
Learning to Listen for Design
Elisa Baniassad, Ivan Beschastnikh, Reid Holmes, Gregor Kiczales, Meghan Allen
ebani@cs.ubc.ca,bestchai@cs.ubc.ca,rthomes@cs.ubc.ca,gregor@cs.ubc.ca,meghana@cs.ubc.ca

Department of Computer Science
University of British Columbia

Vancouver, Canada

Abstract
In his essay, Designed as Designer, Richard Gabriel suggests
that artifacts are agents of their own design. Building on
Gabriel’s position, this essay makes three observations (1)
Code “speaks” to the programmer through code smells, and
it talks about the shape it wants to take by signalling design
principle violations. By “listening” to code, even a novice
programmer can let the code itself signal its own emergent
natural structure. (2) Seasoned programmers listen for code
smells, but they hear in the language of design principles
(3) Design patterns are emergent structures that naturally
arise from designers listening to what the code is signaling
and then responding to these signals through refactoring
transformations. Rather than seeing design patterns as an
educational destination, we see them as a vehicle for teach-
ing the skill of listening. By showing novices the stories
of listening to code and unfolding design patterns (starting
from code smells, through refactorings, to arrive at princi-
pled structure), we can open up the possibility of listening
for emergent design.
ACM Reference Format:
Elisa Baniassad, Ivan Beschastnikh, Reid Holmes, Gregor Kiczales,
Meghan Allen. 2019. Learning to Listen for Design. In Proceedings of
the 2019 ACM SIGPLAN International Symposium on New Ideas, New
Paradigms, and Reflections on Programming and Software (Onward!
’19), October 23–24, 2019, Athens, Greece. ACM, New York, NY, USA,
8 pages. https://doi.org/10.1145/3359591.3359738

1 Voice
In his essay, Designed as Designer [5], computer scientist and
poet Richard Gabriel lays out the idea that an artifact being
designed gives rise to its own design, and that if someone is
good enough at “listening” to the thing they are designing,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
Onward! ’19, October 23–24, 2019, Athens, Greece
© 2019 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-6995-4/19/10. . . $15.00
https://doi.org/10.1145/3359591.3359738

they will be guided by the artifact itself to its own natural
design1. In all of Gabriel’s examples, he points to aesthetic
structural imbalances that need to be fixed, rhymes that need
to be repaired.
The emergence of refactoring [4] as a primary design

method tells us that strong programmers intuitively listen
to their code to arrive at good, evolvable, design. The skill of
listening is what separates the advanced, wise, programmer,
from a technician. Gabriel implies that code speaks to the
programmer the same way a poem speaks to the poet. Just
as artists look for asymmetry, imbalance, or lack of rhythm,
developers look for deficiencies in their code as they take
the step of attaining good design.

Gabriel does not lay out explicitly how developers might
hear code, and how code, line by line, provides its signals
to the programmer. So we began to explore this idea. We
thought about how code speaks to the programmer when
they are making a code change to their system, and what
the programmer does in response. Maybe code is sending us
signals that describe missing abstractions – all those abstrac-
tions that would have made the programmers’ life easier for
making this change. Missing abstraction are manifested in
code constructs that violate some of the foundational prin-
ciples of software design, for example (from the Pragmatic
Programmer’s Quick Reference):

Eliminate Effects BetweenUnrelated Things.
Design components that are: self-contained, inde-
pendent, and have a single, well-defined purpose.

Looking at the finest granule of a missing abstraction,
and how it is signalled, we begin to see that code smells
are a possible voice of the code: Code smells are the code-
analog to the missing balance of a painting, or the too-short
phrase in a poem, or the discord in a song. They are small
things that stand out and speak volumes. Almost all code
smells signal missing abstractions. Amagic number is asking
to be abstracted into a symbolic constant; a data clump is
asking to be abstracted into a data structure; a type switch is
often asking to be abstracted into a type hierarchy; divergent
changes ask for affected code to be abstracted into a new class;
an inline comment is asking for its code to be abstracted into
a method; one class doing the work of two is asking for the
“extra” behaviour to be abstracted into a class.

