
the following code:

void foo()
{

char *buf;
buf = (char *) malloc(256);
...
scanf("%s", buf);
...
free(buf);
...

}

As in the stack overflow example, scanf will over-
flow buf if given too much input, but in this case there
is no vulnerable control data following buf. How-
ever, there is most likely another chunk of memory
owned by malloc immediately following buf, and in
the glibc implementation it will be prefaced by a
header containing, among other things, an in-use flag
and 2 pointers bk and fd pointing to the previous
and next malloc() chunks respectively. When buf is
freed, it will check whether this next chunk is in use,
and if so, it will merge the two chunks, which involves
the assignment fd->bk = bk. The user can there-
fore overwrite the next chunk’s header so that the
in-use flag is clear, fd is such that fd->bk is a piece
of control data, and bk is its desired value, causing
the program to be hijacked when buf is released. An
anonymous author [1] lays out the details of several
malloc() attacks.

3 Previous Work

A number of schemes have been proposed to thwart
various control data attacks. Some focus on prevent-
ing the final transfer of control to exploit code. Mod-
ern compilers, for example, may mark stack and heap
pages as non-executable to thwart the injection of ex-
ploit code. However, this defense may be bypassed
using the technique of returning into libc. In this
technique, control is transferred to a libc function
such as system() rather than to code on the stack
[3]. Several operating system kernels support secu-
rity features such as address space randomization, in
which the stack and shared libraries are stored in ran-
domized locations, making it difficult to successfully
guess the location of code needed for exploitation.

Other schemes seek to provide mechanisms to pro-
tect control data or prevent its corruption. Stack-
Guard, for instance, places random canary values on
the stack just after return addresses. If the value
changes during function execution, the return ad-
dress may have been corrupted. StackGuard also
supports a similar technique of XORing of return
addresses with random values. StackShield goes a
different route and stores return addresses off of the
stack entirely. However, such schemes, at best, pro-
tect against a narrow class of attacks and can often be
bypassed [2]. Similarly, PointGuard encrypts point-
ers in memory, which protects some types of control
data, but does nothing to protect other forms such as
return addresses [5].

3

The limitations of software schemes have led
to several proposals for implementing protection in
hardware. These methods have the advantage of
stopping wide classes of attacks and not requiring re-
compilation of existing software. Our work is based
on the DIFT framework developed by Suh et al.[9],
which we discussed in Section 1. Crandall and Chong
developed a very similar scheme called Minos [6], that
also tracks the spread of input to protect control data.
Minos has similar performance to Suh et al.’s version,
with complete success stopping attacks and minimal
overhead, but Crandall and Chong emphasize that
Minos is implemented in physical memory and is in-
dependent of the memory model used by the archi-
tecture or kernel.

Finally, Chen et al. [4] argue that overwriting con-
trol data is not necessary for all attacks, and they pro-
pose a more comprehensive security policy based on
the notion of pointer taintedness: a pointer is tainted
if its value can depend on user input, and any derefer-
ence of a tainted pointer is assumed to be an attack.
Their tests stop all attacks with no false positives or
negatives, and they claim low overhead.

4 ISA Design

4.1 Requirements

Our additions to the ISA support several tag opera-
tions required by the scheme proposed in Suh et. al
[9, 10]; additionally, the existing instructions in PISA
influenced our design (for example, we needed to be
able to set the high and low result registers used in
multiply and divide computations). In particular, we
needed to be able to:

• Set the tag of a register based on:

– The tag of another register or pair of regis-
ters

– The tag of a memory location

– An immediate value (1 or 0)

• Set the tag of a memory location based on:

– The tag of a register

– An immediate value (1 or 0)

• Test the tag of a register

These requirements correspond to types of in-
structions in PISA, i.e. computations, loads, stores,

jumps, etc. A full list of these instructions is in Table
2, with accompanying legend in Table 1.

4.2 Additional Considerations

Additionally, we included instructions to perform
multiple tag setting operations in one instruction, al-
lowing us to set multiple registers at once, or set the
tag of a register based on more than two other reg-
isters. These instructions provide the potential for
greater tag-setting efficiency.

