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Abstract—Microservices have become a popular pattern for de-
ploying scale-out application logic and are used at companies like
Netflix, IBM, and Google. An advantage of using microservices
is their loose coupling, which leads to agile and rapid evolution,
and continuous re-deployment. However, developers are tasked
with managing this evolution and largely do so manually by
continuously collecting and evaluating low-level service behaviors.
This is tedious, error-prone, and slow. We argue for an approach
based on service evolution modeling in which we combine static
and dynamic information to generate an accurate representation
of the evolving microservice-based system. We discuss how
our approach can help engineers manage service upgrades,
architectural evolution, and changing deployment trade-offs.

I. INTRODUCTION

Cloud platforms offer pay-as-you-go resource elasticity and
virtually unbounded resources. However, to take advantage
of these features, developers must judiciously distribute busi-
ness logic on the platforms. Microservices [1] are a popular
pattern for distributing functionality. A Microservice-Based
Application (uApp) is a distributed system that consists of
small, loosely coupled, mono-functional services (microser-
vices) that communicate using REST-like interfaces over a
network. Microservices are typically developed and deployed
independently, resulting in polyglot pApps that rapidly evolve
and are continuously re-deployed.

Understanding a single microservice may be straightfor-
ward, but uApps often contain dozens of inter-dependent mi-
croservices that continuously change. Monitoring and logging
stacks for microservices, such as the Elk stack!, are essential
to understanding the microservices in a yApp and are broadly
adopted. Unfortunately, logs produced by such stacks contain
low-level information for a single deployment. Reconciling the
view of the deployed version of the system with the historical
view of changes being introduced requires interpretation by
the developer.

For example, a log may record a failing REST invocation
against a particular URL, but it is up to the developer to
determine if this invocation was introduced in a recent change
and requires fixing or if it indicates an undesirable dependency
that should rather be eliminated. Furthermore, non-trivial tasks
require piecing together logged information from multiple
sources, such as multiple system logs, container infrastructure
data, real-time communication messages, and more; collecting
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and analyzing such information in the context of an evolving
system relies on non-trivial knowledge and effort.

In collaboration with our industrial partner, IBM, we iden-
tified several evolution-related maintenance tasks that are
challenging for microservice developers. Supporting these and
similar tasks is the focus of our work.

Next, we overview the tasks and briefly outline the chal-
lenges they entail.

o Checking for upgrade consistency. Microservices are
developed and evolve independently, yet the pApp must
remain coherent and functional. Determining compatibil-
ity and consistency between microservice versions is a
continuous challenge for developers. Today, developers
manually identify microservice dependencies and either
engage with other developers who own that microservice
or evaluate the dependency through code inspection.

o Identifying architectural improvements. An evolving
1App will experience software architectural corrosion,
such as a decrease in cohesion and increase in coupling
between related services. Today detecting such architec-
tural problems and evolving microservice architectures
are manual and highly involved processes that require
global knowledge of microservice inter-dependencies.

« Evaluating changing deployment trade-offs. Microser-
vices offer extensive deployment flexibility. For example,
two services can be co-located as two containers on the
same machine, as two containers in one VM, or as two
VMs on the same machine. A poor deployment choice
can increase cost, and hurt performance, scalability, and
fault tolerance. Furthermore, these decisions must be re-
evaluated as the yApp evolves. Today developers evaluate
changing deployment trade-offs through trial and error
without a systematic strategy nor much tool support.

In this paper, we propose an approach for combining struc-
tural, deployment, and runtime information about evolving mi-
croservices in one coherent space, which we refer to as service
evolution model. By aggregating and analyzing information in
the model, we aim to provide actionable insights, assisting
uApp developers with maintenance and evolution tasks.

In Section III, we introduce the proposed model. We also
describe a preliminary design of a system for populating the
model by collecting information from a variety of sources,
both static and dynamic. In Section IV, we discuss how the
information captured in the model helps developers address



*

* Scenario

«enumeration» é
Environment

CONTAINER
VIRTUAL_MACHINE
PHYSICAL_MACHINE

>—

1 *
Metric Provider

+cpu: float ——@]

Application l@— l *

ApplicationVersion
1

*
Service

{ordered} Operation Message

+correlationld: String

<> W +timestamp: long
+totalTime: long

+processingTime: long

OperationVersion
+source

+memory: float

*

* Location Host

*

> +hosting: Environment

* * *
+API
ServiceVersi <

+arget

ServiceReplica

-

[] conceptual Layer

[[] infrastructure Layer

*

[l 'nstance Layer

Fig. 1. Service evolution model.
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Fig. 2. ToDo application architecture.

the above tasks. Next, we overview the requisite background
on microservices.

