
Inferring Models of Concurrent Systems
from Logs of Their Behavior with CSight

Ivan Beschastnikh , Yuriy Brun , Michael D. Ernst , Arvind Krishnamurthy
Department of Computer Science School of Computer Science Computer Science & Engineering

University of British Columbia University of Massachusetts University of Washington
Vancouver, BC, Canada Amherst, MA, USA Seattle, WA, USA
bestchai@cs.ubc.ca, brun@cs.umass.edu, {mernst, arvind}@cs.washington.edu

ABSTRACT
Concurrent systems are notoriously difficult to debug and understand.
A common way of gaining insight into system behavior is to inspect
execution logs and documentation. Unfortunately, manual inspection
of logs is an arduous process, and documentation is often incomplete
and out of sync with the implementation.

To provide developers with more insight into concurrent systems,
we developed CSight. CSight mines logs of a system’s executions to
infer a concise and accurate model of that system’s behavior, in the
form of a communicating finite state machine (CFSM).

Engineers can use the inferred CFSM model to understand com-
plex behavior, detect anomalies, debug, and increase confidence in
the correctness of their implementations. CSight’s only requirement
is that the logged events have vector timestamps. We provide a tool
that automatically adds vector timestamps to system logs. Our tool
prototypes are available at http://synoptic.googlecode.com/.

This paper presents algorithms for inferring CFSM models from
traces of concurrent systems, proves them correct, provides an im-
plementation, and evaluates the implementation in two ways: by
running it on logs from three different networked systems and via
a user study that focused on bug finding. Our evaluation finds that
CSight infers accurate models that can help developers find bugs.

Categories and Subject Descriptors: D.1.3 [Concurrent Program-
ming]: Distributed programming
General Terms: Algorithms, Design, Modeling
Keywords: Model inference, log analysis, concurrency, distributed
systems, CSight

1. INTRODUCTION
When a system behaves in an unexpected manner, or when a

developer must make changes to legacy code, the developer faces
the challenging task of understanding the system’s behavior. To help
with this task, developers often enable logging and analyze runtime
logs. Unfortunately, the size and complexity of logs often exceed a
human’s ability to navigate and make sense of the captured data.

Permission to make digital or hard copies of all or part of this work for per-
sonal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than the author(s) must be honored. Abstract-
ing with credit is permitted. To copy otherwise, or republish, to post on
servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.
ICSE June 01–07 2014, Hyderabad, India
Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2756-5/14/06. . . $15.00
http://dx.doi.org/10.1145/2568225.2568246.

One promising approach to help developers is model inference.
The goal of a model-inference algorithm is to convert a log of sys-
tem executions into a model, typically a finite state machine, that
accurately and concisely represents the system that generated the
log. Numerous model-inference algorithms and tools exist to help
debug, verify, and validate sequential programs [11, 42, 43, 10].

Unfortunately, this rich prior body of work is not directly applica-
ble to distributed or concurrent systems. This is because a common
assumption made in model inference is that the underlying set of ex-
ecutions is totally ordered — for every pair of events in an execution,
one precedes the other. This assumption is crucial to the inference
algorithms’ correctness, and running them on logs that are not totally
ordered results in inaccurate models. Unfortunately, this assumption
does not hold for concurrent systems, such as networked systems, for
which events at different nodes may occur without happens-before
relationships [39]. Additionally, most model-inference algorithms
infer finite state machine (FSM) models, which are inappropriate for
modeling multi-process implementations.

This paper describes a new model-inference technique and a
corresponding tool, called CSight (for “concurrency insight”), which
infers a communicating finite state machine (CFSM) [14] model of
the processes that generated the log. CSight can be applied to logs of
distributed systems, protocol traces, traces of AJAX events in a web-
browser, and other concurrent behavior traces. CSight models have
multiple developer-oriented uses — for example, developers can
inspect, query, and check CSight’s models against their own mental
model of the system to find bugs. These uses are the focus of our
present work. However, we believe that CSight-generated models
have numerous other applications, such as model-based testing of
concurrent systems, and automated detection of anomalous behavior
as systems are exposed to new workloads and environments.

This paper presents the following four contributions:

1. A novel model-inference algorithm to infer a CFSM model
from a log of vector-timestamped concurrent executions (Sec-
tion 3), and a corresponding tool called CSight.

2. A proof that CSight-generated models are accurate as they
satisfy several key properties of the input log (Section 4).

3. A tool for automatically augmenting existing process-local
logging mechanisms with vector-timestamping logic. This
makes it easy to apply CSight to existing systems (Section 5).

4. A two-pronged evaluation of CSight (Section 6):
- We applied CSight to logs of three systems — the stop-and-

wait protocol, the opening/closing handshakes of TCP, and
the replication strategy in the Voldemort [56] distributed
hash table. CSight was effective for uncovering the true
model for each of these systems.

mailto:bestchai@cs.ubc.ca,brun@cs.umass.edu,mernst@cs.washington.edu,arvind@cs.washington.edu
http://synoptic.googlecode.com/

send(x)
M!x,o
A?ack,o
send(x)
M!x,e
A?ack,e
send(x)
M!x,o
A?ack,o
send(x)
M!x,e
A?ack,e