Table 1:
New Instructions for PISA: Legend

Abbreviation Meaning
Rn Register #n
HI High result register
LO Low result register
B Byte length

T[ref] Tag of object ref
T[] All tags

Mem[addr] Memory location at ad-
dress addr

O Memory offset
I Immediate 1 or 0
M 16-bit mask, in hexadec-

imal

5 Näıve Assembly Annotation

Because the instructions in our new ISA are not
known by an existing compiler, we needed to de-
sign a scheme to insert these instructions into ex-
isting assembly code. We term this process assembly
annnotation. The simplest such scheme, which we
term näıve annotation, is to insert the appropriate
tag-propogating or tag-checking instruction directly
before every instruction. For instance, consider the
following assembly code:

add $1, $2, $2
sw $1, 0($sp)
lw $1, 4($sp)

Since each instruction requires a tag-bit to be set for
its destination, a näıve annotation yields:

sett $1, $2, $2
add $1, $2, $2
setmt $1, 0($sp)
sw $1, 0($sp)
sett $1, 4($sp)

4

Table 2:
New Instructions for PISA: Full List

Instruction Semantics Opcode

setmt I, (R1+R2), B T[Mem[R1 + R2]] = I

...

T[Mem[R1 + R2 + B - 1]] = I

0xb0

setmt I, O(R1), B T[Mem[R1 + O]] = I

...

T[Mem[R1 + O + B - 1]] = I

0xe0

sett R1, I T[R1] = I 0xb1

setmt R1, (R2+R3), B T[Mem[R2 + R3]] = R1

...

T[Mem[R2 + R3 + B - 1]] = R1

0xb2

setmt R1, 0(R2), B T[Mem[R2 + O]] = R1

...

T[Mem[R2 + O + B - 1]] = R1

0xe2

sett R1, (R2+R3), B T[R1] = T[Mem[R2 + R3]] | ... | T[Mem[R2 + R3 + B - 1]] 0xb3

sett R1, O(R2), B T[R1] = T[Mem[R2 + O]] | ... | T[Mem[R2 + O + B - 1]] 0xe3

sett R1, R2, R3 T[R1] = T[R2] | T[R3] 0xb4

sett16 M, I for R1 in M: T[R1] = I 0xb5

sett32 M, I for R1 in M: T[R1 + 16] = I 0xb6

sett16 M, R1 for R2 in M: T[R2] = T[R1] 0xb7

sett32 M, R1 for R2 in M: T[R2 + 16] = T[R1] 0xb8

ldtag R1 T[] = R1 0xb9

sttag R1 R1 = T[] 0xba

testt R1 raise exception if: (T[R1] is spurious) 0xbb

testnt R1 raise exception if: (T[R1] is not spurious) 0xbc

testtr R1 raise exception if: (T[R1] is spurious | if T[Mem[R1]] is

spurious)

0xbd

setth R1 T[HI] = T[R1] 0xe4

settl R1 T[LO] = T[R1] 0xe5

setthr R1 T[R1] = T[HI] 0xe6

setttl R1 T[R1] = T[LO] 0xe7

setthl R1, R2 T[HI] = T[R1] | T[R2]

T[LO] = T[R1] | T[R2]

0xe8

settor16 R1, M for R2 in M: T[R1] |= T[R2] 0xe9

settor32 R1, M for R2 in M: T[R1] |= T[R2 + 16] 0xea

5

lw $1, 4($sp)
Such an annotation scheme will result in a sub-

stantial increase in instruction count (IC), as the ma-
jority of instructions require some sort of tag-setting
operation. As described in Section 12, our initial ex-
periments show roughly a 59% increase in IC. How-
ever, this scheme may insert extraneous instructions.
In the above example, because the tag of $1 is set
twice, the first sett could be removed, reducing the
code to:

add $1, $2, $2
setmt $2, 0($sp)
sw $1, 0($sp)
sett $1, 4($sp)
lw $1, 4($sp)

In such situations, we wish to identify and re-
move such redundant operations. However, to do so,
we must first parse the assembly code into manage-
able units. In particular, we note that straight-line
code provides the simplest environment for optimiza-
tion, since branches present control flow complexities
and, within the DIFT framework, require that the
spurious status of certain registers and addresses be
known in order to determine branch-validity. Thus,
the first stage in attempting to optimize annotation
is the breaking of code into straight-line blocks.