II. BACKGROUND ON MICROSERVICES

High decoupling is a cornerstone of the microservice pat-
tern [1], an architectural pattern of service-oriented comput-
ing [2]. While a consensus has not been reached on what
exactly differentiates a microservice from traditional service-
oriented architecture (SOA) services [3], most agree that a
microservice can be defined as a decoupled and autonomous
software, having a specific functionality in a bounded context.
Microservices are interdependently managed and upgraded.
They communicate using lightweight protocols and are usu-
ally deployed inside containers, a lightweight alternative to
traditional virtual machines.

The decoupling provided by microservices, together with
the agile software delivery and deployment processes [4],
[5] decreases the complexity of tasks like upgrades and
replication. At the same time, using microservices typically
increases the number of interrelated components that make up
an application, which creates new consistency issues and poses
challenges to evolving microservice-based applications.

To make matters worse, an important feature of microser-
vices is their ability to scale in/out by removing/creating mi-
croservice replicas as necessary. This causes the microservices
instances to have a short lifetime, inducing further dynamism
and complexity.

ITII. SERVICE EVOLUTION MODEL

We propose a model for microservices and their evolution
in Fig. 1. This model is divided into three layers: the Ar-
chitectural layer (unshaded elements) captures the topology
of a pApp. The Instance layer (black elements) captures
information about service replicas and upgrades, and the flow
of puApp messages. This layer links the topology outlined in
the Architectural layer with deployed microservice instances.
The Infrastructure layer (gray elements) captures deployment
parameters.

Next, we describe each layer (Section III-A) and how we
populate the model with concrete information from a pApp
deployment (Section III-B).

As our running example we use a simplified version of
an open-source ToDo pApp application? in Fig. 2, which
consists of three microservices: Frontend, Processing, and
Database, each deployed in its own container. Frontend allows
new users to log in (via the \login\<username> opera-
tion) and, for already logged in users, to retrieve the list of
their todo items (\1list-todos\<username>). Frontend
communicates with the Processing microservice to obtain
information about a specific user (\users\<username>)
and to retrieve all todo lists of a specific user from the database
(\todos\<username>). The database access is managed
by the Database microservice that provides access to the list
of all users (\users) and all todo items (\todos).

A. Model Description

A pApp is represented by the Application element in
Fig. 1, which consists of a set of Services, each exposing a
set of Operations. For the example in Fig. 2, the Frontend
service exposes two operations: \login\<username> and
\list-todos\<username>.

A Scenario describes a high-level use case of the ap-
plication and is realized by an ordered list of operations

Zhttps://github.com/h4xr/todo
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executed by services. In the ToDo application, such sce-
narios are users logging into the application and retrieving
their todos. The login scenario is realized by the Fron-
tend \login\<username> operation, followed by the
Processing \users\<username> operation and Database
\users operation. A scenario specifies the allowed order of
operations, helping to detect faulty behaviors: there is no sce-
nario where the Processing \todo\<username> operation
precedes the Frontend \1ogin\<username> operation.

The ServiceVersion and OperationVersion elements keep
track of changes in services and their interfaces. Any upgrade
of a microservice creates a new ServiceVersion element. In
addition, if the upgrade involves an operation change, a
new OperationVersion element is created and attached to
that new ServiceVersion element. For example, adding the
\create-todo\<todo> operation in the Frontend mi-
croservice, as shown in Fig. 3, will create new ServiceVersion
and Operation instances.

In blue-green deployments®, multiple services and multiple
versions of the same service can run in parallel, as part of the
same application. The ApplicationVersion element groups all
service versions in a particular configuration. A sequence of
ApplicationVersions represents the evolution of an application
over time.

To model scale-in and out of services, multiple identical
instances of a service version are represented by the Ser-
viceReplica element. ServiceReplicas are Hosted by contain-
ers or by physical and virtual machines, depending on the
Environment made available by the cloud Provider. Common
cloud providers are Amazon AWS, Microsoft Azure, IBM
BlueMix, and Google Cloud Platform, each offering several
hosting environments.