1Editors, commentors, and reviewers play the role of an extra set of ears, to
listen to the artifact and interpret what it is saying.

https://doi.org/10.1145/3359591.3359738
https://doi.org/10.1145/3359591.3359738


Onward! ’19, October 23–24, 2019, Athens, Greece Baniassad, Beschastnikh, Holmes, Kiczales, Allen

Figure 1. Seasoned programmer’s conversation with code.

So if code speaks through smells which themselves are
often concrete manifestations of design principle violations,
then programmers respond with refactorings. By refactoring,
a programmer introduces those abstractions that are missing
– providing those missing hooks – to make the change that
the code smells are screaming out for. Programmers refactor
and refactor until they have reached a good design: a design
that can accommodate their change (Figure 1). And in this
way the code has itself ‘spoken’ to the programmer by sig-
naling about problems with its current concrete form that
can be changed to emerge at a better design.
But programmers aren’t constantly refactoring, so when

do they listen?Well, code that is not being changed is not that
interesting to listen to. If we are not trying to alter code, there
is no reason to talk to it. It is like iterating over a painting you
are not going to look at again – why search for imbalance
in something that is never going to be viewed? Change is
certainly not the only time code talks to a programmer, but
it is certainly a time when it screams in protest. When trying
to make a change to code (especially a change that was
unplanned, or not designed for up front) the code will yell
back: “nooooooo!!!!!!”. This aligns with the agile approach:
programmers do not just refactor all the time for kicks, and
they do not fix every code smell. Wise programmers refactor
when they hear the outcry from the code in response to it
being asked to make a change. We refactor so that the change
will result in less screaming and ultimately a more evolvable
design.

2 Hearing
Good programmers listen to their code with wisdom. They
see the signals, and hear the discord, and contextualise it
in a depth of expertise: they filter what the code is saying
through years of contemplation of the principles of design
and expert solutions that have worked in the past. They
bring with them a wealth of perspective and an arsenal of
tools.

And with this wisdom and arsenal, programmers listen
to the code, and they interpret what the code is saying by
abstracting its ‘words’ into phrases and concepts which are,
in fact, design principle violations. Programmers do not just
look at code and in a rote way say “this class is doing the
work of two classes.” Programmers make interpretations,
and so abstract this into “this is a violation of the single
responsibility principle.” They do not just look at a switch on
type: they think “oh no, I am relying too deeply on an imple-
mentation here – this is a dependency inversion violation.”
They listen to code smells, but they hear in principles.

With each refactoring, the programmer is easing their way
to a more principled design.

3 Emerging
With some program semantics, the code may, smell by smell,
principle by principle, refactoring by refactoring, talk itself
into an arrangement we have identified as a Design Pat-
tern [6]. Design patterns emerged, and were devised in just
this way: by wise programmers, listening to their code, hear-
ing principles, and arriving at these well-formed solutions.
Exploiting refactoring support, a wisely-listening program-
mer can arrive at a well-formed design, and indeed even a
named and catalogued design pattern serendipitously. They
can approach it, incrementally, by listening to the code, and
hearing where the principles are crying out for repair.

Patterns as named constellations have value as a language
in and of themselves. The provide us with a way to com-
municate about our programs without remaining mired in
their details. But it is fine and even natural that they are
names and constellations that emerge from reworking the
code, rather than names that have been imposed upon it.
One of the cautions with patterns is applying the wrong
variant, perhaps one that contains too much heavy abstrac-
tion for the problem at hand. Thinking about patterns first
runs this risk. And coming back to Gabriel’s essay, if the
writer/painter/programmer imposes their will too strongly
on the artifact, its voice will be muted. The wise programmer



Learning to Listen for Design Onward! ’19, October 23–24, 2019, Athens, Greece

listens for patterns, instead of forcing them into code where
they might not be appropriate.

Patterns as emergent structures, as opposed to prescriptive
structures, agrees with Gabriel’s view of emergent design:
He points out that if the artist is too dominating in their
approach, or too fixed in their design mindset, the artifact
will be silenced, and will not emerge to a good design. This
suggests that the programmer working on an artifact must
develop code listening skills as a primary capability, without
which they will not achieve design success.

4 Teaching
How do we teach novices to become wise programmers?
Time is, of course, a key ingredient, and certainly the tradi-
tional assumption is that it takes years to learn the skill of
wise, principled listening. But can we, as educators, help?