6 Basic Blocks

A basic block is a straight-line sequence of instruc-
tions, such that control always arrives at the start
of the block, and always leaves from the end, i.e. a
block where there are no jumps out until the end and
any jump in arrives at the beginning of the block.
Following is a simple example of a basic block:

label1:
add $1, $2, $3
sub $1, $4, $1
sw $1, 0($sp)
bnez $1, label2

Because this example uses labels, it is clear that no
jumps have targets anywhere other than at the start
of the block. This observation is a key part of the
strategy for decomposing an assembly file into basic
blocks.

6.1 Identifying Basic Blocks

The algorithm for identifying basic blocks proceeds
as shown in Figure 6.1.

A complete reconstruction of the file can be
achieved easily; each basic block is output in turn,
along with its name if its name is a label. Notice
that a series of labels with no code will produce a
series of empty basic blocks, but these are not an is-
sue; empty basic blocks with non-label names do not
contribute to the output, and an empty basic block
with a label name just produces that label, which is
the correct behavior.

7 Optimized Annotation

Given a basic block, we wish to identify an optimal
tagging scheme, where optimal means using as few in-
structions as possible. Observe that because a basic
block terminates at any jump or branch instruction,
the status of the spurious bits in the system at the
end of the block is a function of both the initial state
of the spurious bits and the logic propagating spuri-
ousness across operations. So, for instance, consider
the example code below:

add $1, $2, $2
sw $1, 0($sp)
lw $1, 4($sp)

In this code, the tag of $1 is dependent on the ini-
tial tag of 4($sp) and the tag of 0($sp) is dependent
on the initial tag of $2; all other tags remain constant
throughout the block. Thus, we examine the possi-
bility of statically analyzing the logic within a basic
block to reduce tag-setting instruction overhead.1

7.1 Basic Infection Graphs

Let G = (V,E) be a graph defined as follows. Given
a block of n instructions, for each bit bi in the sys-
tem (including registers and all memory addresses)
define vertices vi,0, . . . , vi,n. Let there be a directed
edge between vi,k−1 and vj,k if, based on instruction
k, the value of bit bj depends upon the value of bit
bi. In addition, let there be an edge between vi,k−1

and vi,k if instruction k does not change the value
of bi. So, for instance, given a block beginning with

1It is important to observe that there are unfortunate limits
to static analysis. For instance, if all bits in a system are non-
spurious at the beginning of a block, then, by necessity, they
are all non-spurious at the end of a block – no new spurious
bits can be injected, except by I/O operations which lie in their
own basic blocks. Thus, in such as situation we would like to
skip all tag-setting logic, since it cannot possibly result in a bit
becoming spurious. However, without having knowledge of the
state of spurious bits – knowledge not available until run-time
– this logic cannot be easily avoided.

6

procedure Parse(file) . Decompose an assembly file into basic blocks
bblist← ∅
currblock ← ∅
for all lines L in file do

if L is a label then
bblist← bblist + (currname, currblock)
currname← L
currblock ← ∅

else if L is a jump then
currblock ← currblock + L
bblist← bblist + (currname, currblock)
currname← ∅
currblock ← ∅

else if currblock = ∅ then
currname← ∅
currblock ← currblock + L

else
currblock ← currblock + L

end if
end for
return bblist

end procedure

Figure 3: Algorithm for decomposing an assembly file into basic blocks, where bblist holds the list of blocks,
currname holds the name of the current block, and currblock holds the contents of the current block.

the instruction add $1,$2,$3, edges would be placed
from v$2,0 to v$1,1 and from v$3,0 to v$1,1, since b$1

will depend on b$2 and b$3. Then, a directed path
from one vertex to another represents the propaga-
tion of a spurious tag across instructions. If we call
a vertex infected when the spurious bit it represents
is set, then all vertices that lie along a path out from
an infected vertex will become infected. Note that,
as defined, a traversal of this graph, setting the tag-
bit of each vertex when required, is equivalent to the
näıve annotator described above. An example of such
a graph is contained in Figure 4.

