

Iroko

A Data Center Emulator for Reinforcement Learning

Fabian Ruffy, Michael Przystupa, Ivan Beschastnikh University of British Columbia <u>https://github.com/dcgym/iroko</u>

THE UNIVERSITY OF BRITISH COLUMBIA

AuTO: Scaling Deep Reinforcement Learning for Datacenter-Scale Automatic Traffic Optimization

Li Chen, Justinas Lingys, Kai Chen, Feng Liu[†] SING Lab, Hong Kong University of Science and Technology, †SAIC Motors {lchenad,jlingys,kaichen}@cse.ust.hk,liufeng@saicmotor.com

AuTO: Scaling Deep Reinforcement Learning Resource Management with Deep Reinforcement Learning Optimization

Hongzi Mao*, Mohammad Alizadeh*, Ishai Menache[†], Srikanth Kandula[†] Massachusetts Institute of Technology*, Microsoft Research[†] {hongzi, alizadeh}@mit.edu, {ishai, srikanth}@microsoft.com 1[†] IC Motors om

AuTO: Scaling Deep Reinforcement Learning Resource Management with Deep Reinforcement Learning Optimization

Hongzi Mao*, Mohammad Alizadeh*, Ishai Menache[†], Srikanth Kandula[†] Massachusetts Institute of Technology*, Microsoft Research[†] {hongzi, alizadeh}@mit.edu, {ishai. srikanth}@microsoft.com 1[†] IC Motors om

Learning To Route

Asaf Valadarsky Hebrew University of Jerusalem asaf.valadarsky@mail.huji.ac.il

Dafna Shahaf Hebrew University of Jerusalem dafna.shahaf@mail.huji.ac.il Michael Schapira Hebrew University of Jerusalem schapiram@huji.ac.il

> Aviv Tamar UC Berkeley avivt@berkeley.edu

AuTO: Scaling Deep Reinforcement Learning Resource Management with Deep Reinforcement Learning Optimization

Hongzi Mao*, Mohammad Alizadeh*, Ishai Menache[†], Srikanth Kandula[†] Massachusetts Institute of Technology*, Microsoft Research[†] {hongzi, alizadeh}@mit.edu, {ishai. srikanth}@microsoft_com 1[†] IC Motors om

Learning To Route

Cellular Network Traffic Scheduling with Deep Reinforcement Learning

Sandeep Chinchali ¹, Pan Hu ², Tianshu Chu ³, Manu Sharma ³, Manu Bansal ³, Rakesh Misra ³ Marco Pavone ⁴ and Sachin Katti ^{1,2} ¹ Department of Computer Science, Stanford University ² Department of Electrical Engineering, Stanford University ³ Uhana, Inc. ⁴ Department of Aeronautics and Astronautics, Stanford University {csandeep, panhu, pavone, skatti}@stanford.edu, {tchu, manusharma, manub, rakesh}@uhana.io Michael Schapira Hebrew University of Jerusalem schapiram@huji.ac.il

> Aviv Tamar UC Berkeley avivt@berkeley.edu

AuTO: Scaling Deep Reinforcement Learning Resource Management with Deep Reinforcement Learning Optimization

Hongzi Mao*, Mohammad Alizadeh*, Ishai Menache†, Srikanth Kandula† Massachusetts Institute of Technology*, Microsoft Research† {hongzi, alizadeh}@mit.edu, {ishai. srikanth}@microsoft.com 1[†] IC Motors om

Learning To Route

Cellular Network Traffic Scheduling with Deep Reinforcement Learning

Sandeep Chinchali¹, Pan Hu², Tianshu Chu³, Manu Sharma³, Manu Bansal³, Rakesh Misra³ Marco Pavone⁴ and Sachin Katti^{1,2} ¹ Department of Computer Science, Stanford University

² Department of Electrical Engineering, Stanford University

⁴ Department of {csandeep, panhu, pavone, sk

Knowledge-Defined Networking

Albert Mestres*, Alberto Rodriguez-Natal*, Josep Carner*, Pere Barlet-Ros*, Eduard Alarcón*, Marc Solé[†], Victor Muntés-Mulero[†], David Meyer[‡], Sharon Barkai[§], Mike J Hibbett[¶], Giovani Estrada[¶], Khaldun Ma'ruf^{||}, Florin Coras**, Vina Ermagan**, Hugo Latapie**, Chris Cassar**, John Evans**, Fabio Maino**, Jean Walrand^{††} and Albert Cabellos* * Universitat Politècnica de Catalunya [†] CA Technologies [‡] Brocade Communication [§] Hewlett Packard Enterprise