Teaching computer science students does not begin with
instruction into code smells, obviously. The first step is nec-
essarily making code in the first place: seeding the starting
artifact. In How to Design Programs (HtDP), Felleisen et
al. put forward a systematic approach for obtaining a well-
formed seed [3]. We use this approach in our introductory
programming courses and build on this foundation through
our software engineering curriculum. Via HtDP, students
learn how to design functions through data-driven templates.
Once they have an understanding of how the structure of
data can shape the structure of a function that operates on
that data, they are introduced to new techniques for function
design. They learn how to combine design strategies, which
results in functions that use and combine recognizable pat-
terns. Our students are still novice programmers at this stage
but are learning to recognize patterns and can articulate why
each piece of code was included. The ability to reason about
design strategies and patterns lays the foundation for our in-
troductory students because they begin to think about their
code at a granularity that is finer than a function and coarser
than a single line. This foundation prepares students to lis-
ten to code smells as they progress through our software
engineering curriculum.
HtDP has systematised the approach for forming that

initial artifact. So can we systematise the emergent/listening
design approach by grounding it in the teaching of code
smells, principles, and design patterns in follow-on software
engineering courses?

It is absolutely the case that these three elements (princi-
ples, patterns, and smells) do, in the minds of experts, feed
into one another, in terms of practice, intuition, and form
through refactorings and agile methodologies. But in edu-
cation, these three concepts are often taught separately, in
isolation from one another. Code smells are taught by ex-
ample, with examples of refactorings that can heal them.
Principles are taught with counter-examples, and with the
code that addresses the concern. Patterns are traditionally

exemplifies

violatesmotivates

Listening

Design 
pattern

Design 
principle

Code smell

Figure 2. Integration of code smells, design patterns, and
design principles into a single conceptual structure.

taught in the Gang of Four patterns style: by outlining the
intent behind the design pattern, and then showing how the
prescriptive structure satisfies that intent.
What if we tell a more interwoven story of code smells,

principles, and patterns? For example, by choosing a prin-
ciple like SOLID [8] and integrating it with relevant smells
and design patterns. In doing this, our aim is to help stu-
dents learn and eventually internalise a powerful conceptual
framework (Figure 2) that relates the three concepts. We can
link an intended change through to problematic code smells,
which violate basic design principles. Then, we can apply a
refactoring to address the code smell, the choice of which is
motivated by some design principle violation. By applying
these refactorings, we can demonstrate that design patterns
(and good designs generally) emerge from code by resolving
design principle violations.

This has a satisfying endpoint: by telling a story of a design
pattern as emerging from code, we use design patterns not as
an end unto themselves, but instead as examples of principled
design. We can tell story after story of code evolving to
encode design patterns by refactoring code smells that would
scream back if you tried to make that particular change
without them, and show the principles that are violated that
cause the cacophony.

The Composite Pattern Story. Imagine the toy-version of
the listening-based story we might tell about the compos-
ite pattern. We start with the fairly nice, readable piece of
code in Figure 3. We might then explain that if we wanted
to add another kind of element (video, for instance) to the
hierarchy, we would have to make a change to this code in
three places: the declarations (a new list), the print method
(a new loop), and the display method (another new loop).
This change is shown in Figure 4. The code is now starting
to talk back to us. It is trying to say that this change is delo-
calised because of a lack of abstraction. The for-loops are the
young beginnings of a smelly de facto switch on type. And
through our wise programmer lens, we can see that we have
a lack of obliviousness that feels like a dependency inversion
violation. The canonical response to the switch on type code
smell is to introduce a hierarchy. We would introduce a type
that served as an abstraction over Description, Topic and



Onward! ’19, October 23–24, 2019, Athens, Greece Baniassad, Beschastnikh, Holmes, Kiczales, Allen

class Topic {
ArrayList<Description> descriptions...
ArrayList<Topic> subtopics...
...
public void print(){

for (Description d : descriptions){
d.print();

}
for (Topic t : subtopics){

t.print();
}

}

public void display(){
// same pair of for-loops,

// except calling display instead of print
}

}

Figure 3. Small program iterating over a topic hierarchy.

Video. Adding this abstraction, shown in the code in Fig-
ure 5, would solve the dependency inversion problem, the
switch on type code smell (presenting as multiple for-loops),
and graduate us to the Composite pattern.