7.2 Bipartite Graph Model

To compress the information in a basic infection
graph, observe that the bit values bi we wish to know
at the end of a block of n instructions are represented
by the vertices vi,n. Furthermore, at the beginning
of a block, the values are vi,0 are known. As pointed
out above, any infection in a later node must be the
(possibly indirect) result of a node that is infected at
the beginning of the block. As such, we can reduce
this infection graph to a bipartite graph containing
only vertices representing the start and the end of the

block, such that there is an edge between two vertices
vi,0 and vj,n if there exists a path vi,0, . . . , vj,n be-
tween these two vertices. As shown in Figure 4, such
a graph represents the dependencies between tag-bits.
By setting the tag-bit for a register to 0 and then us-
ing the settor16 and settor32 instructions defined
in Table 2, all register-register dependencies can be
resolved in at most three instructions for a given reg-
ister, by OR-ing with all infecting tags. For instance,
consider the following code:

add $1, $2, $3
add $1, $1, $4
add $1, $1, $5
add $1, $1, $26
add $1, $1, $27

The tag of $1 is dependent on $2, $3, $4, $5, $26,
and $27. Thus, the following tag setting operations
would be used to set the tag for $1:

sett $1, 0
settor16 $1, 0000000000111100
settor32 $1, 00001100000000002

Note that this scheme has two major limitations:
2Note that, in actual assembly, these masks would be speci-

fied in hexadecimal. We have used binary to make explicit the
tag-bits which are being used.

7

add $1,$2,$2
sw $1,0($sp),4
lw $1,4($sp),4

$1$2 $sp 0($sp) 4($sp)

$1$2 $sp 0($sp) 4($sp)

$1

$2

$sp 0($sp) 4($sp)

0($sp) 4($sp)

0($sp)

$2

sp1 0($sp) 4($sp)

$sp

$sp

$1

$1

$2

$2 4($sp)

Figure 4: A basic block, its basic infection graph,
and the bipartite graph representing the relationship
between the final values of tag-bits and the initial
values of tag-bits within the block. Only those bits
that change or affect other bits are shown. Note that,
despite the apparent complexity of the graph, only
two nodes on the bottom half of the graph have edges
into them from different nodes on the top half.

1. Memory references cannot be resolved or used
by the settor instructions. Thus, tag-setting
involving memory must be resolved separately.

2. The lack a temporary workspace to manipu-
late tags in means that dependencies can make
tag-setting using settor instructions impossible.
For instance, if the final tag of $1 is dependent
on the original tag of $2, and the final tag of $2
dependent on the original tag of $1, we could not
simply set the tags of these registers in arbitrary
order.

7.3 Multi-graph Model

Consider the following assembly code:
lw $1, 4($sp)
add $1,$1,$2
mov $3,$1
add $sp,$sp,$4
lw $2,4($sp)
add $1,$2,$2

Several conflicts exist in this block. For instance, the
value of the stack pointer changes in the midst of
the block. Thus, the two references to 4($sp) refer
to two different spurious bits. The second reference
must, thus, be delayed until after the value of $sp
changes. Additionally, the values of $2 and $1 are
used and set at various states, and ordering must be
kept between them. In situations like these, the only
solution is to effectively divide the basic block into
several sub-blocks, and resolve each block, in order.
So, in the case of this block, we would break the block
into two - one containing the first thee instructions,
and the other containing the final three. A represen-
tation of how this graph must thus be divided based
on conflicts can be found in Figure 5. Each graph
could then be parsed, and the needed tag-setting in-
structions inserted into the program code at the end
of each sub-block. This yields the algorithm shown in
Figure 6. While the complexity of this algorithm is
high, annotation need only be done once after compi-
lation, so the run-time of the annoator is irrelevant to
program performance. Note that, however, compile
time (including annotation) will increase.