¶ Intel R&D || NTT Communications ** Cisco Systems ^{††} University of California, Berkeley

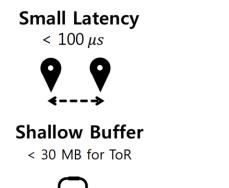
Michael Schapira Hebrew University of Jerusalem schapiram@huji.ac.il

> * viv Tamar JC Berkeley @berkeley.edu

The Data Center: A perfect use case

- DC challenges are **optimization** problems
 - Traffic control
 - Resource management
 - Routing
- Operators have complete control
- Automation possible
- · Lots of data can be collected

Datacenter Network



High Bandwidth 10/40 ~ 100 Gbps

Large Scale > 10,000 machines

Cho, Inho, Keon Jang, and Dongsu Han.

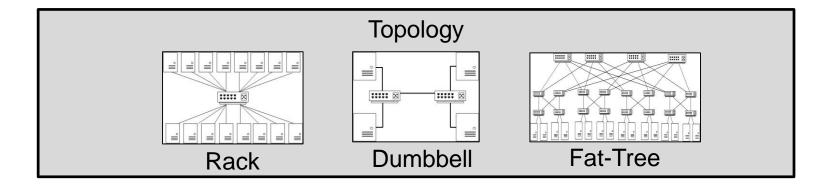
"Credit-scheduled delay-bounded congestion control for datacenters." SIGCOMM 2017

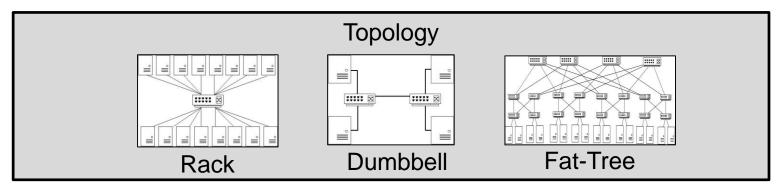
Two problems...

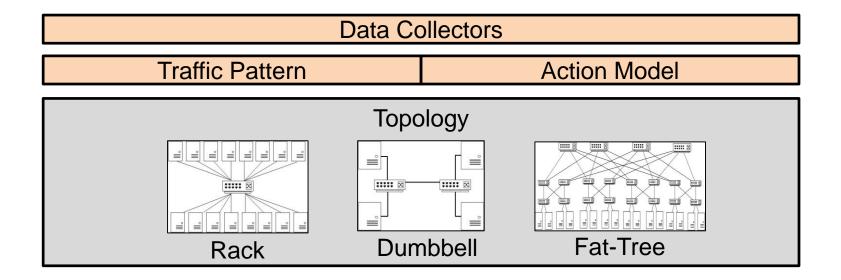
- Typical reinforcement learning is not viable for data center operators!
 - Fragile stability
 - Questionable reproducibility
 - Unknown generalizability
- Prototyping RL is complicated
 - Cannot interfere with live production traffic
 - Offline traces are limited in expressivity
 - Deployment is tedious and slow

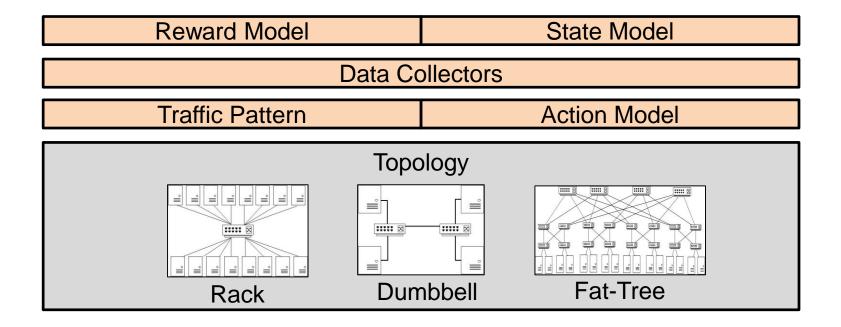
Our work: A platform for RL in Data Centers

