
MERCURY: Fast Transaction Broadcast in High
Performance Blockchain Systems

Mingxun Zhou∗‡, Liyi Zeng†‡, Yilin Han§, Peilun Li§, Fan Long¶, Dong Zhou‖, Ivan Beschastnikh∗∗, Ming Wu§
∗Carnegie Mellon University †Institute for Interdisciplinary Information Sciences, Tsinghua University

§Shanghai Tree-Graph Blockchain Research Institute ¶University of Toronto ‖IMO Ventures ∗∗University of British Columbia

Abstract—Blockchain systems must be secure and offer high
performance. These systems rely on transaction broadcast mech-
anisms to provide both of these features. Unfortunately, in today’s
systems, the broadcast mechanisms are highly inefficient.

We present MERCURY, a new transaction broadcast protocol
designed for high performance blockchains. MERCURY shortens
the transaction propagation delay using two techniques: a virtual
coordinate system and an early outburst strategy. Simulation
results show that MERCURY outperforms prior propagation
schemes and decreases overall propagation latency by up to 44%.
When implemented in Conflux, an open-source high-throughput
blockchain system, MERCURY reduces transaction propagation
latency by over 50% with less than 5% bandwidth overhead.

Index Terms—Blockchain, transaction broadcast, propagation
latency, P2P network.

I. INTRODUCTION

Pioneered by Bitcoin [1] and Ethereum [2], decentralized
public blockchains provide a secure transactional ledger ab-
straction at internet scale. As a result, blockchain systems are
now being adopted in many areas, such as finance [3], [4], [5],
supply-chain management [6], and health care [7].

Public blockchain systems are built around consensus logic
over a peer-to-peer (P2P) gossip network. Original systems,
like Bitcoin [1] and Ethereum [2], have low performance
in terms of throughput and latency. For example, Bitcoin’s
throughput is about 7 transactions per second (TPS) with a
transaction confirmation latency of about an hour. Ethereum,
though better, only supports about 30 TPS and has a confir-
mation latency of around 10 minutes. The root cause of such
low performance is the conservative mechanism in Nakamoto
consensus to cope with the long broadcast latency of the
P2P network. To form a chain structure in a high-latency
environment, the consensus algorithms must use a low global
block generation rate. This decreases throughput and increases
confirmation latency. Decreasing the transaction and block
propagation delay is therefore key to improving the perfor-
mance of these systems.

Recently work has proposed new designs that address
the throughput bottleneck of Nakamoto consensus, including
alternative ledger structures [8], [9], [10], [11], [12], combin-
ing BFT-like mechanisms [13], [14], [15], [16], or sharding
blockchain states [17], [18], [19]. Some of these protocols
have pushed the throughput to thousands of TPS. These
‡

The first two authors contributed equally to this work.
Contacts: mingxunz@andrew.cmu.edu, zengly17@mails.tsinghua.edu.cn.

proposals drastically increase network bandwidth consumption
and push the performance bottleneck toward the underlying
P2P network.

Transaction dissemination is also under pressure from re-
cently deployed low-latency systems. For example: Stellar has
an average latency of 1.1s and 2.4s at the 99th percentile [14],
Avalanche claims a confirmation time of 0.3s [20], and several
articles claim that Solana’s latency is around 0.4s [21]. To
provide such low latencies in the wide area, these systems
require fast transaction dissemination.

A naive solution to speed up transaction dissemination is to
increase fanout. That is, have each node in the network relay
the transactions to more peers. Unfortunately, this strategy
trades off lower latency for higher transaction throughput: with
high fanout, nodes will receive the same transaction multiple
times and this will decrease throughput. This is the focus of
our work: designing a transaction dissemination protocol that
achieves low latency without high bandwidth overhead.

We present MERCURY, a new protocol for transaction dis-
semination in blockchain systems. MERCURY uses a broadcast
strategy that relies on virtual coordinate systems (VCS) to
guide the routing decision of individual nodes. The strategy
significantly boosts the broadcast efficiency without wasting
network bandwidth. It makes MERCURY particularly suitable
for high throughput blockchain systems where the network
bandwidth is a scarce resource.

MERCURY first uses a virtual coordinate system (VCS)
to assign each node a coordinate. The VCS ensures the
propagation latency between any two nodes is proportional to
distance between their VCS coordinates. Unlike previous work
which does not consider malicious behaviors [22], MERCURY
uses a secure VCS to ensure that the assigned coordinates will
remain robust to attacks. MERCURY then clusters all the nodes
based on their coordinates and selects two kinds of nodes to
propagate a transaction: close neighbors in the same cluster
(to reduce the latency per hop), and random nodes in other
clusters (to initiate propagation across clusters earlier). Finally,
MERCURY uses a simple and effective optimization called
early outburst, which dynamically configures the propagation
tree structure and takes advantage of the early stage in the
propagation process. MERCURY has several protection mech-
anisms that allow it to fallback to basic random propagation
in case of an attack.

We evaluated MERCURY with simulations and compared

IE
EE

 IN
FO

C
O

M
 2

02
3

- I
EE

E
C

on
fe

re
nc

e
on

 C
om

pu
te

r C
om

m
un

ic
at

io
ns

 |
97

9-
8-

35
03

-3
41

4-
2/

23
/$

31
.0

0
©

20
23

 IE
EE

 |
D

O
I:

10
.1

10
9/

IN
FO

C
O

M
53

93
9.

20
23

.1
02

28
97

2

Authorized licensed use limited to: The University of British Columbia Library. Downloaded on February 19,2024 at 00:02:48 UTC from IEEE Xplore. Restrictions apply.

MERCURY with BlockP2P [22] and Perigee [23], two re-
cent blockchain P2P propagation protocols optimized for low
latency. Our results show that the propagation latency of
MERCURY is 49% lower than BlockP2P and 30% lower than
Perigee in a simulated network of 8,000 nodes. MERCURY
is also robust to attacks. Even when 49% of the nodes
are malicious, the propagation latency of MERCURY is still
much better than BlockP2P and Perigee. We also integrated
MERCURY with Conflux [10], a high throughput blockchain
system. Our evaluation shows that MERCURY reduces the
transaction propagation delay by up to 56% for a 1000-node
network and that its bandwidth overhead does not exceed 5%.

In summary, we make the following contributions:
• We design a secure VCS-based broadcast strategy for

blockchain P2P networks that improves latency without
wasting bandwidth.

• We propose a simple and effective optimization called
early outburst.

• We integrate our proposals into an end-to-end implemen-
tation of MERCURY and evaluate it in simulation and with
the Conflux high-throughput blockchain system.

II. BACKGROUND

Nodes in blockchain systems like Bitcoin [1] and
Ethereum [2] maintain a geo-replicated ledger and are con-
nected via a P2P gossip network. The ledger records transac-
tions made by users. The transactions are packed into blocks
which are chained together according to some happened-
before relationship.