8 Toolchain Flow

To implement our new ISA, the existing toolchain
had to be either extended or modified to handle the
new instructions we introduced. For reference, the

8

4($sp)

$1

Time 1

$2

$sp

Time 2

$3

Time 3

Time 4

WAR Conflict

$sp

Time 2

4($sp)

$2

Time 5

WAR Conflict

$1

WAW Conflict

Time 6

Figure 5: A graph representing how dependencies can be eliminated by cutting a basic infection graph into
multiple graphs.

9

procedure Resolve(fwd, time, MaxTime) . Resolve all tags in a block
L← ∅ . List of tuples (victim, infectors)
for i← 1,MaxT ime do

for all vertices f in fwd do
for all victims v of f at time i do

t← (v, ∅)
for all victim v′ of v before i do

t.infectors← t.infectors + GetInfectors(v′, forward, time) . GetInfectors returns all
infectors of v′

end for
L← L + t

end for
end for

end for
T ← ∅
for all ` ∈ L do

T ← T + Tags(`) . Tags(`) returns the appropriate tag-setting operation for victim and its
infectors

end for
return T

end procedure

Figure 6: Algorithm for breaking dependencies, where fwd is a representation of the dependencies of eac in-
dividual bit, time is a representation of the basic infection graph, and MaxTime is the number of instructions
in the block

standard process is in Figure 7. Our available op-
tions were thus modifying the compilation, assembly,
and linking steps, or inserting new stages between
existing stages. For this project, we chose the latter,
due primarily to the difficulty of modifying the gcc
suite of tools. With the new stages inserted, the flow
of the extended toolchain is shown in Figure 8, with
the stages and processes we added in dashed stroke.

The new actions are analysis, annotation, and pre-
processing. The front end to all these actions is called
BBApp, which coordinates the parsing and analysis of
the initial file, the saving of intermediate results, the
addition of new instructions, the preprocessing of the
instructions, and the rewriting of the final file. These
actions are described in more detail in the following
sections. BBApp is implemented in Python, which en-
abled rapid development, in part by providing a rich
standard library for both back-end features (i.e. reg-
ular expressions, dictionaries, lists, etc.) as well as
front-end features (i.e. command line option pars-
ing).

8.1 BBApp Actions

8.1.1 Parsing and Caching

Initially, BBApp parses the input assembly file into ba-
sic blocks. Once performed, BBApp caches this anal-
ysis so that subsequent actions on the same file can
reuse the initial analysis, rather than re-creating it
every run. Basic blocks are stored as a list of lines,
along with starting and ending line numbers, and a
name. Each assembly file is converted into a col-
lection of these basic blocks (a list of blocks, along
with supporting information). These structures are
represented as Python classes. Caching is then eas-
ily accomplished by using Python’s pickle module,
which allows for pickling and unpickling of arbitrary
Python objects to and from files. The main benefit
of caching is that it allows BBApp to modify the as-
sembly without changing the original input file but
to still operate in distinct stages—only the cache is
changed (until the final rewriting stage).

8.1.2 Annotation and Replacement

BBApp does annotation via a separate collection of
functions, which take as input a basic block of as-

10

C Source PISA
Assembly

PISA
Executable

gcc as and ld

Results

Simple-
Scalar

Figure 7: Original Toolchain Flow

C Source PISA
Assembly

Annotated
PISA

Executable

gcc

as + ld

Basic
Blocks

BBApp

Annotated
Basic
Blocks

BBApp
+ Annotator

Preprocessed
PISA

Assembly

BBApp

Results

Modified
Simple-
Scalar

Figure 8: Modified Toolchain Flow

11

sembly code and return that basic block with new
instructions interspersed. Full annotation of a file is
thus accomplished by passing each basic block in turn
to these annotation functions. The returned assem-
bly code replaces the old contents of the original basic
block, and line numbers are adjusted appropriately.

8.1.3 Preprocessing and Rewriting

For the preprocessing step, an instance of the prepro-
cessing class is created. Upon construction, this class
creates a collection of regular expressions for identi-
fying our new instructions and their operands. These
regular expressions are dynamically generated from
a table specifying parameters such as opcode, argu-
ments, argument types, etc. This approach allows us
to easily modify the surface format and the encoding
of each instruction without changing the preprocess-
ing code directly; these encodings are described in
Section 9. Preprocessing the full assembly file is then
done by using an instance of this preprocessing class
on each basic block.