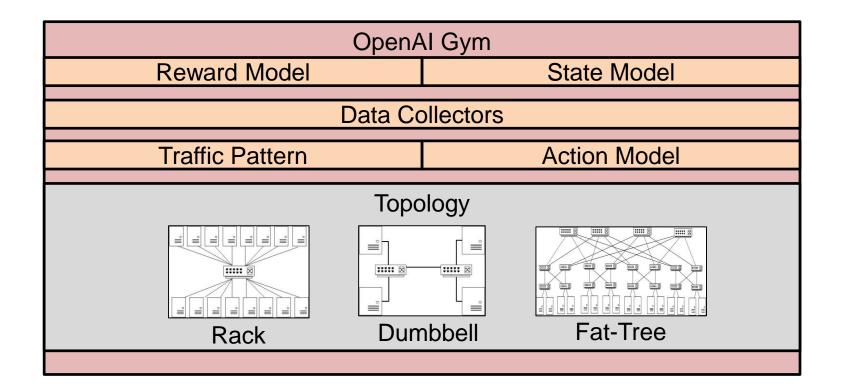
- Iroko: open reinforcement learning gym for data center scenarios
 - Inspired by the Pantheon* for WAN congestion control
- Deployable on a local Linux machine
 - Can scale to topologies with many hosts
- Approximates real data center conditions
- Allows arbitrary definition of
 - Reward
 - State
 - Actions