Hosts can be deployed in multiple geographic Locations.
Fig. 4 shows a snippet of the deployment model for the
Frontend service of the ToDo application. In this example, the
Frontend.blue version is hosted by VM; on the East Coast
and runs one replica: Frontend.blue.l. The Frontend.green
version is hosted by VM, on the West Coast and runs two
replicas: Frontend.green.l and Frontend.green.2. All replicas,
on both coasts, correspond to different versions of the Frontend
service.

To optimize deployment options as the application evolves,
we periodically monitor and store Metrics related to hosts’
CPU load, memory utilization, traffic and latency of requests
from a certain area, etc.

A core element of our model is Message. Each Message
represents a uniquely-identified call issued by the source mi-

3https://martinfowler.com/bliki/BlueGreenDeployment.html
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Fig. 4. An example blue-green deployment of the Frontend service in Fig. 2.

croservice to a particular API (i.e., Operation) exposed by the
destination microservice. For the example in Fig. 2, the Pro-
cessing microservice exposes the \users\<username> op-
eration, which can be called by the \1login\<username>
Frontend microservice. Each Message carries the timestamp
of the request, total time elapsed between issuing the request
and obtaining the response, and the time spent in processing
the request by each downstream microservice.

Messages realizing the same Scenario are grouped together
via a correlationld. For example, when both User A and User
B log into the ToDo application, they execute the same login
scenario, which involves the same sequence of messages but
with different correlation ids: all messages corresponding to
the User A login are correlated with each other and are distinct
from those of User B.

B. Towards Populating the Model

We generate the model by using information from system
logs, container infrastructure data, and messages over pro-
tocols like HTTP. More specifically, we extract information
about microservices from hosts’ meta-data and configuration
files, such as deployment files in Kubernetes*. To identify
operations and their association with services, we rely on a
variety of sources: when available, we extract information
from API gateways combined with service discovery tools,
such as Zuul®>. We also inspect documentation in tools such as
Swagger®, if that information was published by the developers.
We correlate and augment the extracted information by mon-
itoring HTTP messages between services to reveal the used
operations.

We generate message elements by using distributed tracing
mechanisms, such as Zipkin [6]. We use correlationlds in

“https://kubernetes.io/
Shttps://github.com/Netflix/zuul
Shttp://swagger.io/
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Fig. 5. Retrospective and prospective model analysis.

HTTP requests if developers follow the Correlation Identifier
pattern [1]. In case this information is missing, we plan to
implement dynamic information flow analysis techniques to
correlate input messages with outgoing requests triggered by
them.

Scenarios can be identified by grouping requests with the
same correlationld. In such an implementation, each operation
that is the first point of contact for a user will generate a
new scenario. To identify scenarios, we plan to analyze test
cases associated with an application, with the assumption that
all messages generated by a test contribute to one high-level
scenario.

By querying cloud provider APIs we plan to extract infor-
mation about the properties of the provider, such as the data
center location, hosts, etc. Interfaces provided by container
orchestration systems, such as Kubernetes, can also be used to
obtain notifications of new versions and newly created replicas.
Performance metrics, like network throughput, CPU, memory,
and disk usage can be periodically collected using monitoring
mechanism such as cAdvisor’.

Feasibility. To assess the feasibility of the proposed approach,
we implemented an initial prototype of the data collection sys-
tem on top of Kubernetes, ELK Stack, and an HTTP monitor.
One major challenge for our collection and, at a later stage,
analysis system is the sheer amount of data that we collect.
We intend to utilize graph databases, such as IBM Graph®,
which are designed to store large and complex networks of
inter-related data. For host and network metrics, we intend to
use data stores built for time series data, such as InfluxDB®.
Moreover, we intend to periodically compress historical data,
keeping only aggregated summaries and statistics.

IV. EVOLUTION USE CASES REVISITED

Our generated model captures information about an evolv-
ing pApp (Fig. 5). We envision two types of automated model
analyses: retrospective (considering current and past models)
and prospective (considering current and future models).

Next, we describe how these analyses support the use cases
from the introduction: checking upgrade consistency, suggest-
ing architectural improvements, and evaluating deployment
trade-offs.

7https://github.com/google/cadvisor
8https://www.ibm.com/in-en/marketplace/graph
%https://www.influxdata.com/
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Fig. 6. Refactored ToDo application architecture

Retrospective Analysis. Individual microservices depend on
each other to function; a failure in a service might be caused
by a change in an entirely different, dependent service. Com-
paring the sequence of messages in the faulty application
scenario to that before the failure occurred, i.e., in the failing
and the previous versions of the model, helps detect modified
downstream service(s) involved in the scenario. Such services
are more likely to be responsible for the fault and should thus
be inspected first when checking for upgrade inconsistencies.