1,0
2,0
3,3
4,3
5,3
6,6
7,6
8,6
9,9
10,9
11,9
12,12

M

A

s0 s1send(x) s2M!x,o

timeout

A?ack,e

s3

A?ack,o

s4 send(x)s5 M!x,e

A?ack,e

A?ack,o

timeout

(b.1) Output model (Sender)

A?ack,e

r0 r1M?x,o r2recv(x) M?x,o

r3r4 M?x,er5 recv(x)

A!ack,e

M?x,e

M?x,e M?x,o A!ack,o

(b.2) Output model (Receiver)(a) Input log

Sender Receiver
2,1
2,2
2,3
5,4
5,5
5,6
8,7
8,8
8,9

11,10
11,11
11,12

M?x,o
recv(x)
A!ack,o
M?x,e
recv(x)
A!ack,e
M?x,o
recv(x)
A!ack,o
M?x,e
recv(x)
A!ack,e

Figure 1: Example input and output of CSight for the stop-and-wait protocol (SAW) [54]. (a) Example input log with a single trace of two processes
running SAW. The two integers at the beginning of each event in the log are the event’s vector clock timestamp. (b) The CSight-derived CFSM model
of SAW, derived from a log with additional traces (not-shown), consisting of (b.1) the sender process model and (b.2) the receiver process model.
In SAW, the sender transmits messages to the receiver using channel M, and the receiver replies with acknowledgments through channel A. Notation
Q!x means enqueue message x at tail of channel Q, and event Q?x means dequeue message x from the head of channel Q. The event send(x) is
a down-call to send x at the sender, and recv(x) is an up-call at the receiver indicating that x was received. In the SAW implementation, x is a
variable that stands for an arbitrary message string. CSight, however, treats the logged event instances, like “send(x)” and “timeout”, as strings and
does not interpret them. The timeout event at the sender triggers a message re-transmission after some internal timeout threshold is reached. The
“alternating bit” is associated with each message and is appended to a message before it is sent. For example, the first (and every odd) message sent
by the sender is represented as x,o (o for odd) while every even message sent by the sender is encoded as x,e (e for even).

- We performed a user study with a class of 39 undergraduates
to evaluate the efficacy of CFSM models in finding bugs.
We found that CFSM models are just as useful in finding
implementation bugs as time-space diagrams, a popular
alternative for visualizing concurrent executions.

We start with an overview of the CSight algorithm (Section 2).

2. CSIGHT OVERVIEW
CSight’s input is a log of observed system execution events, and its

output is a model that describes the concurrent system that generated
the log. An input log consists of execution traces of the system. A
trace is a set of events, each of which has a vector timestamp [25,
45]. Vector time is a standard logical clock mechanism that provides
a partial order of events in the system. Section 5 describes a tool
that automatically adds vector time tracking to existing systems.

Figure 1(a) shows an example input log generated by two pro-
cesses executing the stop-and-wait protocol [54]. In this protocol, a
sender process communicates a sequence of messages to a receiver
process over an unreliable channel. The receiver must acknowledge
an outstanding message before the sender moves on to the next
message. If a message is delayed or lost, the sender retransmits the
message after a timeout.

Figure 1(b) shows CSight’s output — a communicating finite
state machine [14] (CFSM) model. A CFSM models multiple pro-
cesses, or threads of execution, each of which is described by a finite
state machine (FSM). In the standard CFSM formalism, processes
communicate with one another via message passing over reliable
FIFO channels. However, unreliable channels can be simulated by
replacing each unreliable channel with a lossy “middlebox” FSM
that non-deterministically chooses between forwarding and losing a
message. The model in Figure 1(b) handles message loss, but the
lossy middlebox is not shown in the diagram.

We use the CFSM formalism because it is similar to the widely
known FSM formalism. CFSMs are well-established in the for-
mal methods community, and we believe (and empirically verify
in Section 6) that a CFSM is intuitive and sufficiently simple for
developers to comprehend. For example, a single-process FSM
in a CFSM can be inspected and understood without needing to
understand the activity of other processes in the system.

CSight infers a CFSM (e.g., Figure 1(b)) by transforming the
input log (e.g., Figure 1(a)) through a series of representations and
analyses. Figure 2 details this process. The CSight process has three
key stages:

Stage 1: temporal property mining. CSight mines temporal
properties, or invariants, from the log (steps 1 and 2 in Figure 2).
For example, for the log in Figure 1(a), CSight would mine the
property “event instance string send(x) always precedes the event
instance string receive(x)”. Section 3.2 describes all the types of
properties CSight mines. CSight uses these properties to judge the
accuracy of the current model, as it refines the model to accurately
describe the log.

Stage 2: create initial model. CSight uses the log to build a
compact model (steps 3 and 4 in Figure 2). This model gen-
eralizes all the executions in the log, and it is inaccurate in that it
admits executions that violate the properties mined from step one.
To build this small model CSight assumes that whenever an event
of a particular type executes, the system must be in a unique state
associated with events of that type. For example, every time the log
has a send(x) event, CSight assumes the system was in the exact
same send(x) state. This creates an overly permissive but highly
compact model.

Stage 3: refine the model. CSight gradually changes the initial
compact model from stage 2 into a larger model that satisfies all of
the mined properties from stage 1 (steps 5 and 6 in Figure 2). To
accomplish this, CSight checks which of the mined properties are
not satisfied by the present model. A property is not satisfied if the
model allows an execution that violates the property. CSight checks
properties with model checking, which either guarantees that the
property is satisfied by all modeled executions, or finds a counter-
example execution that violates the property. If a counter-example
exists, CSight refines the model to eliminate that counter-example
using the CEGAR approach [16]. CSight repeats the model-checking
and refinement loop until all of the mined properties are satisfied, at
which point it outputs the resulting model.