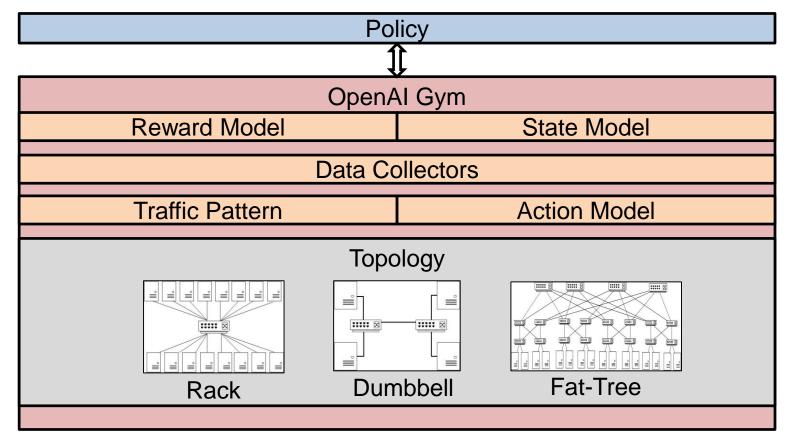








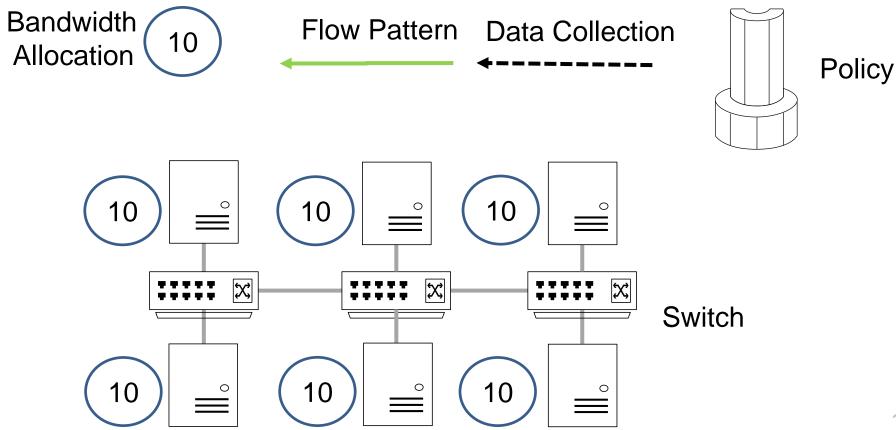


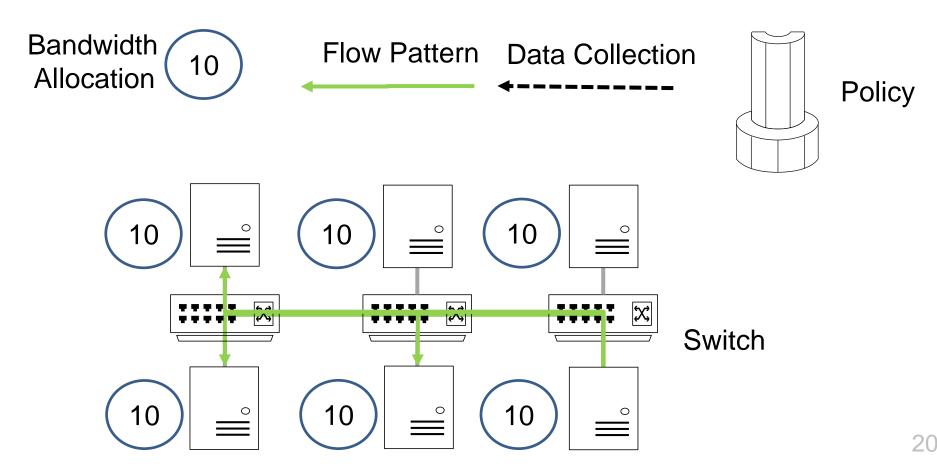


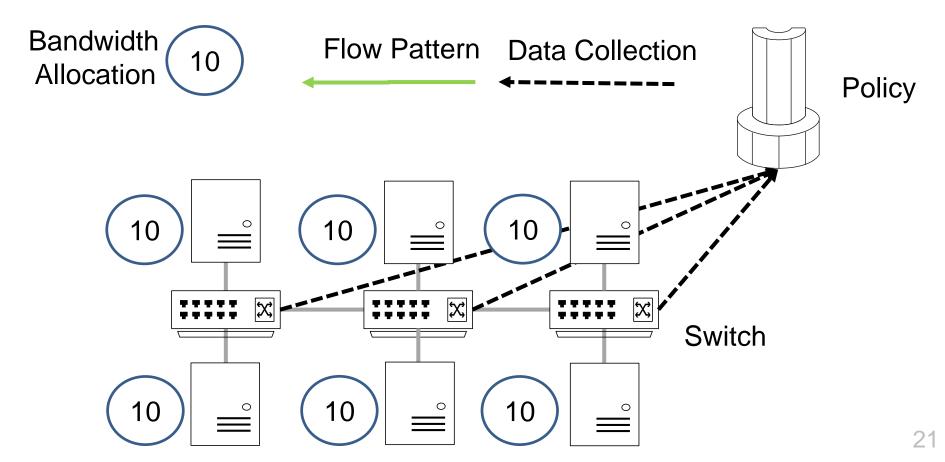
Use Case: Congestion Control

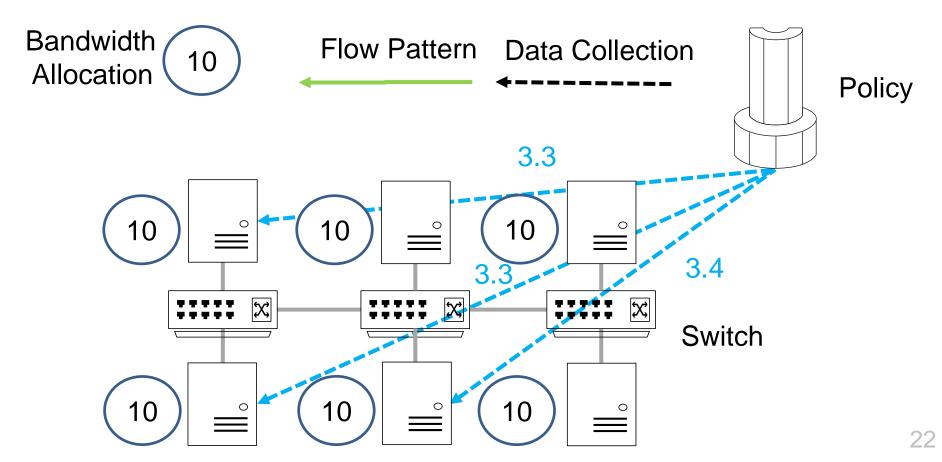
- Ideal data center should have:
 - Low latency, high utilization
 - No packet loss or queuing delay
 - Fairness

