NetCheck: Network Diagnoses from Blackbox Traces

https://netcheck.poly.edu/

Yanyan Zhuang†‡, Eleni Gessiou†, Steven Portzer*, Fraida Fund†
Monzur Muhammad†, Ivan Beschastnikh‡, Justin Cappos†

Challenges & Contributions

Accuracy: ambiguity in reconstruction.
- Without clock sync, multiple orderings of end-host syscalls possible. An example:

(a) Two input host traces

(b) A valid ordering

(c) Another valid ordering!

(d) An invalid ordering of (a)

Network complexity: diagnosing issues in real networks.
- Host traces omit information about physical network or environment.

Efficiency: must explore an exponential space of possible orderings.

NetCheck Contributions
- Derive a plausible global ordering as an approximation for the ground truth.
- Model expected simple network behavior to identify the unexpected.
- A best-case linear time algorithm to find a plausible global ordering.

Evaluation

Accuracy
- Reproduced known bugs in multiple open source projects
 - 46 bugs from public bug trackers of 30 open source projects
 - Reproduced issue from each report: 71 traces, 24 categories
 - Correctly detected and diagnosed 95.7% of bugs considered.
- Diagnosed injected failures in a real network
 - Admin replicated and injected network-related bugs.
 - Diagnosed 80% of the injected bugs with a false positive rate of 3%.
- Diagnosed root causes of popular apps
 - FTP client
 - Client behind NAT
 - High data loss
 - Pidgin
 - IP change
 - Message loss
 - Skype
 - Data loss due to delay
 - A different thread closes socket
 - Client behind NAT
 - VirtualBox (newly discovered bug)
 - Virtualization misbehavior

Efficiency
- Runtime performance overhead.
 - Between linear and quadratic

Acknowledgements

National Science Foundation Awards 1223588 & 1205415, NSF Graduate Research Fellowship Award 1104522, the NYU WIRELESS research center and the Center for Advanced Technology in Telecommunications (CATT).