The next section formally describes the CSight process and details
each of the steps in Figure 2.

3. FORMAL DESCRIPTION OF CSIGHT
In Section 4, we will prove three important properties about

CSight’s model-inference process:

- Inferred model fits the input log. The final model accepts all the
observed traces in the input log (see Theorem 1).

- Refinement always makes progress. Every iteration of the re-
finement process (stage 3 in Section 2) makes progress toward
satisfying all of the mined invariants (see Theorem 2).

Log Regular
Expressions

Temporal
Invariants

System
Traces

Concrete FSM

Abstract
FSM

Invariant
Counter-example

Model checking

Log parsing

Trace linearization

Invariant
mining

State abstraction

User inputs

CSight output
All

invariants
satisfied? YesNo

Model
refinement

Channel
Definitions

CFSM Model

1

3

4

56

2

Figure 2: CSight process flow. Section 3 describes the numbered steps.

- Inferred model satisfies mined invariants. Every trace accepted
by the final model behaves like the observed traces; that is, every
invariant that is true of the observed traces is also true of every
accepted trace (see Theorem 3).

To enable proving these properties, we must first formalize the
problem domain. A reader who wishes to only get an intuitive
understanding of the approach can skim this section.

We start by defining CSight’s inputs (Section 3.1) and the invari-
ants that CSight mines (Section 3.2). Then, we specify how CSight
converts a log into a concrete FSM (Section 3.3) and how CSight
abstracts the concrete FSM into the initial abstract FSM (AFSM)
(Section 3.4). Finally, we describe how CSight model-checks and
refines the AFSM to satisfy the valid invariants, and how the AFSM
is converted into a CFSM model (Section 3.5).

First, we describe the notation used in the rest of the paper. Given
an n-tuple t, let |t| = n, and for all 1 ≤ i ≤ n, let t[i] refer to the
ith component of t; for i > n, let t[i] = ε. We write t ′′ = t · t ′ to
denote concatenation of two tuples: t ′′ has length |t|+ |t ′|, and for
all 1≤ i≤ |t|, t ′′[i] = t[i] and for all 1≤ i≤ |t ′|], t ′′[|t|+ i] = t ′[i]. We
call t a prefix of t ′′ iff ∃t ′ such that t ′′ = t · t ′. The projection function
π maps a tuple t and a set S to a tuple t ′ such that t ′ is generated from
t by deleting all components of t that are not in S. Finally, we use
the symbol ˆ to denote variables that represent abstract objects in the
modeling process and to differentiate these from concrete features
of the input log. For example, for a logged (concrete) event instance
e the corresponding abstract event type is denoted as ê.

3.1 Expected Log Input
To use CSight, the user must provide an input log, a set of user-

defined regular expressions, and a set of channel definitions (step
1 in Figure 2). The regular expressions determine which log lines

are parsed (and which are ignored), what part of a line corresponds
to a vector timestamp, and which local, send, or receive event the
line represents. The channel definitions are used to associate send
and receive events with inter-process channels.

Currently, CSight requires the input log to contain only complete,
error-free executions. Lifting this requirement is future work.

The rest of this section formally describes the structure of the
input log. We assume that an input log L is produced by a system
composed of h processes, indexed from 1 to h. The log contains
multiple system traces, each of which represents a single concurrent
execution of the system. A system trace consists of a set of event
instances logged by different processes and a happens-before rela-
tion [39] (a strict partial ordering over event instances). For example,
the log in Figure 1(a) contains a single system trace; in this trace the
vector timestamps encode the partial order.

Definition 1 (System trace). A system trace is the pair S = 〈T,≺〉,
where T = ∪Ti is the union of a set of process traces (see Def. 2),
one per process; and ≺ is the happens-before relation. This relation
partially orders event instances at different processes and totally
orders event instances (see Def. 3) in each process trace Ti according
to their positions in the trace. That is, ∀ei = 〈ê, i,k〉 ∈ Ti, e′i =
〈ê′, i,k′〉 ∈ Ti, ei ≺ e′i ⇐⇒ k < k′.

S must satisfy three communication consistency constraints: (1)
every sent message is received, (2) only sent messages are received,
and (3) sent messages on the same channel must be received in FIFO
order. The validity of the communication consistency constraints #1
and #3 depends on the underlying message passing protocol.1

We express the above three constraints with a bijection between
message send and message receive event instances for every pair of
processes. For all i, j, let Si j ⊂ T be the send events along channel
ci j, and let Ri j ⊂ T be the receive events along channel ci j. Then
∀i, j,∃ a bijection f : Si j→ Ri j, such that:

1. f (s) = r =⇒ s≺ r
2. ∀s1,s2 ∈ Si j,s1 ≺ s2 =⇒ f (s1)≺ f (s2).

A system trace is composed of multiple process traces, and each
process trace is the set of event instances generated by a specific
process. We assume that each event instance is given a unique
position k in a consecutive order, from 1 to the length of the trace.