The Observer Pattern Story. The story to get to the Ob-
server pattern has more twists and turns, because it is a story
of two halves (the Observed and the Observer). The story
again begins with code riddled with smells. In this case we
have a watcher and a watchee, each of which is maintaining
a reference to the other.

Watcher Watchee
There are several ways that trouble can start, and the

journey is what guides us to the variant of our solution. If
we wanted to add another kind of watcher, then we would
see duplication between the two watchers, and would see a
switch on type in the watchee, when trying to update each of
the kinds of observers. So wewould solve that by introducing
a higher-level type to both pull up the duplication at the point
of observation, and provide an abstraction over which the
watchee could loop obliviously. At this point we have reached
a very minimal version of the pattern, with abstraction only
present on the Observer side.

Watcher WatcheeObserver

The revelatory process has a positive outcome: Rather
than prescriptively applying some specially chosen variant
of a pattern, the developer lets the code talk them through
to a minimal yet solid (pun intended) set of design cues.
If there was another kind of Subject, meaning there was
duplication between Watchee types, we would have pulled
up that duplication into a higher level type, and then would

class Topic {
ArrayList<Description> descriptions...
ArrayList<Topic> subtopics...
ArrayList<Video> videos...
...
public void print(){

for (Description d : descriptions){
d.print();

}
for (Topic t : subtopics){

t.print();
}
for (Video v : videos){

v.print();
}

}

public void display(){
// same three for-loops,

// except calling display instead of print
}

}

Figure 4. Now with videos!

interface CourseContent {
public void print();
public void display();

}
class Topic implements CourseContent{...}
class Video implements CourseContent{...}
class Description implements CourseContent{

ArrayList<CourseContent> elements...
...
public void print(){

for (CourseContent e : elements){
e.print();

}
}

public void display(){...}
}

Figure 5. Refactored code from Figure 4 after introducing a
hierarchy.

have arrived at the four collaborators of the classic version of
the pattern. By promoting listening and responding, we can
systematise a concept that is hard for novice developers to
internalise: to employ “good design” but not to “over design”.
Educators could use new visualisations of the stories of

patterns that depict the issues in code as giving rise to new
abstractions (such as that sketched in Figure 6).



Learning to Listen for Design Onward! ’19, October 23–24, 2019, Athens, Greece

Figure 6. The emergent observer story sketch.

Learning Outcomes. Listening for design has some nice
side effects, beyond just helping students hear what their
code is saying. Here are a few:

The Listening perspective helps novices navigate the quag-
mire of heavily related patterns. Factory Method and Ab-
stract Factory are great examples. One is just like the other,
but with more abstraction. The descriptions of these two
patterns are tricky to a newcomer, but the journeys to get
there are straightforward to chart: when you hear a violation
of the single responsibility principle, or you are experiencing
shotgun surgery, abstract again.
While listening for design may help novices remember

the structure of existing design patterns (by remembering
how they are derived), it frees the educator from promoting
rote memorization of a catalogue of design options. It allows
students to uncover their own design patterns, maybe with-
out even realising they have arrived at a canonical one. They
no longer have to let the design patterns book become their
menu for good design: instead they can listen to their code,
and go where it beckons.

After tracing the stories of several design patterns, themes
begin to emerge: duplication is spotted and pulled up, switches

on type are spotted and higher types are introduced, respon-
sibilities are pulled out of bloated classes. Students can begin
to see that while the intents of the patterns differ dramati-
cally, as do their program semantics, many of the smells are
the same, and to some extent, the responses also look the
same. Students can begin to appreciate the meta-patterns in
design patterns, directing them straight to the core of object
oriented design: pull up, abstract, override.

Assessing Listening.Our current approach involves eval-
uating students step by step: given this code, and this desired
change, which code smells are problematic? Which princi-
ples are violated? What refactorings would you apply? What
pattern would then emerge? At our scale, we do not have
a lot of room for free exploration in our summative assess-
ments, but at a smaller scale, or in a higher-level course, it
may be tractable to give students code and see where they
go. We can imagine a salon-style setting, in which, given a
rich problem description, students can meander, explore, and
debate their choices, without the right answer necessarily
having been pre-established.