Finally, the annotated and preprocessed file needs
to be generated. Rewriting simply consists of writ-
ing the basic blocks in order, overwriting the original
file (which is automatically backed up beforehand).
Overwriting the original file simplifies the integration
of our tools into existing automated build tools, such
as Makefiles; BBApp can simply rewrite the assembly
files before the assembly and linking stage, and the
build tool does not have to deal with new file names.

9 ISA Implementation

This section will discuss the specific encoding scheme
for our instructions, as well as some issues raised by
our scheme.

9.1 Encoding

PISA instructions are double words. We make use
of this fact to encode some additional flags on each
instruction without compromising the space used for
operands. For example, while registers, offsets, and
immediates are encoded in the normal RS, RT, RD,
IMM, etc. positions (PISA is a MIPS derivative),
we use the annotation field to encode both the byte
length for memory instructions (as seen in Table 2) as
well as whether the instruction is modifying floating
point or integer registers. In this way, we avoid hav-
ing separate instructions for byte, half word, word,

and double word variations, as well as integer and
floating point variations, which would substantially
increase the number of opcodes and instructions re-
quired.

The specifics of our scheme are the following: the
annotation field is 16 bits wide, and we use the top
8 bits for the byte length specifier, and the bottom 8
for the integer/float/double distinction. The distinc-
tion between integer, single precision float, and dou-
ble precision float operations is encoded using a value
of 0 for integer, 1 for single precision floats, and 2 for
double precision floats. Byte lengths are encoded di-
rectly; legal values are 1, 2, 4 and 8. Note that in the
case of floating point memory operations, the speci-
fied byte length must match the floating point type;
if not, the preprocessor flags the instruction as an er-
ror. An example encoding with all fields labeled is
shown in Figure 9.

9.2 Preprocessing

As described in Section 8, the assembly files contain-
ing our new instructions must somehow be prepro-
cessed to avoid the problem that the existing tool-
cain does not know about them. This preprocessing
is achieved by directly encoding our instructions into
hexadecimal and including this hexadecimal in the
assembly file. The remainder of the toolchain then
simply includes this data in the final output, and
our modified SimpleScalar interprets them just as any
other instruction in the program. An example of an
instruction sequence before and after preprocessing
can be seen in Table 3.

Table 3:
Preprocessing example.

Original Instructions After Preprocessing
add $1,$2,$3 add $1,$2,$3
sett $1,$2,$3 .long 0x000000b4

.long 0x02030100
sub $1,$1,$4 sub $1,$1,$4
sett $1,$1,$4 .long 0x000000b4

.long 0x01040100
sw $1,8($sp) sw $1,8($sp)
setmt $1,8($sp),4 .long 0x040000e2

.long 0x011d0008

12

0x040000e2
0x011d0008

Length of memory in bytes
1,2,4 or 8

Integer or Floating Point
0 = Integer, 1 = Float, 2 = Double

Opcode

RS
First register argument

RT
Second register argument

IMM
Offset value

setmt $1,8($sp),4

Figure 9: Example instruction encoding.

9.3 Issues

Because our tools are not part of the traditional
toolchain, they face some unique issues, which were
unfortunately not realized until late in the process.
The two main issues are dealing with symbolic names
in the assembly and dealing with libraries. Both of
these, unfortunately, currently cause security holes in
our scheme.

Symbolic names (for example, stdout) are a prob-
lem for our tools because they are not resolved to ad-
dresses until the assembly and linking stages of com-
pilation. Since our tools operate one stage before
these processes, they do not have the address infor-
mation available to them. An assembler modified to
handle our instructions would not have this problem
— it would simply resolve names to addresses and en-
code our instructions as it does for any other instruc-
tion. One method we proposed for dealing with this
problem was to compile the program normally first,
and then use the nm program to lookup names in the
final executable. We anticipated that this would work
because most symbolic names are global variables in
the data sections of the program, and thus their lo-
cation would not change between an un-annotated
binary and an annotated binary. Symbolic function
names could change, but this could be resolved via
counting inserted instructions.