Definition 2 (Process trace). For the process i, a process trace is a
set Ti of event instances, such that ∀k ∈ [1, |Ti|], ∃〈ê, i,k〉 ∈ Ti, and
〈ê1, i,k1〉 ∈ Ti and 〈ê2, i,k2〉 ∈ Ti =⇒ k1 = k2.

The execution of each process generates a sequence of event
instances, each of which has an event type from a finite alphabet of
process event types. These event types can be local events, message
send events, or message receive events.

Definition 3 (Event instance). For a process i, an event instance
is a triple e = 〈ê, i,k〉, where ê is the event type of e, and k ≥ 1 is
an integer that uniquely indicates the order (position) of the event
instance, among all event instances generated by process i. When
the value of k is not important, we denote this triplet as ei.

Finally, we assume a fixed set of channels, each of which is used
to connect one sender process to one receiver process. Each of the
send and receive event types is associated with a channel.

Definition 4 (Channel). A channel ci j is identified by a pair of
process indices (i, j), where i 6= j and i, j ∈ [1,h]. Indices i and j
denote the channel’s sender and receiver process, respectively.

We use the standard notation ! to denote send events, ? to denote
receive events, and use labels for channels. For example, in Figure 1,
the event M!x,e is a send of message x,e on channel M.

1In this paper we focus on TCP, which satisfies both assumptions.
Generally, TCP is used by the complex systems that CSight targets.
Removing these assumptions is future work (see Section 8).

3.2 Invariant Mining
CSight uses the log to mine a set of temporal invariants — linear

temporal logic expressions — that relate events in the log (step 2 in
Figure 2). These invariants (Def. 5) are true for all of the observed
execution traces. CSight guarantees that the final inferred CFSM
model satisfies all the mined invariants.

Definition 5 (Event invariant). Let L be a log, and let âi and b̂ j
be two event types whose corresponding event instances, ai and
b j, appear at least once in some system trace in L. Then, an event
invariant is a property that relates âi and b̂ j in one of the following
three ways.
âi→ b̂ j : An event instance of type â at host i is always followed

by an event instance of type b̂ at host j. Formally:
∀〈T,≺〉 ∈ L,∀ai ∈ T,∃b j ∈ T,ai ≺ b j.

âi 6→ b̂ j : An event instance of type â at host i is never followed by
an event instance of type b̂ at host j. Formally:
∀〈T,≺〉 ∈ L,∀ai ∈ T, 6 ∃b j ∈ T,ai ≺ b j.

âi← b̂ j : An event instance of type â at host i always precedes an
event instance of type b̂ at host j. Formally:
∀〈T,≺〉 ∈ L,∀b j ∈ T,∃ai ∈ T,ai ≺ b j.

For example, one invariant of the stop-and-wait protocol model
in Figure 1 is M?m-0 → A?a-0. The invariant types and the cor-
responding mining algorithms are described in more detail in [9].
The above invariant types are also exactly the most frequently ob-
served specification patterns formulated by Dwyer et al. [24] for
serial systems.2 In our experience, these invariants were sufficient
for capturing key temporal properties of the systems that produced
the logs we considered.

3.3 Deriving a Concrete FSM
In step 3 of Figure 2, CSight creates a concrete FSM that accepts

all possible linearizations of the partially ordered system traces in the
log. The concrete FSM model closely fits the logged observations,
but it is not a concise model. Later, we will show how CSight uses
abstraction to make the concrete FSM concise.

3.3.1 Concrete State
To define a concrete FSM we need to introduce notions of state

that describe the concrete observations in the log. For this, we will
define process states, channel states, and system states.

Definition 6 (Local process state). Each process begins execution
in an initial state, qε

i , and after executing a sequence s of process i
event instances, the process enters state qs

i . More formally, let Li be
the set of process i traces in a log L, then the set of process i local
states is Qi:

Qi = {qε
i }

⋃
{qs

i | ∃t ∈ Li,s is a prefix of t}
We call qs

i a terminal state for process i if and only if s ∈ Li.

Now, we define the global process state and global channel state
that together make up the system state.

Definition 7 (Global process state). A global process state q =
〈q1, . . . ,qh〉 is a h-tuple that represents the state of all processes in
the system. That is, q ∈ Q = Q1×·· ·×Qh, with qi ∈ Qi denoting a
state at process i.
2Scope is constrained to a trace (i.e., global scope). The translation
is not one-to-one: â→ b̂ is Dwyer et al.’s Existence pattern when â
is the start event that precedes every trace, and is otherwise Dwyer
et al.’s Response pattern. Another example is ∀b̂, â ← b̂, which is
Dwyer et al.’s Universality pattern.

A channel contains all sent messages not yet received. For each
channel ci j, a (possibly empty) finite set of messages Mi j are the
only messages that can be sent and received on ci j.

Definition 8 (Channel state). The channel state wi j of a channel ci j
is a tuple of variable length whose entries are messages that can be
sent and received along ci j. That is, wi j ∈ (Mi j)

∗.

Definition 9 (Global channel state). A global channel state w is a
set of channel states for all channels in the system. More formally,
w = {wi j | wi j ∈ (Mi j)

∗}. We reuse ε to also stand for a global
channel state with all channels empty. Further, we denote the set of
all possible global channel states M.

Finally, we represent the system state as a pair of global process
state and global channel state, 〈q,w〉 ∈ Q×M.

3.3.2 Transitions
Next, we specify how a sequence of event instances impacts the

state of the system. For this, we define a process transition function,
δi, which maps a process i state and an event instance to a new state.