Onward! ’19, October 23–24, 2019, Athens, Greece Baniassad, Beschastnikh, Holmes, Kiczales, Allen

5 Contextualising
Design principles are typically associated with the dominant
code use case: large industrial code that will be undergoing
evolution. Not repeating yourself, for instance, is, in that
context, almost always a good idea. It feels safe to say that if
repetition becomes too insidious, then it should be stamped
out through strategic application of abstraction.
However, digging a little deeper tells us a more nuanced

story. That sometimes a code smell to one person, is a de-
sign principle to another. For instance: when a student is
at the very beginning of learning the concept of sequential
execution, it may be very helpful to see the same line of
code repeated. This gives them a physical, and intentionally
concrete representation of repetition in the code. This is nec-
essary even before they know what a loop is. Showing a loop
would be problematic if the student does not yet understand
this control abstraction. Similarly, novice students tend to
in-line behaviour so that they can follow, without jumping
around, the details of the implementation of an algorithm.
Hiding behaviour behind functional abstractions, especially
if there is overriding involved, would confuse the student,
and would be, quite rightly, considered poor pedagogical
code design.
Open source development may implicate different prin-

ciples from closed source development. Open source pro-
grammers likely prepare their code for public consumption
to enhance the principle of readability, and may employ a
more granulated style for the sake of facilitating unforeseen
expansion and reuse.
That is all to say: different people will hear differently.

And what they hear will depend on many factors, including
the person’s culture, the use cases that they are imagining,
and their past experiences.
As a result of different contexts of hearing, the patterns

that would emerge and the principles that would emerge
would differ. This type of design relativity implies that pat-
terns and principles are actually subjective and contextual.
When we teach students about listening to design, we

need to build in awareness of which code use case we are
asking them to occupy. In the later years of the software
engineering stream, we ask students to mimic and acquire
the industrial style of code listening. But in the earlier years,
we may task them with attaining different design principles:
we may impose certain coding conventions that facilitate
grading, or code walk-throughs, or the derivation of clearer
diagrams. We may tell them to be more or less aggressive
in their use of inheritance. In How to Design Programs, for
instance, we start them off using a recursive template to
operate on a list, and must do so in a principled way, whereas
later they are shown a more expert method (using abstract
functions), which brings to bear new design principles, and
concomitant code smells.

Maintaining awareness of the contextual nature of design
principles will likely enhance and accelerate students’ wis-
dom in listening. It will show them that principles are present
only for a purpose, and that when the domain of application
changes, the principles and their priorities may also change.

6 Reflections
Hill Climbing. In teaching novices to listen and respond
with refactorings, are we driving them towards a path of
needless abstraction, needless refactoring, and even hill climb-
ing? Will students arrive at design dead-ends with this ap-
proach? Perhaps. . . but teaching emergent design carries the
same risk as when teaching refactoring: that any time an
opportunity to refactor is identified, that the refactoring is
carried out. The refactoring community has done an excel-
lent job of counseling action only when needed, with the
rule of three (two instances of similar code don’t require refac-
toring, but when similar code is used three times, it should be
extracted into a new procedure). Similar coaching goes along
with the message of listening to code. Listen for protest to a
change.

Hill climbing is less of a concern for code that is composed
by a team. Group projects in software engineering courses
teach students to respect what others on their team may be
hearing the code say, and to work collaboratively. Different
programmers will hear different smells and will bring in-
dividualised perspective and wisdom, rooted in principled
understanding, to their interpretation of what the code is
telling them. By listening in concert, a team can hear the code
more clearly. As Gabriel writes, “Conceptual integrity arises
not (simply) from one mind or from a small number of agree-
ing resonant minds, but from sometimes hidden co-authors
and the thing designed itself.”

Reality Check. The reality of writing code that runs in the
wild is that it must solve a task and it must do so within
constraints like cost, performance, and other non-functional
requirements. Listening to code for emergent design, there-
fore, is only a part of the equation when building useful
systems. Ultimately, code is not written to satisfy design
principles, but to solve a problem. Code that solves the prob-
lem cheaper than a better-designed alternative may be more
desirable. Our conceptual model does not aim to capture
this complexity. And, we are interested in ideas for how to
introduce these other concerns into the triad of code smells,
design patterns, and design principles.