To replicate the ledger in a blockchain system, transactions
and blocks are disseminated through the P2P network. Each
node will try to relay the received transactions and blocks to
some connected peers. A mining node will also try to pack the
received transactions into a new block which may be appended
into the ledger. These nodes generate new blocks with certain
probability to maintain a specific global block generation rate.
Therefore, the quicker a transaction reaches many nodes, the
faster it will be packed into a block, and the sooner it will be
confirmed by the ledger.

In Bitcoin and Ethereum, blocks and transactions are broad-
cast using variations of flooding: each node announces content
to each of its peers. In Bitcoin, a node announces the hash of
the received block or transaction to all its peers. Subsequently,
the peers that have not yet received the block/transaction
respond with a GETDATA message to request it. Ethereum
nodes broadcast information similarly except that a node relays
a complete transaction to a small fraction of connected peers
and floods the transaction hash to all other nodes [24].

Aggressive flooding squanders network bandwidth. In high-
throughput blockchain systems like Conflux [10], simple
flooding can saturate network bandwidth. Shrec [25] optimizes
the transaction relay protocol to effectively utilize the network
bandwidth by designing a hybrid transaction short id encoding
that achieves a trade-off between the announcement size
and the conflict rate. This pattern of a small announcement
followed by content retrieval is assumed in this paper.

To effectively utilize network bandwidth in high-throughput
systems, transaction relay typically requires batching. This is
because the transaction announcement itself is still flooded
and the announcement size is small, e.g., 4 bytes in Shrec. If
the announcement is sent one-by-one, the meta-data overhead
would be substantial, so batching transactions is inevitable.
But, batching introduces extra latency, which is proportional
to the number of hops in the dissemination. This in turn makes
decreasing the number of hops a critical goal when optimizing
transaction dissemination latency.

III. SYSTEM MODEL

a) Network Model: We model the P2P network of nodes
in a blockchain system as an undirected graph G(V,E), where
V is the set of nodes and E is the set of connections between
nodes. When a node joins the network, it first tries to connect
to a list of IP addresses of predefined nodes. The node then
enters the discovery phase and will request more node IP
addresses from the connected peers. The node repeats this
process and maintain the known peer addresses, Addr, until
it learns enough IP addresses. Next, the node connects to the
known nodes over TCP to synchronize block information. We
denote the connected peer set of a node v as Peersv . A node
stops making new connections when it reaches the maximum
number of outgoing connections. Similarly, it rejects connec-
tion requests from other nodes when the maximum number
of incoming connections is reached. The default maximum
numbers of incoming and outgoing connections are both 64.
We assume the delay of sending a message from a node u
to another node v is δ(u, v) + L̃, where δ(u, v) is a fixed
delay of the path and L̃ is a random latency due to network
conditions. We model L̃ as a Gaussian random variable with
mean of 50ms and standard deviation of 10ms.

Once a node is synchronized with the blockchain network,
it starts to receive and relay messages, including blocks and
transactions. We assume that blocks are disseminated using
flooding. Periodically, some transactions are generated by
some source nodes (in practice, nodes receive transactions
from connected clients). When a node v receives a generated or
relayed transaction, it stores the transaction into a transaction
pool. Every ∆ = 0.4 seconds, the node selects unsent
transactions in its pool and announces the transaction digests to
its peers. When a peer receives the digests, it scans the digest
list and requests unseen transactions from the announcing
node, which then sends the requested transactions. Therefore,
a complete transaction sending process from u to v requires
3δ(u, v) time plus some random latency.

b) Threat Model: We assume the adversary can corrupt
up to a certain fraction t of nodes in the network. When the
connection between an honest node and a corrupted node is
built, the corrupted node is allowed to send/respond arbitrary
messages to the honest node. When a corrupted node relays a
message originated from an honest node, it is allowed to drop
or delay the message but not forge nor modify it.

Since the design of MERCURY is independent of the node
discovery process and the connection setup process, we make

Authorized licensed use limited to: The University of British Columbia Library. Downloaded on February 19,2024 at 00:02:48 UTC from IEEE Xplore. Restrictions apply.

an extra assumption that those processes are secure and the
dynamic network topology [26](i.e the join and quit of nodes)
does not affect the performance of MERCURY. In contrast
to our work, previous work like [23] requires setting up and
terminating connections regularly to improve latency, which
exposes it to the attack on the connection setup process.
Designing a secure node discovery protocol and protecting
honest connection in P2P networks is beyond the scope of
this paper. See Eclipse Attack [27] and later defense [28] for
more discussion.

c) Problem Description: We consider the transaction
propagation problem in the above model. When a node v
starts the periodic transaction relaying, it selects a subset of
its peer list Peersv , called relay list L. We assume the peer
connection list is already given and the problem is how to
select this relay list L. We focus on designing a scheme that
decreases overall transaction broadcast latency and is resilient
to malicious behaviors while minimizing bandwidth usage.

IV. SYSTEM DESIGN

A. Virtual Coordinate System in Blockchain Network

Wide area latency is dominated by geography. For example,
suppose there are three nodes: node A is in Asia, while nodes
B and C are in Europe. A propagation path B − A − C is
a poor choice, because it traverses Europe and Asia twice.
The path B − C − A is a better one. One solution to avoid
high-latency paths is to encourage nodes to connect to nearby
peers. With more locality in the relay network, a node is more
likely to receive a message from a nearby peer than a distant
peer, preventing detours. However, inferring physical location
from an IP address can be inaccurate. Latency also depends
on routing decisions of Internet Service Providers (ISPs) and
network conditions, and may not reflect physical distances.

We introduce a virtual coordinate system (VCS) into our
system design. A VCS embeds nodes into a metric space, such
that distances between nodes in this metric space correlate with
the inter-node network latency. There are many types of VCS
systems. For example, centralized VCS systems rely on a set of
landmark nodes [29], [30], [31]. These are not suitable to a de-
centralized blockchain network. The Vivaldi VCS [32] is fully
decentralized and has been adopted by Azureus [33], a widely-
used BitTorrent client. Vivaldi has a minimum overhead and
fits our requirements. In Vivaldi’s metric space every pair of
nodes is connected by an imaginary spring. The length of the
spring is the measured network latency between the nodes.
If the two nodes are placed too far away from each other,
the spring will apply a force to pull the nodes closer. And, if
the nodes are too close, the spring will push them away. If
the coordinates of all the nodes are approximately stable, the
distance between every pair of nodes reflects the real network
latency. Reaching a globally stable position in Vivaldi is a
decentralized process. Every node initializes its coordinate,
~xi, as a random point near the origin in the RDim space
(in practice, we set Dim to 3). They also maintain an error
estimator, ei, that indicates the relative error in round trip time
(RTT) prediction. Every node periodically sends 16 queries to

measure the RTT ti,j between itself and other random nodes,
then updates its own coordinate based on the measurements
and others’ coordinates ~xj . The update algorithm is listed in
Algorithm 1, where cc and ce are pre-defined constants (set
to 0.25 in our implementation). For simplicity, Vivaldi uses a
simpler definition of force: when we say node j applies the
force Fi,j to node i, it means node i is pulled or pushed by
the distance of Fi,j in the direction of ~xi − ~xj . Just like in
Azureus [33], a node only uses the median RTT value over
historical data to perform a coordinate update. In MERCURY
we use the median of the last 10 observations. Usually,
within 40 rounds, the system can converge to a relatively
stable position [32]. We piggybacked the telemetry messages
of our VCS to the node discovery messages to reduce the
traffic overhead. Our system evaluation V-E confirms that the
overhead of the VCS is nearly negligible.