Definition 10 (Process transition function). Let Ei be the set of all
process i event instances in a log L and let Li be the set of process i
traces in L. Then, the process transition function for a process i is
δi : Qi×Ei→ Qi, such that

• δi(qs
i ,ei) = qs·ei

i ⇐⇒ ∃t ∈ Li,(s · ei) is a prefix of t.

As an example that illustrates δi, assume that states are the nat-
ural numbers: Qi = N, and event instances Ei are totally ordered:
∃g : Ei→N. Then, we can define δi(qi,ei) as the number that is
formed by concatenating qi and g(ei).

Notice that δi has a distinguishing property — two local process
states are different if they were generated by two distinct sequences
of events. Or, more formally:

1. ei 6= fi ⇐⇒ δi(qi,ei) 6= δi(qi, fi)
2. qi = q′i ⇐⇒ δi(qi,ei) = δi(q′i,ei)

3.3.3 The Concrete FSM
CSight uses the system traces parsed from a log L to construct a

concrete FSM FL (step 3 in Figure 2). This FSM represents the
observed, concrete executions of the whole system. Each state in the
concrete FSM is a tuple of the individual process states and channel
contents (for all processes and channels in the system). A channel’s
content is computed from the sequence of observed message sends
and receives in the trace. Process states, however, must be inferred,
and are assumed to be uniquely determined by the process history.
In other words, for a specific sequence of events at a process, CSight
creates a single unique anonymous process state. Figure 3 illustrates
how the anonymous process states and the corresponding concrete
FSM are derived from a set of input system traces.

A key property of FL is that it accepts all linearizations of all
traces in L, as well as all possible traces that are stitchings of different
concrete traces that share identical concrete states.

Definition 11 (Concrete FSM). Given a log L, a concrete FSM FL
for L is a tuple 〈S,sI ,E,∆,ST 〉.
• The states of FL are system states: S = Q×M
• There is a unique initial system state: sI = 〈[qε

1, . . . ,q
ε
h],ε〉

• E = {e | ∃〈T,≺〉 ∈ L,e ∈ T}
• The transition function ∆ is the composition of the process

transition functions and handles communication events,
∆ : Q×M×E→ Q×M, and ∆(〈q,w〉,ei) = 〈q′,w′〉, where:

p1 p2p1 p2 p1 p2

?m

x

?m

y

Trace 2 Trace 3

?m

y
Trace 1

s0

s1

a

a

!m

b

!m

a

!m

c

p1 p2p1 p2

s2

c

s3

!m

t0

t1

?m

t2

y

s0

s1

a

s4

!m

t0

t1

?m

t3

x

p1 p2

s0

s5

b

s6

!m

t0

t1

?m

t2

y

Trace 2 Trace 3Trace 1

(a) System traces

(b) Traces with anonymous states

s3,t2
[]

s1,t0
[]

s4,t0
[m]

s0,t0
[]

a
s5,t0

[]

b

!m

s4,t1
[]

?m

s4,t3
[]

x

s6,t0
[m]

!m

s6,t1
[]

?m

s6,t2
[]

y

s4,t2
[]

y

s6,t3
[]

s2,t0
[]

s3,t0
[m]

s3,t1
[]

?m

y

c

!m

s3,t3
[]

x

(c) Concrete FSM

x

Figure 3: (a) System traces parsed from an input log with three traces,
generated by two processes: p1 and p2. All messages flow from p1 to
p2. (b) The traces from (a) with added per-process anonymous states.
Note the reuse of states s0, s1, t0, t1, and t2. (c) Concrete FSM for the
system traces in (a).

� q′i = δi(qi,ei), and q′j = q j if j 6= i.

� w′i j =

wi j ·m ei = ci j!m
tail ei = ci j?m, wi j = m · tail
undefined ei = ci j?m, wi j[1] 6= m
wi j otherwise

• The terminal states have empty channels, and each process
is in a terminal state that was derived by executing all of the
event instances for that process in some system trace in L.
ST = {〈q,ε〉 | ∀i,qi is terminal}

3.3.4 Validating the Mined Invariants
Although the invariants CSight mines (Section 3.2) are true of the

input traces, in some cases it is not always possible to construct a

concrete FSM model that satisfies the invariants and accepts all of
the input traces. This situation is caused by the incompleteness of
the log.

Our technical report [8] describes an invariant validation step that
removes such invariants.

3.4 Abstracting a Concrete FSM
A concrete FSM is not concise — it is a DAG whose longest

path is as long as the longest execution — and it is not sufficiently
abstract. CSight generates a more concise abstract FSM model from
the concrete FSM, using a process we call state abstraction (step
4 in Figure 2). As a reminder, we use the symbol ˆ to denote

variables that represent abstract objects in the modeling process and
to differentiate these from concrete features of the input log.

The concrete FSM FL accepts all possible linearized sequences
of event instances from executions in a log L. Let P̂ represent a
partitioning of states in FL, that is a partitioning of Q×M (we
use bold font to denote a set of sets)3. CSight’s aim can now be
defined as deriving an abstract FSM (AFSM) ÂL(P̂) whose states
are partitions in P̂ and that accepts sequences of events — rather than
event instances. Transitions between states (partitions) in ÂL(P̂) are
generated through existential abstraction: there is a transition from
P̂1 ∈ P̂ to P̂2 ∈ P̂ on event type ê iff there are concrete states s1 and
s2 such that s1 ∈ P̂1,s2 ∈ P̂2, and there is a transition from s1 to s2
on some event instance e, corresponding to ê. Note that ÂL(P̂), like
the concrete FSM FL, accepts all of the linearized event instance
sequences. We now formally define ÂL(P̂).