Programmer Relegation. Taken to its extreme, emergent
design may seem to reduce the programmer to a functionary:
a slave to their own creation. Does emergent design indeed
mean that the programmer is passively listening and respond-
ing to what the artifact wants to be (with minimal volition),
or is there a more active role that the programmer can play?
Is the only true action the initial seed, while all else is a



Learning to Listen for Design Onward! ’19, October 23–24, 2019, Athens, Greece

response? This feels very unlikely, especially in the face of
structurally contradictory changes. There will always be a
place for wisdom and experience in design. Even in choices
of technology, language, or the underlying framework. Lis-
tening is the first step, but the programmer’s lexicon can
expand out from principles and patterns into more sophisti-
cated mechanisms. If this were not the case, then it’s conceiv-
able that we could write an automatic refactorer: one that
does not just perform refactorings, but also imposes refactor-
ings based on a change or augmentation to the system. We
can intuitively see that this is reductionist and problematic:
this refactorer’s search space would be vastly inferior to our
own ability to reason about the potential of our code. It’s
true that we need to listen to code to know what to do, but
the response is wholly our domain.

When Abstractions Fail Us. What do we do in the face
of truly contradictory changes? When listening to one mes-
sage would necessitate ignoring another or causing more
cries of protest, regardless of how much abstraction we em-
ploy? Design paradigms (Functional programming, Impera-
tive programming, Object Orientation, RESTful design, AOP,
etc.) arose because of a realisation that the available design
paradigms, the available abstractions, were not up to the task
of abstracting away the smells while satisfying principles.
In the early days of Aspect-orientation, Gregor Kiczales

toyed with the term emergent entity as a way to identify an
abstraction that emerged from the code, even when, on the
surface, the program was well designed. The concept of an
emergent entity was folded into a more actionable pair of
terms: scattering and tangling, which capture the code smell
that signalled the manifested entity. The two most promi-
nent groups at the time looked at scattering and tangling,
and each group chose one of those to individually address
with language support: The team at TJ Watson [9] looked
at tangling, providing support for specifying views of indi-
vidual classes that would solve what the divergent changes
code smell, and single responsibility principle violations. The
team at PARC focused on scattering (while still addressing
tangling), providing a language by which behaviour that was
impossible to localise could be described in one place, and
compiled (or close to it) into target locations, thereby solving
shotgun surgery and attacking a particularly troublesome
version of semantic coupling [7].

Both teams identified a fundamental problem with object
orientation, or really with any design paradigm: that of the
tyranny of the dominant decomposition. That a programmer
would need to make a choice when faced with structurally
conflicting changes: to optimise for changeability in one
way, or the other. When faced with a failure of available
abstraction mechanisms, their response was to devise new
abstraction mechanisms. Limited by their paradigm, they
abstracted into a new paradigm. The solution could not be
found within the code or in the language in which it was

written. Change had to come from without: by introducing
a new framework, new interpreter, or making changes to
the compiler itself. The problematic and unresolvable con-
tradictory code smells become motivation for new levels of
previously unsupported abstraction (Aspects, explicit tests a
la JUnit, Lambdas, etc). When abstractions fail us, we need
to not just listen to the code, but to listen to the paradigm.

7 Unfolding
In his work The Nature of Order, Volume 2 [1], Alexander
described a four-principled approach to design, called un-
folding. The principles were (1) Step-by-Step Adaptation,
(2) Feedback, (3) Unpredictability, and (4) Awareness of the
Whole. Echoes of this work can be found in today’s Ag-
ile methodologies, but Alexander’s ideas initially impacted
software engineering through patterns as language. This
notion was captured and explored by the Hillside Group
(https://hillside.net/) and is precisely our starting point in
this essay: as a method for listening to design, responding,
and arriving at patterns. For the student, Alexander’s third
principle, unpredictability, is the least comfortable:

To make the adaptation successful, the process
must be relaxed about the unpredictable character
of where it goes. Unfolding cannot occur except in
a framework which allows the whole to go where it
must go. The dire modern passion for planning and
advance control must be replaced by an attitude
which recognizes that openness to the future, and
lack of predictability, is a condition for success. It
must be alright for the thing to become whatever
it becomes, under the influence of adaptation and
feedback, even though one does not know, in detail,
what that thing is going to be.
– The Nature of Order, Book 2, Draft dated January
26, 1997, page 134; roughly the same content as
The Nature of Order, Book 2, pp 236–241 along
with all the material on wholeness in Part Two
of that book, 2002.