Algorithm 1: Vivaldi Update(~xi, ~xj , ei, ej , ti,j)

Let w = ei/(ei + ej);
Let ε = |‖ ~xi− ~xj‖−ti,j |

ti,j
;

// Update the relative error indicator.
ei ← (ce × w × ε) + ((1− ce × w)× ei) ;
// Update the coordinate using Hooke’s

law [34]
Let Fi,j = cc × w × (ti,j − ‖~xi − ~xj‖) ;
~xi ← ~xi + Fi,j × unit(~xi − ~xj) ;

Challenges of using VCS in Blockchain. A public blockchain
platform allows anyone to join, making it necessary to consider
unstable network conditions and malicious nodes. Our threat
model (Section III) allows a malicious node to arbitrarily
report its coordinates or delay measurements to attack the
coordinates of other nodes. The original Vivaldi design does
not deal with such attacks.

For the VCS component we therefore combine Vivaldi with
(1) Newton [35], which is a set of rules shown to protect a
VCS against attack; and (2) techniques from Azureus [33]
that were shown to improve the robustness of real-world
VCS deployments with tens of thousands of nodes. We also
introduce (3) a new rule, the stability rule, to the system. We
now describe each of these enhancements to Vivaldi.

a) Stability restriction. We introduce a new restriction
based on the fact that the VCS should steadily converge.
Whenever a node’s coordinates reach a stable state, they
should not drastically change later. We implement this rule as
follows: if a node’s average prediction error falls below estable,
its coordinate can move by no more than Fc. We set estable
to 30% and Fc to 75. Here, the unit of force is a millisecond.
Any peer violating this rule will be prevented from affecting
other nodes’ local coordinates.

b) Force restriction. Because VCS coordinates should
steadily converge, we adopt a rule from Newton [35] that
any force larger than Fmax = 100 is ignored. Also, a node
in MERCURY keeps historical data on the magnitude of the
forces imposed by its peers. If the magnitude of a new force
deviates from the median F̃ , i.e., |fnew| > F̃ + k × D, it is

Authorized licensed use limited to: The University of British Columbia Library. Downloaded on February 19,2024 at 00:02:48 UTC from IEEE Xplore. Restrictions apply.

Data Structure Description
Addr IP address list of known nodes. Periodically discover new addresses by asking other nodes.
~xi, ei Vivaldi coordinate and error indicator, updated by periodically measuring RTT with random nodes.
Coord Coordinates of known nodes, updated by Vivaldi measurement and IP discovery process. Cstable is its stable node subset that

Cstable = {j ∈ COORD|ej < 0.4}.
Cluster Cluster results for the stable node set Cstable, obtained by running K-means clustering algorithm.
Peers Connected peer set. If |Peers| < MAX PEERS, node randomly selects IP addresses in Addr and tries to create connections.

TABLE I: Primary data structures maintained by a node in MERCURY.

ignored. Here, D is the median absolute deviation; we also
empirically found that a value of k = 8 works well.

c) Centroid and Gravity. Since every node starts from the
origin and the system has no outside forces, the centroid of the
system, i.e., the average location, should be close to the origin.
A node can approximate the centroid by computing the average
location of its randomly selected peer set. In Newton [35],
if a node detects the approximate centroid drifts more than
tdrift = 50, the node will calculate which peer generated the
largest force in the direction of the drift and ban that peer
from future updating. Also, a gravity force [33] will pull a
node towards the origin after an update round. The magnitude
of the force is calculated by G = (‖~xi‖/ρ)2, where ρ = 500
is a constant scaling factor.

B. VCS-Based Propagation Scheme

We start by describing a basic propagation scheme based
on clustering. Then, we will introduce several optimization
heuristics to further reduce the propagation latency.

We notice that clustering is an intrinsic feature of P2P
networks, including blockchain networks (e.g., Figure 1). Most
nodes are located in one of the large clusters. Ideally, when a
node receives a new message during propagation, the nearby
peers can quickly receive the message. Our basic scheme
uses the K-means algorithm to cluster nodes into K clusters.
Then, when a node needs to relay transactions, it relays the
transactions to dcluster peers located in the node’s cluster.

However, if a node only relays to peers in the same cluster,
the propagation will fail to reach the rest of the network.
Attackers can also mount partition attacks [36] in this case. We
realized that we can avoid both issues if a node also relays to
a certain number of random peers. From a latency standpoint,
these random peers can spread the transactions to remote peers
that trigger the fast local propagation in other clusters. From
a security standpoint, the random peers are selected from a
large set (usually 128) and are unpredictable and difficult for
an attacker to exploit. We further discuss the ratio between
inter- and intra-cluster peers in Section V.

To summarize, the basic scheme in MERCURY is as follows:
1) A node discovers IP addresses of other nodes and their

coordinates. It periodically fetches the new coordinates
of the peers and updates its local coordinates based on
the new round trip time measurements.

2) When a node receives enough coordinate updates, it
locally runs K-means and classifies all stable known
nodes into K clusters.

3) When a node is relaying transactions, it randomly selects
dcluster peers from its own cluster and (dmax−dcluster)

peers from all of its connected peers without repetition1.
It then sends the transactions to the selected peers.

With the help of a VCS, the cluster-based propagation
scheme can reduce propagation latency while preserving secu-
rity. Notice that every node computes the clusters locally. We
allow different nodes to have different clustering results. From
a global view, a true set of clusters exist and the boundaries
between them are blurred at the local level. We find this to be
acceptable in practice.

We further improve the basic scheme with optimization
heuristics. These heuristics reduce the average latency by
around 5% in our simulations.

a) Reduce the in-cluster hop distances. When a node
samples dcluster peers, we have it sample more peers and
choose dcluster that are the closest. The motivation is simple:
the closer the peers are, the faster the propagation. However,
we noticed that if a node tries to find very close peers, the
overall latency increases. For example, if all nodes choose the
four closest peers in their cluster, many small local structures
form and there is no latency reduction.

b) Fast start of local propagation. We observed that, if a
node receives new transactions from a node located in another
cluster, it is likely that the propagation in the local cluster has
not yet started. The best way to start local propagation is to
send the transactions to many nearby peers quickly and let
them begin their propagation. Therefore, if a node receives
the transaction from a peer outside of its cluster, it selects
dcluster nearest peers in the cluster to relay the transactions.
These peers will not send to close nodes, since they receive
the transactions from an in-cluster peer. Those nodes will still
spread the transactions to other parts of the cluster and the
rest of the network.