Libraries are also a problem for our scheme; as dis-
cussed in Section 10.2.1, we have modified the read()
system call to tag input data as spurious. However,
this input data is moved, processed, and returned to

the application via library functions such as gets()
or scanf(). Because these functions are not included
in the executable until the linking stage, they are
not available for our toolchain to annotate. Instead,
glibc would need to be annotated, and this anno-
tated version could then be (statically) linked with
compiled executables. There are several problems
with this approach, however. The first is that compil-
ing glibc is very tricky, even without modifying it at
all. The second is the symbolic name problem again;
however, it is harder to solve in this instance, because
symbolic names in the library do not get resolved un-
til the library is linked into a program (since the lay-
out of the various functions and data is not known
until that time). This issue is harder to solve using
nm, since the libraries would have to be re-annotated
on a per-program basis. As of now, we have no bet-
ter proposal for solving this problem than abandoning
our current infrastructure and hacking the gcc/as/ld
toolchain.

10 SimpleScalar Modifications

We have modified the sim-safe version of the Sim-
pleScalar simulator version 3.0. We chose sim-safe
both because it is the simplest of the SimpleScalar
family to modify and experiment with, and because
it relieves us from worrying about how our new in-
structions are scheduled. We chose to extend PISA
since RISC architectures lend themselves well to mod-
ifications. Another useful feature of PISA is its use

13

of two words to encode instructions, which allows us
to encode extra information (see Section 9).

Our modifications to the simulator fall into two
categories—hardware, and software.

10.1 Hardware

To support tagging of general purpose registers, float-
ing point registers and the HI and LO registers, we
have added two 32-bit registers and two single bit
registers to the register file. Although general pur-
pose register zero is always set to zero and does not
need a spurious tag, there is no other register with
a constant tag value. Therefore register tagging has
to spill to include at least one more bit tag for either
the HI or LO registers.

Our current memory modifications implement
support for tagging by allocating enough extra mem-
ory to associate a bit with each byte of main mem-
ory. This näıve implementation incurs a 12% memory
overhead. Potential improvements include structur-
ing the tag memory in a hierarchical fashion, which
reduces the memory overhead to an average of 1.0%
[9]. The hierarchichal tagging would, at the lowest
resolution, tag virtual pages and, at the highest res-
olution, tag bytes, with optional levels of multi-byte
tagging in between.

10.2 Software

The modular nature of SimpleScalar allowed for most
modifications to be relegated to the machine.def file
which defines and implements the PISA instructions.
A total of 24 new opcodes were defined (each opcode
implementing a single addressing mode, and each
opcode supporting both floating point and general
purpose register encodings). The instructions corre-
sponding to these new opcodes are shown in Table 2.
Original instructions were left unmodified.

10.2.1 System Calls and Library Functions

System calls are the entry point for user data which
may in turn be propogated by library functions. To
tag spurious input data, modifications must be made
at the system call level. We have modified the read()
system call in SimpleScalar. read() reads data and
also tags all the read bytes as spurious in memory.

11 Extending the system to
real hardware

We decided to add additional hardware to the simu-
lator to isolate and simplify our modifications. The
system can actually be implemented with a standard
hardware setup. For example, three general purpose
registers can be reserved for tagging of registers, and
a piece of memory can be reserved to store tagging
information for the rest of the memory. These modi-
fications however constrain the compiler to use a re-
stricted register set. To implement this scheme we
would have to modify the PISA compiler to avoid the
tag registers, modify a key set of system calls that get
input from the user, and modify standard libraries
such as libc that provide wrappers for the above
system calls. One merit of our system is that the
modified simulator effectively implements the same
framework with minimal modification to the existing
toolchain.

The full system could be implemented at the com-
piler level with small modifications to the operat-
ing system and no modifications to the hardware.
Library and operating system modifications would
only take effect for those programs that have been
annotated by conditioning the modified sections on
whether the proccess is an annotated binary or not.