Learning to live, in an agile way, with meandering and reve-
latory design, means practice at living with unpredictability.
And it seems fitting to use design patterns as a vehicle for
teaching students to listen and unfold.
Ultimately, we believe that listening to code allows code

to guide the programmer to better design. Code smells are
the voice of the code, and internalisation of design princi-
ples tunes the programmer into hearing and interpreting
code’s painful cries of resistance to change. Programmers
respond by refactoring, incrementally emerging positive de-
sign. Listening, hearing, and responding, affords a highly
skilled, revelatory process of design that sits in counterpoint
with design planning.

Many applications of Alexander’s principles 1, 2, and 3,
can afford the developer a long enough design view that

https://hillside.net/


Onward! ’19, October 23–24, 2019, Athens, Greece Baniassad, Beschastnikh, Holmes, Kiczales, Allen

they can arrive at Principle 4: Awareness of the Whole. The
whole in a software project is so dynamic, so dependent
on such a variety of influences including time, space, and
changing needs, that such awareness comes at the hard won
price of experience. Being able to maintain awareness of the
whole means that the developer can see likely future develop-
ments, typical pitfalls, and common user-level requirements
evolution 2.

Still, we believe this is not the domain, solely, of the expert.
Just as students of writing, painting, architecture, and all
arts, are taught to let their seeded artifacts demand their
own refinement, we, too, can instill this skill in newcomers
to our field. By telling story after story of revelatory design,
perhaps mined from the world of Design Patterns, we can
open up the world of listening so students can learn to unfold
the abstract.

8 Acknowledgements
Sincere thanks to Richard Gabriel for in depth comments and
insights, for chasing down the Unpredictability reference,
and for lending us the jumping off point for this work.

References
[1] Christopher Alexander. 2002. The Nature of Order, Volume 2. Routledge.
[2] Kent Beck and Cynthia Andres. 2004. Extreme Programming Explained:

Embrace Change (2nd Edition). Addison-Wesley Professional.

[3] Matthias Felleisen, Robert Bruce Findler, Matthew Flatt, and Shriram
Krishnamurthi. 2001. How to Design Programs: An Introduction to Pro-
gramming and Computing. MIT Press.

[4] Martin Fowler. 1999. "Refactoring - Improving the Design of Existing
Code". Addison-Wesley. http://martinfowler.com/books/refactoring.
html

[5] Richard P. Gabriel. 2008. Designed as designer. In Proceedings of the Con-
ference on Object-Oriented Programming, Systems, Languages, and Appli-
cations, (OOPSLA). 617–632. https://doi.org/10.1145/1449764.1449813

[6] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. 1995.
Design Patterns: Elements of Reusable Object-oriented Software. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA.

[7] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda,
Cristina Lopes, Jean-Marc Loingtier, and John Irwin. 1997. Aspect-
oriented programming. In ECOOP’97 — Object-Oriented Programming,
Mehmet Akşit and Satoshi Matsuoka (Eds.). Springer Berlin Heidelberg,
Berlin, Heidelberg, 220–242.

[8] Robert C Martin. 2000. Design principles and design patterns. Object
Mentor 1, 34 (2000), 597.

[9] Harold Ossher and Peri Tarr. 2001. Using Multidimensional Separation
of Concerns to (Re)Shape Evolving Software. Commun. ACM 44, 10
(Oct. 2001), 43–50. https://doi.org/10.1145/383845.383856

2It is possible that adopting a Kent Beck style systems metaphor [2] could
accelerate the process of gathering the necessary experience to afford Prin-
ciple 4. For instance, knowing that one is facing changes associated with
a Blackboard, or a Shopping Cart, may help that zoom out/step back/gain
perspective process that Alexander prescribes, and would foretell likely fu-
ture changes. A full exploration of this could be the substance of an entirely
different essay.

http://martinfowler.com/books/refactoring.html
http://martinfowler.com/books/refactoring.html
https://doi.org/10.1145/1449764.1449813
https://doi.org/10.1145/383845.383856

	Abstract
	1 Voice
	2 Hearing
	3 Emerging
	4 Teaching
	5 Contextualising
	6 Reflections
	7 Unfolding
	8 Acknowledgements
	References