C. Early Outburst

We have described how MERCURY uses a VCS to reduce
latency. Another consideration is to reduce the average number
of hops. This is important because every node imposes an extra
delay ∆. Increasing fan-out is one simple way to accomplish
this, but this trades extra bandwidth for lower latency. In our
8000-node simulation, if all nodes choose to double the peer
number from 8 to 16, the average hop number will drop from
5.50 to 4.29 and the average latency will drop from 2483.23ms
to 1767.01ms. However, this method requires more bandwidth.
We propose a simple strategy to reduce the average number

1Note that the (dmax−dcluster) peers must be selected independently of
clustering to make sure these nodes cannot be compromised when clustering
or the VCS are attacked.

Authorized licensed use limited to: The University of British Columbia Library. Downloaded on February 19,2024 at 00:02:48 UTC from IEEE Xplore. Restrictions apply.

100 50 0 50 100 150
Longitude

40

20

0

20

40

60

La
tit

ud
e

Fig. 1: An 800-node propagation tree example built by a propagation
process in MERCURY. Nodes are plotted according to their physical
locations [37]. The root of the transaction is located on the west coast
of the United States. Red lines, blue lines and green lines denote the
first hop, second hop and third hop of the propagation tree.

of hops with minimal increase in bandwidth. We start by
introduce the concept of a propagation tree.

Progagation Tree: Given a message m, its source S and a
set of nodes V , the propagation tree T is a directed tree rooted
at S. Node u will be v’s parent node in the tree if v receives
m from u earlier than receiving it from any other nodes.

The early outburst idea builds on two observations:
a) Network traffic is dominated by the deeper layers of the

propagation tree. For example, in an 8 fanout random relay
network, every layer has 8× more nodes than the previous
layer, which means that the tree grows exponentially. Thus,
the total traffic sent by a deeper layer is much larger than the
traffic sent from the first few layers.

b) Nodes can choose different strategies depending on
different phases in a propagation process. In other solutions,
such as BlockP2P [22] and Perigee [23], a node has a small
fixed relaying peer set. By contrast, we allow a node to connect
to a large peer set (for example, 128 peers) and dynamically
select its relaying strategy.

These two observations introduce the early outburst strategy,
which can be summed as enlarge the number of relaying peers
in the early stage of the propagation. The propagation tree
height is approximately the logarithm of the total number of
nodes and it is small in practice (normally around 5). When
the fanout is 8, it takes two hops to reach 64 nodes (two
layers in the tree). If the relay number of the source node is
increased from 8 to 64, it only takes one hop to reach 64 nodes
(one layers in the tree). Thus, the average hop number will
be reduced by one, which immediately reduces the average
latency by nearly 20% if the original tree height is around
5. More importantly, the overall network bandwidth barely
increases. Suppose that the network has 8,000 nodes, then the
total number of messages sent by the 8 fan-out strategy is
8×8, 000 = 64, 000. With the early outburst strategy, only 56
extra messages are generated, because only the root increases

the fanout. It requires just 0.1% extra bandwidth as compared
to the base strategy.

The easiest way to implement the early outburst strategy is
to enlarge the relaying peer set of the source node. We will
discuss the security implication of this choice in Section IV-D.
Our implementation in Conflux simply lets the source node
propagate the transactions to all of its connected peers (the
default maximum connected peer number is 128).

The original Conflux transaction propagation protocol [25]
uses a 3-phase transaction sending process that 1) a node first
propagates the digest of transactions to a peer; 2) the peer
returns a bitmap denoting unseen transactions; 3) the node
sends those transactions to the peer. With the early outburst
strategy, the source node in MERCURY can directly send
the complete transactions to its peers, because it knows the
transactions have not been received by the other nodes. We call
this direct sending version of MERCURY as MERCURY(Direct)
in evaluation (see Section V).

Algorithm 2 lists the full MERCURY propagation scheme.

Algorithm 2: MERCURY propagation in a node i.
Data: {i, j, tx}. Node i receives tx from j.
Result: Node i relays tx to all nodes in the relay list L.
if j is a client then

// Node i receives tx from a client and
it applies early outburst strategy.

L← Peers ;
else

if CLUSTERi=CLUSTERj then
// If node i receives tx from an

inner-cluster connection
Randomly find at most 2dcluster peers in Peers that

locate in the same cluster, select at most dcluster
peers with smaller distances and append them to L
;

else
// If node i receives tx from a

cross-cluster connection
Find at most dcluster peers with smallest distances

and append them to L ;
end
Append random peers in Peers to L until |L| = dmax ;

end

D. Security of MERCURY

MERCURY’s goal is to deliver honest nodes’ transactions
to as many other honest nodes as possible, while minimizing
latency. We assume the adversary’s goal is to prevent honest
nodes from receiving transactions or delay the process.

Based on our threat model (Section III), the adversary has
two ways to attack propagation: (1) disseminate new messages,
and (2) drop or delay messages from honest nodes.

MERCURY can be thought of as a two-layer network. The
bottom layer includes the random links and the upper layer
includes the carefully selected links. A node in MERCURY
will always propagate messages to at least drandom = dmax−
dcluster totally random peers. As a result, in the worst case,
the bottom layer provides the same security guarantee as a

Authorized licensed use limited to: The University of British Columbia Library. Downloaded on February 19,2024 at 00:02:48 UTC from IEEE Xplore. Restrictions apply.

drandom-degree random propagation network. That is, if the
clustering mechanism is completely under attacker’s control,
then the system performs no worse than a random graph. This
is demonstrated in our experimental results (see Section V-D).

a) Fallback Mechanism.: A massive network attack con-
ducted by a large number of malicious nodes may break all
of the VCS security mechanisms from Section IV-A. Based
on the historical round-trip-time measurements, an honest
node can assess the accuracy of its local coordinate by the
coordinate absolute error indicator ei. If the coordinate’s
accuracy is poor, i.e., ei > esafe = 0.4, the node falls back
to the baseline random propagation scheme.

b) Validity and uniqueness check on transactions.: The
attacker may also try to trigger large volume of traffic in the
network and conduct a Denial-of-Service attack by exploiting
the early outburst strategy. To prevent such an attack, before
the propagation, a node will examine the validity and the
uniqueness of the transactions. If an adversarial client sends
many invalid or duplicate transactions, propagation will not
be triggered. If a malicious client sends many valid original
transactions to the targeted nodes, it has to pay the transaction
fee, which makes the attack expensive. If an attacker is using
a fake client to relay transactions it receives from other nodes,
it is possible that the target node has already received the same
transactions. In this case, the nodes can detect the duplication
and disconnect from the attacking client.

c) Traffic monitoring.: Every node monitors its incoming
and outgoing network traffic. A node maintains a throttle on
every peer link. If a node suddenly receives large network
traffic from a client, it refuses to perform the relaying service
for the client. Also, if its outgoing traffic is abnormally high,
it will temporally disable the early outburst strategy to avoid
network congestion.