Definition 12 (Abstract FSM (AFSM)). For a log L, let FL = 〈S, sI ,
E, ∆, ST 〉 be the concrete FSM for L, and let P̂ be a partitioning of
S. Then, an abstraction of FL, or an abstract FSM of L, is an FSM
ÂL(P̂) = 〈P̂, P̂I , Ê, ∆̂, P̂T 〉, where

• Initial states in ÂL(P̂) are those partitions that contain the
initial concrete state: P̂I = {P̂ ∈ P̂ | sI ∈ P̂}.
• Transitions in ÂL(P̂) are event types that correspond to event

instances in the concrete FSM: Ê = {ê | ∃e,e ∈ E}.
• A transition between two partitions in ÂL(P̂) exists if and only

if there is a corresponding concrete transition between some
two concrete states in the two partitions: ∆̂(P̂, ê) = P̂′ ⇐⇒
∃q ∈ P̂,q′ ∈ P̂′,e ∈ E,∆(q,e) = q′.
• Terminal states in ÂL(P̂) are those partitions that contain a

terminal concrete state: P̂T = {P̂ ∈ P̂ | ST ∩ P̂ 6= /0}.
An important feature of an AFSM is that it generalizes observed

system states. A partition contains a finite number of observed sys-
tem states, but through loops with transitions that modify channel
state, an AFSM can generate arbitrarily long channel contents, lead-
ing to an arbitrarily large number of system states. We may not have
observed these system states, but an AFSM model generalizes to
predict that they are feasible.

CSight uses a first-k-in-channels partitioning strategy for gen-
erating an initial AFSM for a concrete FSM. This partitioning as-
signs two system states to the same partition if and only if the
first-k message sequences in the channel states of the two states
are identical. For example, suppose a system has two channels,
c12 and c21, and there are three concrete states: s1, s2, and s3.
Let s.channels denote the channel contents for state s and suppose
that s1.channels = {c12 : [],c21 : [m]}, s2.channels = {c12 : [],c21 :
[m,m]}, and s3.channels = {c12 : [l],c21 : [m]}. Then the first-1 con-
tents of s1 and s2 are {c12 : [],c21 : [m]} (the second m in s2.c21 is

3We use ˆ for P̂ even though it is a partitioning of states in the
concrete FSM because the partitions in this set represent states in
the abstract FSM. This set links the concrete and abstract FSMs.

Refinement

Â0 Â1 Âfinal· · ·
100%15%10%

Abstract FSMs:

Invariants satisfied: · · ·

Model Checker
· · ·

CFSM
model

Figure 4: A high-level summary of the CSight refinement process (steps
5 and 6 in Figure 2). CSight starts with an initial abstract FSM, Â0,

which is refined to a final abstract FSM, Âfinal. This final abstract FSM
satisfies all of the mined invariants, and is converted into a CFSM that
is returned as output.

not included), while the first-1 contents of s3 are {c12 : [l],c21 : [m]}.
Therefore, in a first-1 partitioning strategy, s1 and s2 would map to
the same partition, while s3 would map to a different partition.

Definition 13 (First-k partitioning). Let S be a set of system states.
P̂k is a first-k partitioning of S if ∀P̂ ∈ P̂k, 〈q,w〉,〈q′,w′〉 ∈ P̂ ⇐⇒
∀ci j,∀g ∈ [1,k],wi j[g] = w′i j[g].

Finally, a CFSM is a set of per-process FSMs that communicate
over FIFO channels. Channels are reliable, unidirectional, and have
a single sender and receiver process. The alphabet of a process
FSM includes process-local events, and inter-process communica-
tion (message send and message receive) events. We use the notation
c!m for a send event of message m on channel c, and the notation
c?m for a receive event of message m on channel c. Each channel
has its own set of valid messages.

Definition 14 (Communicating FSM (CFSM)). A CFSM of h pro-
cesses is a tuple of h process FSMs, 〈F1,F2, . . . ,Fh〉, and a set mes-
sage sets M to indicate the message types that can be sent by one
process and received at another. For each process i, its FSM is
F̂i = 〈Q̂i, Îi, Êi, ∆̂i, T̂i〉 and the message set Mi contains message types
that can be sent from process i and received by some other process j,
for all j. That is, Mi = ∪ jMi j, where ci j?m ∈ Ê j ⇐⇒ ∃i,m ∈Mi j
and ci j!m ∈ Êi ⇐⇒ ∃ j,m ∈Mi j .

3.5 Model-Checking and Refining an AFSM
Figure 4 overviews, at a high level, the CSight model-checking

and refinement process and Figure 5 lists an outline of the complete
CSight algorithm. CSight uses the McScM [33] model checker to
check if an invariant holds in the AFSM (step 5 in Figure 2). As
McScM model-checks CFSMs and not AFSMs, to use McScM,
CSight converts an AFSM into a CFSM. Further, as McScM reasons
about state (un-)reachability, CSight encodes a temporal invariant in
terms of states that can only be reached if the sequence of executed
events violates the invariant. Both the conversion from an AFSM to
a CFSM and the encoding are described in [8].