12 Experiments

To understand the performance overhead incurred
by our scheme, we have run portions of the SPEC-
CPU2000 benchmark suite on our modified version of
SimpleScalar. Because we chose to modify sim-safe,
rather than the more powerful sim-outorder, the in-
formation we can glean from these tests is somewhat
less than what would ideally be available. In par-
ticular, the main performance metric available to us
is instruction count, whereas instructions-per-cycle
would likely be a more discriminating metric. For
each SPEC benchmark, we have run an unannotated
version, a näıvely annotated version, and an opti-
mally annotated version. The results of these runs
can be found in Table 4. We present the unanno-
tated instruction count, the percent of unannotated
IC made up by loads and stores, the percent that
IC increased with annotation, and the percent that
annotated IC was reduced by optimization.

Given our results, it appears that instruction
count increases roughly 60% from unannotated to

14

Table 4: Experimental Results
Benchmark Original IC % Loads/Stores % Added by Annotation % Removed by Optimitzation

gzip, log-input 33642800312 29% 61% 11%
gzip, graphic-input 80085017764 32% 59% 9%

mcf 202016915 39% 59% 5%

näıvely tagged, and that an optimized tagger reduces
this overhead by several percent. The variance in
reduction through optimization appears to be corre-
lated with the number of loads and stores, which is
expected, since most loads require the breaking of a
basic block into sub-blocks (note that sim-safe does
not provide information on loads alone, which are
more significant). Given more time, it would be ben-
eficial to run on more benchmarks to better under-
stand the relationship between loads and optimiza-
tion.

13 Conclusion

Dynamic Information Flow Tracking, proposed by
Suh et. al. [9], is effective in stopping many of the
most common exploit methods in use today, while
causing very small performance and memory over-
heads. However, it requires specialized hardware to
compute and check tags in parallel with regular in-
structions. In this paper, we have explored options
for implementing the same security policy, but at the
level of the instruction set architecture.

The potential advantage of our system is the abil-
ity to secure specific programs with minimal modifi-
cations. The idea of selectively annotating an existing
binary to make it safe to run is a powerful one. The
performance of existing applications is not affected
and only programs requiring extra security can be
annotated. In this way, performance loss is traded
for security selectively and existing third party pro-
grams can be made secure without the use of the
original source code.

Were this scheme to be implemented by a com-
piler, it would have the further advantage of the com-
piler’s global knowledge of the program’s execution
flow. So, for instance, rather than being restricted
to basic blocks, a compiler could identify a block as
secure – one in which no data from I/O could possi-
bly enter – and avoid tag-propogating and checking
instructions altogether. Further, because tag-setting
instructions operate outside of the critical path of
normal instructions, it would likely be possible for a

compiler to schedule these instructions to fill in stall
cycles and thus increase IPC to make up for the added
number of instructions.

References

[1] Anonymous. Once upon a free(). Phrack, (57),
2001.

[2] Bulba and Kil3r. Bypassing stackguard and
stackshield. Phrack, (56), 2000.

[3] c0ntex. Bypassing non-executable-stack
during exploitation using return-to-libc.
www.infosecwriters.com/text resources/pdf/return-
to-libc.pdf, unknown.

[4] Shuo Chen, Jun Xu, Nithin Nakka, Zbigniew
Kalbarczyk, and Ravishankar K. Iyer. Defeating
memory corruption attacks via pointer tainted-
ness detection. 2005.

[5] C. Cowan, S. Beattie, J. Johansen, and P. Wa-
gle. Pointguard: Protecting pointers from buffer
overflow vulnerabilities. 1998.

[6] Jedidiah R. Crandall and Frederic T. Chong. Mi-
nos: Control data attack prevention orthogonal
to memory model. 2004.

[7] Aleph One. Smashing the stack for fun and
profit. Phrack, (49), 1996.

[8] Scut. Exploiting format string
vulnterabilities. http://www.team-
teso.net/articles/verbformatstring, 2001.

[9] G. Edward Suh, Jae W. Lee, David Zhang, and
Srinivas Devadas. Secure program execution via
dynamic information flow tracking. In ASPLOS,
2004.

[10] G. Edward Suh, Jae W. Lee, David Zhang, and
Srinivas Devadas. Secure program execution via
dynamic information flow tracking. 2005.

15