V. EVALUATION

We aim to answer the following questions in our evaluation:
• What is the best configuration for MERCURY?
• How does MERCURY improve the latency compared to

alternative propagation strategies under the same con-
straint of network traffic usage?

• How does MERCURY perform under attacks?
We evaluated MERCURY with two types of experiments.

First, we ran simulations to compare MERCURY with existing
propagation strategies. Then, we deployed our MERCURY
prototype as part of a high-throughput open-source blockchain,
Conflux, to evaluate MERCURY in a real environment.

A. Simulation Setup

We implement MERCURY along with other propagation
schemes, including random propagation, BlockP2P [22] and
Perigee [23] on the same P2P network simulation code base
in C++. Random propagation is a standard design in existing
blockchain protocols. BlockP2P-EP [38] shares the propaga-
tion scheme with BlockP2P, so we only compare to BlockP2P.

We crawl the full-node list of Ethereum[37], which consists
of 8,000 nodes. We convert the IP addresses from the node

list to approximate geo-locations using an IP database [39].
Perigee [23] used a similar setup with a Bitcoin dataset. The
latency between a node pair (u, v) is δ(u, v)+L̃, where δ(u, v)
is the basic latency approximated by the geo-distance and the
random latency L̃ follows a Gaussian distribution with mean
of 50ms and standard deviation of 10ms.

We run 100 rounds of simulation and report the averages.
We randomly selected a full node as the source for each round.
When a node receives a transaction for the first time, a delay
of 200ms is added to simulate the average wait on batching
interval (recall that a batch interval is 400ms). The node then
disseminates the transactions. We repeat this process until no
active transmission happens. We let the nodes run 100 rounds
of Vivaldi updates. Then, we run K-means based on the virtual
coordinates to partition the nodes into K clusters. The same
preparation process is used for BlockP2P. Perigee has an extra
64-round transaction propagation warm-up phase. We choose
the UCB scoring rule [23] as the default setting for Perigee
as it performs the best in our simulation.

We plot latency results using CDFs. For example in Fig 2,
a point with latency of 2,000ms at 0.5 received node ratio
means that 50% of the nodes in the system received all the
transaction within 2,000ms.

B. Configuration for MERCURY

We first consider the MERCURY’s configuration. MER-
CURY has two key components: the cluster-based scheme,
MERCURYCLUSTER, and the early outburst strategy. MER-
CURYCLUSTER has two parameters – the cluster number K
and the inner cluster peers dcluster. The default setting is
K = 8, dcluster = 4 and dmax = 8. To better demonstrate the
impact of clustering, we disable the early outburst optimization
when testing the MERCURYCLUSTER configuration. We also
disable other optimizations described in Section IV-B.

We test the latency of the coordinate-based scheme with
different cluster numbers K. The results are shown in Fig 2a.
By increasing the cluster number from 2 to 8, the overall
latency goes down. When the cluster number is above 8, we
do not observe significant improvement. This is because the
nodes naturally fall into large geolocation-based clusters (e.g.,
Fig 1) and splitting large and dense clusters into smaller sets
only brings small improvement. We set K = 8 as our default.

Next, we examine the influence of the inner cluster peer
number dcluster. We fixed dmax = 8. The nodes relay the
transaction to dcluster peers that are located in the same cluster
and 8 − dcluster randomly selected peers. A higher dcluster
induces more locality. Meanwhile, random relaying invokes
cross-cluster propagation. We plot the result in Fig 2b. It shows
that when dcluster is between 4 and 6, the overall latency is
small. We choose dcluster = 4 as our default.

The results for early outburst strategy are shown in Fig 2c.
We observe that the fanout number, f , for the source node can
be as large as the maximum number of connection (128) and
it achieves the lowest overall latency.

Authorized licensed use limited to: The University of British Columbia Library. Downloaded on February 19,2024 at 00:02:48 UTC from IEEE Xplore. Restrictions apply.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Received Node Ratio

1500

2000

2500

3000
La

te
nc

y(
m

s)

K=1
K=2
K=4
K=6

K=8
K=10
K=12
K=14

(a) Latency results for different cluster num-
ber, K, values. Latency is lowest when K is
8 or higher.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Received Node Ratio

1500

2000

2500

La
te

nc
y(

m
s)

dcluster=1
dcluster=2
dcluster=3
dcluster=4

dcluster=5
dcluster=6
dcluster=7

(b) Latency result for different inner cluster
peer number, dcluster , values.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Received Node Ratio

1000

1500

2000

La
te

nc
y(

m
s)

f=8
f=16
f=32

f=64
f=128

(c) Latency result with different early out-
burst fanout f values. The large the f values,
the lower the latency.

Fig. 2: Experimental results from exploring different MERCURY configuration parameter values.

Random BlockP2P Perigee MERCURYCLUSTER MERCURY
Average latency (ms) 2483.23 2708.83 1977.74 1774.73 1391.17

Ratio vs. Random 100% 109.08% 79.67% 71.47% 56.02%

TABLE II: Comparison between propagation schemes under similar traffic usage.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Received Node Ratio

1000

2000

3000

4000

La
te

nc
y(

m
s)

Random
Perigee
BlockP2P

MercuryCluster
Mercury

Fig. 3: Comparison with existing propagation schemes under similar
traffic usage. MERCURY with different setups beats other schemes.

C. Comparison with Alternative Schemes

We compare MERCURY with random propagation,
BlockP2P, and Perigee. We set the default maximum relay
peer number to 8 so every approach consumes roughly equal
network traffic. BlockP2P tries to build a routing structure
based on clustering, but every cluster has only one “routing
node” that can communicate with other clusters. Perigee uses
an online learning concept to grade every peer based on their
propagation performance. If a peer shows bad performance,
the node will disconnect from the peer. For MERCURY, we
record the results for MERCURYCLUSTER and MERCURY
that combines the cluster propagation scheme and early
outburst strategy. See Fig 3 and also Table II for the results.

Compared to all three prior approaches (Perigee, Random,
BlockP2P), MERCURYCLUSTER and MERCURY both show
an improvement in average latency. For example, MERCURY
average latency improves over the three schemes by 30%, 44%
and 49%. BlockP2P performs worse than Random mechanism
in our simulation. We observe that it propagates to local groups
quickly, but the cross-cluster communication is restricted.
The reason of the discrepancy could be that topologies of
the simulation networks – we use the IPs from the real
Ethereum system, while the original BlockP2P experiments
are conducting on artificially generated topology.

D. Performance under Attacks

We now consider MERCURY’s performance during attacks.
We consider that malicious nodes can: (1) disrupt the virtual
coordinate system by lying about their coordinates and de-
laying RTT measurements, or (2) not forward the message to
attack the cluster-based propagation scheme.