Model-checking an invariant produces one of three cases:
(1) The invariant holds in the model. There is nothing more for
CSight to do for this invariant.
(2) The invariant does not hold and McScM finds and reports a
counter-example CFSM execution. A CFSM execution is a sequence
of events that abides by CFSM semantics (e.g., a process can only
receive a message if that message is at the head of the channel).
A counter-example CFSM execution is a sequence of events that
violates the invariant. In this case, CSight refines the AFSM to
eliminate the counter-example (Section 3.5.1) and then re-model-
checks this invariant in case another counter-example for it exists.
(3) McScM fails to terminate within a user-defined threshold (de-
faulted to 5 minutes). CSight then attempts to check a different

1 function CSight(Log L,k):
2 let FL = concrete FSM for L
3 let Â = AFSM for FL with first-k partitioning P̂k

4 let ĈÂ = AFSMtoCFSM(Â)
5 let Invs = MineInvariants(L)
6 foreach Inv ∈ Invs:
7 while (ĈÂ violates Inv): // Call to model checker.
8 let p̂ = counter-example path for Inv in ĈÂ
9 // Translate events path p̂ in ĈÂ into Ŝ, a list of

10 // sets of paths in Â , |Ŝ|= h
11 let Ŝ = CFSMPathToAFSMPath(p, ĈÂ)
12 Â = Refine(Â , Ŝ)
13 ĈÂ = AFSMtoCFSM(Â)
14 return ĈÂ
Figure 5: An outline of the CSight algorithm. The AFSMtoCFSM
and CFSMPathToAFSMPath procedures are detailed in [8],
MineInvariants is described in [9]. The CSight implementa-
tion also handles model checker timeouts.

â b̂

b
a

P̂1 P̂2 P̂3

Figure 6: An AFSM path, [â, b̂], that can be eliminated by refining (split-
ting) the abstract state P̂2, separating the two concrete states that gen-
erate the abstract path.

invariant first before coming back to the invariant that timed out.4

If CSight resolves all invariants, it outputs the model. But, if
McScM repeatedly times out on every invariant, then CSight termi-
nates and does not output a model. We did not observe the latter
case in our experiments.

3.5.1 Refining an AFSM to Satisfy Invariants
CSight uses counter-example guided abstraction refinement (CE-

GAR) [16] to eliminate a counter-example for an invariant (step
6 in Figure 2). Figure 6 illustrates how the concrete states from the

log may generate a counter-example partitions path in the AFSM.
The McScM-generated invariant counter-example is a CFSM exe-

cution. Refining CFSM states to eliminate a counter-example is chal-
lenging because a single state in the concrete FSM can map to multi-
ple states in the CFSM. Instead, CSight performs partition refinement
in the AFSM. It does this by mapping the McScM-generated CFSM
counter-example into an AFSM counter-example [8].

Note that the AFSM counter-example is a list of sets of AFSM
paths, one set of AFSM paths for each process in the system. This is
because the process-specific event subsequence of a CFSM execution
maps to potentially multiple paths in the AFSM.

Once the AFSM counter-example is generated, CSight eliminates
the CFSM counter-example by transforming the AFSM into a more
concrete (or less abstract) AFSM. It does so using partition re-
finement (Refine in Figure 7). Given an AFSM counter-example,
Refine identifies the set of partitions that stitch concrete observa-
tions, as in partition P̂2 in Figure 6. It then refines all partitions
in a set that is smallest across all processes and returns the refined
AFSM.

4After refining the model to satisfy one invariant, a different, previ-
ously difficult-to-check invariant may become trivial to model-check.

1 function Refine(AFSM Â , AFSM Event Paths Ŝ):
2 let 〈P̂, P̂I , Ê, ∆̂, P̂T 〉= Â
3 // min is an index into Ŝ, denoting a set of process paths
4 // requiring the fewest number of refinements to eliminate.
5 let min = 0
6 foreach i ∈ [1, . . . ,h]:
7 foreach ŝ ∈ Ŝ[i]:
8 let Π̂ = state sequence for ŝ in Â
9 // Find stitching partitions, e.g., P̂2 in Fig. 6, by

10 // traversing Π̂ and recording partitions that can be
11 // refined to eliminate Π̂ from Â .

12 let Ŝtitchŝ = {P̂ | P̂ is a stitching state in Π̂}
13 if Ŝtitchŝ is empty:
14 next i
15 // Set of stitching partitions shared by those paths in Â
16 // that correspond to strings in Ŝ[i]

17 let Ŝtitchi = ∩ŝ∈Ŝ[i]Ŝtitchŝ

18 // min is an index that tracks the smallest Ŝtitchi

19 if min = 0 or
∣∣∣Ŝtitchi

∣∣∣< ∣∣∣Ŝtitchmin

∣∣∣:
20 min = i

21 let P̂′ = P̂ with all partitions in Ŝtitchmin refined to
22 eliminate all paths in Ŝ[min]
23 // Derive P̂′I , ∆̂

′, and P̂′T from P̂′ as in Def. 12.
24 let AFSM Â ′ = 〈P̂′, P̂′I , Ê, ∆̂′, P̂′T 〉
25 return Â ′

Figure 7: Refine removes an invariant counter-example from an
AFSM. It refines one of the sets of process paths in Ŝ, selecting the one
that require the fewest refinements. Note that Ŝ is a list of sets of paths,
one set per process.