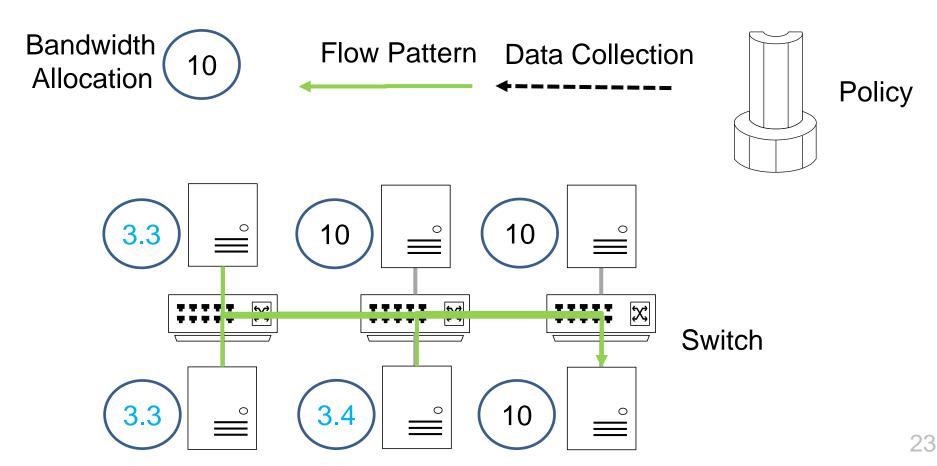
- CC variations draw from the reactive TCP
 - Queueing latency dominates
 - Frequent retransmits reduce **goodput**
 - Data center performance may be **unstable**











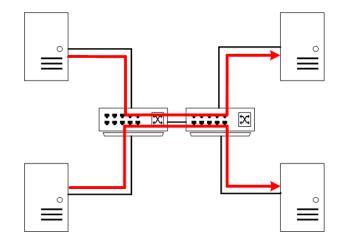
Can we learn to allocate traffic fairly?

- Two environments:
 - env_iroko: centralized rate limiting arbiter
 - Agent can set the sending rate of hosts
 - PPO, DDPG, REINFORCE
 - env_tcp: raw TCP
 - Contains implementations of TCP algorithms
 - TCP Cubic, TCP New Vegas, DCTCP
- Goal: Avoid congestion

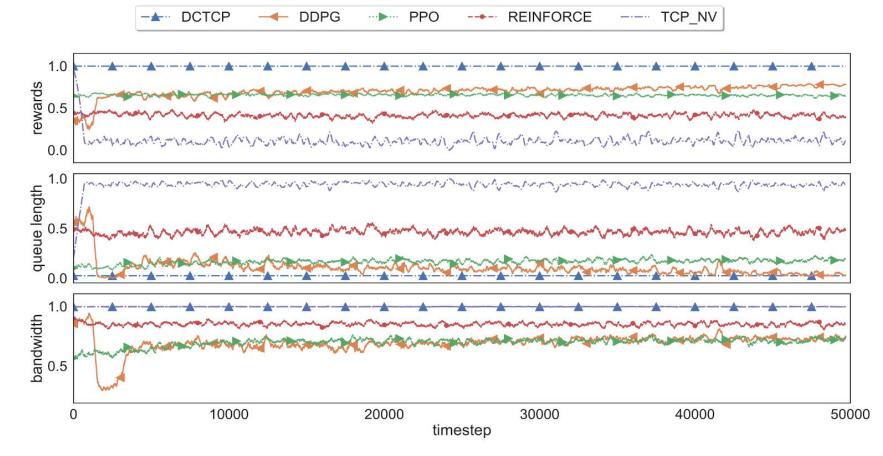
$$R \leftarrow \sum_{i \in hosts} \underbrace{bw_i / bw_{max}}_{\text{bandwidth reward}} - \underbrace{\text{ifaces}}_{weight} \cdot \underbrace{(q_i / q_{max})^2}_{\text{queue penalty}} - \underbrace{\text{std}}_{devpenalty}$$

Experiment Setup

- 50000 timesteps
- Linux default UDP as base transport
- 5 runs (~7 hours per run)
- Bottleneck at central link



Results – Dumbbell UDP



Results - Takeaways

- Challenging real-time environment
 - Noisy observation
 - Exhibits strong credit assignment problem

- RL algorithms show expected behavior for our gym
 - Achieve better performance than TCP New Vegas
 - More robust algorithms required to learn good policy
 - DDPG and PPO achieve near optimum
 - REINFORCE fails to learn good policy

Contributions

- Data center reinforcement learning is gaining traction ...but it is difficult to prototype and evaluate
- Iroko is
 - a platform to experiment with RL for data centers
 - · intended to train on live traffic
 - early stage work
 - · but experiments are promising
 - available on Github:

https://github.com/dcgym/iroko