First, we conduct the experiment for all three kinds of at-
tacks introduced by [35] against the virtual coordinate system:
(1) inflation attack: attackers lie about having very large
coordinates, far away from the origin; (2) deflation attack:
attackers lie about having small coordinates that are near the
origin; and, (3) oscillation attack: attackers report random
chosen coordinates and random delay RTT measurements.
These attacks make benign nodes unable to update their
coordinates accurately.

The performance of MERCURY under these coordinate-
based attacks is shown in Fig 4. We bounded the number
of malicious nodes to 10%, 30% and 49% of total nodes.
As the percentage of attackers increases, propagation latency
increases gradually. But, even with 49% malicious nodes,
MERCURY continues to propagate transactions with only a
slight increase in latency.

We also evaluate the MERCURY performance with different
percentage of malicious nodes that do not broadcast message,
namely, the no-response attack.

We compare MERCURY performance with that of random
and Perigee. The results are shown in Fig 5. The three plots
are CDFs that illustrate the fraction of honest nodes that have
received the transaction within a certain time budget. When
the number of malicious nodes increases, the network has
more dropped messages, but MERCURY keeps the latency low.
Even when 49% of the nodes are malicious, the performance
of MERCURY remains much better than the other schemes.
BlockP2P sets a “routing node” for every cluster. If the node
is malicious, the cluster is separated. Our experiments show
that BlockP2P can not operate under this attack when there
are more than 15% malicious nodes since over 20% of the
nodes cannot receive transactions.

Authorized licensed use limited to: The University of British Columbia Library. Downloaded on February 19,2024 at 00:02:48 UTC from IEEE Xplore. Restrictions apply.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Received Node Ratio

1000

1250

1500

1750

2000
La

te
nc

y(
m

s)
Normal Inflation Deflation Oscillation

(a) Latency - 10% malicious nodes

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Received Node Ratio

1000

1250

1500

1750

2000

La
te

nc
y(

m
s)

Normal Inflation Deflation Oscillation

(b) Latency - 30% malicious nodes

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Received Node Ratio

1000

1250

1500

1750

2000

La
te

nc
y(

m
s)

Normal Inflation Deflation Oscillation

(c) Latency - 49% malicious nodes

Fig. 4: Performance of MERCURY under three kinds of coordinate-based attacks: inflation, deflation, and oscillation.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Received Node Ratio

1000

2000

3000

4000

5000

La
te

nc
y(

m
s)

Random Perigee Mercury

(a) Latency - 10% malicious nodes

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Received Node Ratio

1000

2000

3000

4000

5000

La
te

nc
y(

m
s)

Random Perigee Mercury

(b) Latency - 30% malicious nodes

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Received Node Ratio

1000

2000

3000

4000

5000

La
te

nc
y(

m
s)

Random Perigee Mercury

(c) Latency - 49% malicious nodes

Fig. 5: Performance of random, Perigee, and MERCURY under the no-response attack.

Finally, we evaluate MERCURY in the worst-case scenario.
In this experiment, we assume the attacker can manipulate the
VCS system and fully control the clustering mechanism, such
that all honest nodes cluster themselves with all the corrupted
nodes, while deceiving the honest nodes that the VCS system
still has high accuracy. We measure the latency under normal
and attacking scenarios and compare MERCURY with random
broadcasting with 4 peers or 8 peers, which is least impacted
by this type of attack. Two different specifications of MER-
CURY are also compared: MERCURY(Cluster) with early out-
burst optimization disabled, and the MERCURY(dcluster=3)
in which dcluster is set to 3 (the standard MERCURY sets
dcluster = 4).

Fig 6 plots the results. The y-axis plots latency without
the attack while the x-axis plots latency with the attack.
MERCURY has the lowest latency without the attack. With
the attack, MERCURY’s performance is ∼10% better than 4-
random broadcasting. MERCURY(Cluster)’s performance is the
same as the 4-random broadcasting. Surprisingly, when we set
the dcluster = 3, the performance of MERCURY is roughly
the same as 8-random broadcasting under the attack and only
slightly worse than standard MERCURY without the attack.
This configuration may be best when the system designer is
prioritizing performance in an adversarial environment.

E. Experiments for Conflux Network

To study MERCURY’s behavior in a real environment, we
implemented MERCURY in the Conflux full node codebase.
We ran experiments on 1,000 m5.xlarge VMs on Amazon
EC2. Each VM has 2 cores, 8GB memory and runs 1 Conflux
full node. We randomly assign four neighbours for each
node during initialization. Then, the nodes discover other

nodes by exchanging known peer sets, until they reach the
maximum peer number (128). Since the latency inside the
AWS internal network is homogeneously low, we add extra
latency to both TCP and UDP messages to emulate a real
network environment. The latency for every pair of nodes
is generated from the Ethereum dataset. Each node runs the
secure Vivaldi VCS algorithm to obtain its coordinates. During
the experiment, we randomly generate payment transactions
for our workload under a specified global throughput for the
entire network. Each node evenly contributes to transaction
generation. The average transaction size is 100 bytes and
the throughput is set to 2,000 TPS. Each node produces and
propagates a batched announcement every 0.5 seconds. After
the test, we use map-reduce to record the transaction arrival
time in every node, then sort the recorded time. We randomly
sample a node and monitor its traffic usage during the test.

We test four strategies: (1) original Conflux using random
forwarding; (2) the MERCURYCLUSTER strategy; (3) the full
MERCURY with early outburst optimization; and, (4) the MER-
CURY(Direct) that has the same strategy as MERCURY, but the
source node directly sends transactions to peers. The latency
results are plotted in Fig 7. We notice that the overall latency
improvement of MERCURY matches our simulation results.
MERCURY improves on average latency by 41% over Conflux.
MERCURY(Direct) further improves the latency because the
source node only sends one message to its peers.

Table III shows the “Average Tx packed to block time”
results that represent the earliest time for a transaction to be
verified and packed into a mined block. This metric indicates
the impact of propagation schemes on the overall system
performance. MERCURY and MERCURY(Direct) show a 38%
and a 46% improvement in this metric, respectively.

Authorized licensed use limited to: The University of British Columbia Library. Downloaded on February 19,2024 at 00:02:48 UTC from IEEE Xplore. Restrictions apply.

Original MERCURYCLUSTER MERCURY MERCURY(Direct)
Average latency (s) 2.14 1.72 1.27 0.93

95%th percentile received time (s) 2.68 2.46 1.68 1.42
Average txn packed to block time (s) 2.58 2.08 1.62 1.40

TABLE III: Results from Conflux network experiments. “Txn packed to block time” denotes the earliest time when a transaction is verified
by a node and is packed into a mined block.