We can also use retrospective analysis to recommend ar-
chitectural improvements. For example, we can use prior
models to identify changes in the pApp topology w.r.t. their
communication patterns. Changing coupling and cohesion of
services can trigger topology re-organization, e.g., by merging
interdependent services.

Splitting “imbalanced” microservices, whose operations ex-
hibit different workloads, can help to scale these operations
more accurately. For example, in our ToDo application, once
users log in, they create and modify numerous todo items. As
such, the login endpoint is underutilized as compared to the
endpoint that manages todos. Splitting this microservice into
two separate entities, as shown in Fig. 6, makes it possible to
scale up the Todo microservice while avoiding simultaneous
scaling of the Users microservice.

The history of metrics stored in our model, correlated with
the info on services and their locations, can be used to suggest
deployment improvements. For example, the Frontend and
Todo microservices in Fig. 6 are tightly-coupled; we can thus
suggest that these microservices should be located close to one
another. Yet, the Todo and User microservices do not need
such proximity. Likewise, if we observe a sudden decrease
in the number of users logging in from a certain geographic
location, we can recommend removing the replica at that
location, saving money and resources.

In our work, we plan to identify a set of desired architectural
and deployment patterns, as in the examples above, and
monitor their preservation as the application evolves. That
can be achieved by analyzing the collected information on
services, operations, messages they exchange, networking and
CPU metrics, etc. Whenever the application integrity or quality
of service is compromised, our monitoring and analysis system
will recommend appropriate improvements, such as replacing
a microservice, or moving microservices to different hosts.



Prospective Analysis. Furthermore, we can use our model as
a “sandbox” for exploring the space of possible architectural
and deployment refactorings. We would instantiate several
possible refactorings as new snapshots of the model (Future
Models in Fig. 5) and evaluate their ability to handle the
collected real-life pApp scenarios. That is, we will assess
potential improvement suggestions by replaying the traces
corresponding to the scenarios from the current model in the
new model. If the new model withstands a battery of tests, we
will issue a recommendation for the change/refactoring to the
developers responsible for the relevant microservices.

V. RELATED WORK

Evolving architecture has been researched since the notion
of software architecture has been articulated. A key approach
in this space that combines static analysis, dependency model-
ing, and evolving architectural concerns is by Sangal et al. [7].
Our approach is similar but targets the microservices domain,
which is dynamic and requires runtime analysis.

Work on microservices. There has been increasing interest
in applying techniques from the software engineering [8], [9],
[10], formal methods [11], and self-adaptive [12], [13], [14]
communities to the microservices domain. Our proposal is
most similar to app-bisect [8] which models the evolution of
microservices to help repair bugs in deployment. Our proposal
is more general, as it addresses additional evolution-related
maintenance tasks, such as deployment and architectural refac-
torings.

Modeling. Dependency modeling of services is an estab-
lished topic [15]. Most recently, Diillmann and van Hoorn
described a top-down approach to generate a puApp from a
model [16]. By contrast, we propose a bottom-up approach
that is closer to the work of Leitner et al. [17] and Brown
et al. [18]. However, both these approaches only use network
interactions between services to generate models and do not
model microservice evolution.

Log analysis. Logs are a popular means of monitoring and
analyzing software, particularly in the cloud [19]. The state-of-
the-art log processing systems are high throughput, real-time,
and are capable of reconstructing rich session-level data from
logs [6], [20]. Our work builds on these systems.

Supporting microservice evolution. Version consistency
has been considered for runtime reconfiguration of distributed
systems [21], fault tolerant execution [22], and in other do-
mains. We plan to build on this work and perform upgrade
consistency checking at both the model and code levels.

Deployment trade-offs. Previous work considered deploy-
ment trade-offs in general distributed systems [23]. Recently
Tarvo et al. described a monitoring tool to support canary de-
ployment [10] and Ji and Liu present a deployment framework
that accounts for SLAs [24]. We are interested in connect-
ing evolving software engineering concerns with deployment
trade-off.

VI. CONCLUSION

Microservices offer a flexible and scalable means of dis-
tributed business logic. However, there are few tools to support

developers in evolving microservices and the pApps they
comprise. In this paper, we proposed a vision for combining
structural, deployment, and runtime information about an
#App to help with evolution-related tasks. Our approach relies
on distributed tracing, log analysis, and program analysis
techniques and we plan to fully realize and evaluate it in our
future work.
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