10
00

15
00

20
00

25
00

30
00

35
00

40
00

45
00

50
00

95% Latency(ms) w/ Attack

1000
1500
2000
2500
3000
3500
4000
4500
5000

95
%

 L
at

en
cy

(m
s) Mercury

Mercury(dcluster=3)
Mercury(Cluster)
Random(4 Peers)
Random(8 Peers)

Fig. 6: Performance of MERCURY when
the attacker controls the VCS system.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Received Node Ratio

1.0

1.5

2.0

2.5

La
te

nc
y(

s)

Mercury MercuryCluster Original Mercury(Direct)

Fig. 7: Propagation Latency from the Con-
flux network experiments.

Mercury Mercury(Direct) MercuryCluster Original
0.0

0.1

0.2

0.3

0.4

0.5

0.6

Ba
nd

wi
th

(M
bp

s)

0.33 0.32 0.310.32

22% 20% 19%20%

59% 60% 60%61%

19% 20% 21%19%

Tx Digest
Tx Body
Other

Fig. 8: Network traffic from the Conflux
network experiments.

Fig 8 plots the network traffic usage. The traffic overhead is
larger than the theoretical value but still modest (∼5%). The
extra bandwidth is due to the header of the transaction digest
(TXD) messages. Originally, a node only sends 16 transaction
digest messages per second (two rounds of relaying). With
early outburst, the nodes need to send more than 256 TXD
messages per second and their headers induce extra traffic.
The source node in MERCURY(Direct) sends the transaction
directly, avoiding the overhead of TXD messages.

VI. RELATED WORK

a) Blockchain P2P Routing: Different routing strategies
have been proposed to speed up the message delivery in
blockchain systems. Kadcast [40] introduces structural P2P
overlay network with DHT-like propagation. It does not con-
sider the underlying node connection latency, so its perfor-
mance is only slightly better than random topology [23].
BlockP2P [22], [38] uses clustering-proximity connection to
accelerate block propagation. Urocissa [41] and FRING [42]
share a similar static hierarchical design as BlockP2P. Those
designs are susceptible to attack because once the attacker
controls the important entry nodes, the network is partitioned.
CougaR [43] designs a routing protocol based on simple
RTT measurements, but provides no protection against ad-
versaries. In [44], every node grades their peers by local
message arrival time and attempts to select peers that have
fast connections. Later, Perigee [23] generalized such strategy
with online learning technique to further optimize the peer
set. Our results show that MERCURY is 30% faster than
Perigee on average. Peri [45] discusses the phenomenon that
an individual node can strategically select its peers to gain
advantages in block/transaction propagation. By contrast, we
focus on designing a protocol for the entire network.

b) Transaction Relay Protocols: Bitcoin uses a flooding-
based protocol for transaction and block propagation that
makes it hard to scale. with the increasing number of the
connected peers per node. Erlay [46] proposes a combina-
tion of low-fanout flooding and set reconciliation to reduce

bandwidth. Shrec [25] introduces a new relay protocol and
transaction short Id encoding with a hybrid hashing scheme
that has low collision rate and is resilient to collision attacks.
MERCURY is complementary to both protocols. For example,
we implemented MERCURY on Conflux, which uses Shrec as
its relay protocol.

c) Block Distribution Network: Fibre [47], Falcon [48]
and BloXroute [49] rely on a high-speed block relay network.
These solutions are not fully decentralized and require nodes
to place trust in the relay network.

d) Traditional P2P Network Multicast: Many schemes
have been proposed to improve P2P multicast efficiency,
including traffic usage and overall latency, in traditional P2P
network. For example, DHTs can improve multicast [50].
Tree-based solutions have been proposed [51], [52] that nodes
collaboratively build multiple propagation trees. Location-
aware topology matching (LTM) scheme has been proposed
to eliminate low efficiency connection in a P2P network [53].
These techniques cannot directly apply to blockchain networks
because they are not intended for adversarial environments.

VII. CONCLUSION

High-performance blockchain systems require efficient and
secure transaction broadcasting. MERCURY combines two
novel ideas — using a virtual coordinate system to organize
propagation structure and the use of an early outburst strategy
— to reduce the latency of transaction propagation. Our exper-
iments show that MERCURY is robust to attacks and improves
transaction propagation latency by up to 56% in a real high-
throughput blockchain system, while introducing less than 5%
bandwidth overhead. The authors have provided public access
to their code at https://github.com/wuwuz/P2PNetwork.

ACKNOWLEDGMENTS

This work is supported by the National Key Research and
Development Program of China (2022YFB2702300). Mingxun
Zhou was a research assistant at Shanghai Qizhi Institute
during the project.

Authorized licensed use limited to: The University of British Columbia Library. Downloaded on February 19,2024 at 00:02:48 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” 2008.
[2] “Ethereum White Paper,” https://ethereum.org/en/whitepaper/, 2020.
[3] “Blockchain in Finance,” https://home.kpmg/uk/en/home/insights/2019/

03/bffb-blockchain-in-finance.html, 2019.
[4] F. Schär, “Decentralized finance: On blockchain-and smart contract-

based financial markets,” Available at SSRN 3571335, 2020.
[5] M. Casey, J. Crane, G. Gensler, S. Johnson, and N. Narula, “The impact

of blockchain technology on finance: A catalyst for change,” 2018.
[6] S. Saberi, M. Kouhizadeh, J. Sarkis, and L. Shen, “Blockchain tech-

nology and its relationships to sustainable supply chain management,”
International Journal of Production Research, 2019.

[7] M. Mettler, “Blockchain technology in healthcare: The revolution starts
here,” in IEEE Healthcom, 2016.

[8] Y. Sompolinsky and A. Zohar, “Secure high-rate transaction processing
in bitcoin,” in International Conference on Financial Cryptography and
Data Security. Springer, 2015, pp. 507–527.

[9] I. Eyal, A. E. Gencer, E. G. Sirer, and R. Van Renesse, “Bitcoin-ng: A
scalable blockchain protocol.” in NSDI, 2016, pp. 45–59.

[10] C. Li, P. Li, D. Zhou, W. Xu, F. Long, and A. Yao, “Scaling nakamoto
consensus to thousands of transactions per second,” arXiv preprint
arXiv:1805.03870, 2018.

[11] Y. Sompolinsky, S. Wyborski, and A. Zohar, “Phantom ghostdag: a
scalable generalization of nakamoto consensus,” in ACM AFT, 2021.

[12] V. Bagaria, S. Kannan, D. Tse, G. Fanti, and P. Viswanath, “Prism:
Deconstructing the blockchain to approach physical limits,” in ACM
CCS, 2019.

[13] Y. Gilad, R. Hemo, S. Micali, G. Vlachos, and N. Zeldovich, “Algorand:
Scaling byzantine agreements for cryptocurrencies,” in ACM SOSP,
2017.

[14] D. Mazieres, “The stellar consensus protocol: A federated model for
internet-level consensus,” Stellar Development Foundation, 2015.

[15] A. Miller, Y. Xia, K. Croman, E. Shi, and D. Song, “The honey badger
of bft protocols,” in ACM CCS, 2016.

[16] R. Pass and E. Shi, “Hybrid consensus: Efficient consensus in the
permissionless model,” in EATCS DISC, 2017.

[17] E. Kokoris-Kogias, P. Jovanovic, L. Gasser, N. Gailly, E. Syta, and
B. Ford, “Omniledger: A secure, scale-out, decentralized ledger via
sharding,” in IEEE S&P, 2018.

[18] D. Leung, A. Suhl, Y. Gilad, and N. Zeldovich, “Vault: Fast bootstrap-
ping for cryptocurrencies,” in USENIX NDSS, 2018.

[19] J. Wang and H. Wang, “Monoxide: Scale out blockchains with asyn-
chronous consensus zones,” in USENIX NSDI, 2019.

[20] T. Rocket, M. Yin, K. Sekniqi, R. van Renesse, and E. G. Sirer, “Scalable
and probabilistic leaderless bft consensus through metastability,” arXiv
preprint arXiv:1906.08936, 2019.

[21] A. Yakovenko, “Solana: A new architecture for a high performance
blockchain v0. 8.13,” 2018.

[22] W. Hao, J. Zeng, X. Dai, J. Xiao, Q. Hua, H. Chen, K.-C. Li, and H. Jin,
“Blockp2p: Enabling fast blockchain broadcast with scalable peer-to-
peer network topology,” in Green, Pervasive, and Cloud Computing,
2019.

[23] Y. Mao, S. Deb, S. B. Venkatakrishnan, S. Kannan, and K. Srinivasan,
“Perigee: Efficient peer-to-peer network design for blockchains,” in ACM
PODC, 2020.

[24] “Ethereum Transaction Exchange,” https://github.com/ethereum/devp2p/
blob/master/caps/eth.md#transaction-exchange, 2022.

[25] Y. Han, C. Li, P. Li, M. Wu, D. Zhou, and F. Long, “Shrec: Bandwidth-
efficient transaction relay in high-throughput blockchain systems,” in
ACM SoCC, 2020.

[26] J. Augustine, G. Pandurangan, P. Robinson, S. Roche, and E. Upfal, “En-
abling robust and efficient distributed computation in dynamic peer-to-
peer networks,” in 2015 IEEE 56th Annual Symposium on Foundations
of Computer Science. IEEE, 2015, pp. 350–369.

[27] E. Heilman, A. Kendler, A. Zohar, and S. Goldberg, “Eclipse attacks on
bitcoin’s peer-to-peer network,” in USENIX Security, 2015.

[28] M. Tran, A. Shenoi, and M. S. Kang, “On the {Routing-Aware} peering
against {Network-Eclipse} attacks in bitcoin,” in Usenix Security, 2021.

[29] T. S. Eugene Ng, “Predicting internet network distance with coordinates-
based approaches,” in IEEE INFOCOM, 2002.

[30] T. S. E. Ng and H. Zhang, “A network positioning system for the
internet,” in Conference on Usenix Technical Conference, 2004.

[31] T. Harris, “Lighthouses for scalable distributed location,” in Peer-to-Peer
Systems II, Second International Workshop, IPTPS, 2003.

[32] F. Dabek, R. Cox, F. Kaashoek, and R. Morris, “Vivaldi: A decentralized
network coordinate system,” ACM SIGCOMM, 2004.

[33] J. Ledlie, P. Gardner, and M. I. Seltzer, “Network coordinates in the
wild.” in NSDI, vol. 7, 2007, pp. 299–311.

[34] “Hooke’s law,” https://en.wikipedia.org/wiki/Hooke’s law, 2020.
[35] J. Seibert, S. Becker, C. Nita-Rotaru, and R. State, “Securing virtual

coordinates by enforcing physical laws,” IEEE/ACM ToN, 2014.
[36] M. Saad, V. Cook, L. Nguyen, M. T. Thai, and A. Mohaisen, “Parti-

tioning attacks on bitcoin: Colliding space, time, and logic,” in IEEE
ICDCS, 2019.

[37] “Ethnodes,” https://www.ethernodes.org/, 2021.
[38] W. Hao, J. Zeng, X. Dai, J. Xiao, Q.-S. Hua, H. Chen, K.-C. Li, and

H. Jin, “Towards a trust-enhanced blockchain p2p topology for enabling
fast and reliable broadcast,” IEEE TNSM, 2020.

[39] “Really free geoip,” https://reallyfreegeoip.org/, 2021.
[40] E. Rohrer and F. Tschorsch, “Kadcast: A structured approach to broad-

cast in blockchain networks,” in ACM AFT, 2019.
[41] Y. Zhu, C. Hua, D. Zhong, and W. Xu, “Design of low-latency overlay

protocol for blockchain delivery networks,” in IEEE WCNC, 2022.
[42] H. Qiu, T. Ji, S. Zhao, X. Chen, J. Qi, H. Cui, and S. Wang, “A

geography-based p2p overlay network for fast and robust blockchain
systems,” IEEE Transactions on Services Computing, pp. 1–14, 2022.

[43] E. Kolyvas and S. Voulgaris, “Cougar: Fast and eclipse-resilient dissem-
ination for blockchain networks,” in ACM DEBS, 2022.

[44] Y. Aoki and K. Shudo, “Proximity neighbor selection in blockchain
networks,” in IEEE Blockchain, 2019.

[45] W. Tang, L. Kiffer, G. Fanti, and A. Juels, “Strategic latency reduction
in blockchain peer-to-peer networks,” arXiv preprint arXiv:2205.06837,
2022.

[46] G. Naumenko, G. Maxwell, P. Wuille, A. Fedorova, and I. Beschastnikh,
“Erlay: Efficient transaction relay for bitcoin,” in ACM CCS, 2019.

[47] “FIBRE,” https://bitcoinfibre.org/, 2020.
[48] “Falcon,” https://www.falcon-net.org/, 2020.
[49] U. Klarman, S. Basu, A. Kuzmanovic, and E. G. Sirer, “bloxroute:

A scalable trustless blockchain distribution network whitepaper,” IEEE
Internet Things J., 2018.

[50] S. El-Ansary, L. O. Alima, P. Brand, and S. Haridi, “Efficient broadcast
in structured p2p networks,” in International workshop on Peer-to-Peer
systems. Springer, 2003, pp. 304–314.

[51] T. Perez, J. Solano, and I. Stojmenovic, “Lmst-based searching and
broadcasting algorithms over internet graphs and peer-to-peer computing
systems,” in 2007 IEEE SPCOM, 2007.

[52] V. Venkataraman, K. Yoshida, and P. Francis, “Chunkyspread: Hetero-
geneous unstructured tree-based peer-to-peer multicast,” in IEEE ICNP,
2006.

[53] Yunhao Liu, Xiaomei Liu, Li Xiao, L. M. Ni, and Xiaodong Zhang,
“Location-aware topology matching in p2p systems,” in IEEE INFO-
COM, 2004.

Authorized licensed use limited to: The University of British Columbia Library. Downloaded on February 19,2024 at 00:02:48 UTC from IEEE Xplore. Restrictions apply.