A refined AFSM is more concrete — closer to the the concrete
FSM. The refined AFSM has more partition states, and each partition
state contains fewer concrete system states.

Definition 15 (AFSM Refinement). An AFSM ÂL(Q̂) is a refine-
ment of AFSM ÂL(P̂) if ∀Q̂ ∈ Q̂,∃P̂ ∈ P̂, Q̂⊆ P̂, and⋃

Q̂∈Q̂

Q̂ =
⋃

P̂∈P̂

P̂

Next, in Section 4, we prove three key properties of the CSight
process.

4. FORMAL ANALYSIS
We now use the formalisms defined in the previous section to

prove three results about the CSight model inference process: (1) the
inferred model fits the input log, (2) the inferred model satisfies
mined invariants, and (3) refinement always makes progress.

We begin with an observation: The concrete FSM FL satisfies all
mined, validated invariants5. This is true by construction.

Observation 1 (Concrete FSM satisfies mined, validated invariants).
Let L be a log, and let Invs be the set of invariants that are valid in
FL. Then, ∀Inv ∈ Invs, s ∈ Lang(FL), s satisfies Inv.

5Invariant validation is described in Section 3.3.4 and further de-
tailed in [8]

Theorem 1 (Inferred model fits the input log). For all logs L and
integers k, CSight(L,k) returns a CFSM model that accepts all
traces in L.

Proof of Theorem 1. Let ĈÂ be the model returned by CSight(L,k).
By construction, Â accepts all of the traces in ĈÂ . Furthermore, Â
is an abstract FSM for FL — the concrete FSM of log L.

All abstract FSMs must at least accept the traces in the concrete
FSM. Therefore, Â accepts all of the traces in FL. Since, FL accepts
all of the traces in L by construction, Â accepts the traces as well,
and therefore ĈÂ must also accept them.

A key property of the Refine procedure in Figure 7 is that it
eliminates a counter-example path from a CFSM. We prove this
next.

Theorem 2 (Refinement progress: Refinement eliminates coun-
ter-examples). Let p̂ be a CFSM counter-example path for invariant
Inv in ĈÂ , let Ŝ = CFSMPathToAFSMPath(p̂, ĈÂ), and let Â ′ =
Refine(Â , Ŝ). Then, p̂ is not a counter-example to Inv in ĈÂ ′ . That
is, p̂ is not a valid execution of ĈÂ ′ .

Proof of Theorem 2. Proof by contradiction. Assume that p̂ is a
sequence of events that is a valid execution of ĈÂ ′ and that p̂ violates
Inv. Consider an invocation of Refine(Â , Ŝ). Refine (Figure 7)
uses a non-zero min value to compute P̂′ on line 19 and returns a
CFSM ĈÂ ′ = 〈F̂i〉hi=1.

For p̂ to be a valid execution in ĈÂ ′ , the sub-sequence of process
i events p̂i, p̂i = π(p̂, Êi), must be a valid execution in F̂i, for all i.
The procedure AFSMtoCFSM (line 13 in Figure 5) constructs F̂i to
accept p̂i iff there is a complete path ŝ in Â ′, such that p̂i = π(ŝ, Êi).
However, any such ŝ must also be in ˆStitchmin, which is used to
compute P̂′ in Figure 7. Therefore, after refining ˆStitchmin, ŝ can no
longer be a valid path in Â ′. Contradiction.

Now, we prove that the CSight procedure in Figure 5 returns a
CFSM model that satisfies all of the mined, validated invariants.

Theorem 3 (Inferred model satisfies mined invariants.). For a given
log L, if CSight outputs a CFSM model then this model satisfies
all of the mined, validated event invariants from FL.

Proof of Theorem 3. For a log L with a total of n event instances,
CSight can refine the initial abstract FSM for L, AL(P̂k), at most
n−1 times. This is because after n−1 refinements, each partition
in the abstract FSM must map to exactly one concrete state, and a
singleton partition cannot be refined further.

Let Â be the abstract FSM after n− 1 refinements of AL(P̂k).
Because Â maps each event instance to a unique partition, it is
indistinguishable from FL, the concrete FSM it abstracts. Therefore,
Lang(Â) = Lang(FL). By Observation 1, FL satisfies all validated
invariants, therefore so does Â .

Since CSight does not terminate until all the validated invariants
are satisfied in the abstract FSM, it either returns Â after n− 1
refinements, or it returns a smaller (and more abstract) Â ′. In both
cases, the returned AFSM satisfies all of the validated invariants.

5. LOGGING VECTOR TIMESTAMPS
CSight requires its input logs to be annotated with vector times-

tamps. Vector time is a logical clock mechanism to partially order
events in a concurrent system [25, 45]. To ease using CSight with
concurrent systems, we have built ShiVector6, a tool to automatically
6https://bitbucket.org/bestchai/shivector/

https://bitbucket.org/bestchai/shivector/

s1 s2SC!syn-ack s3CS?ack s4SC!ackCS?syn

(a) TCP server (b) TCP client

s0

SC!fin

s5s6 SC!ack

s9

CS?ack

CS?fins10 SC!ack

s7 CS?fin

s11 CS?ack

s8 SC!ack

s12 SC!fin

CS?ack

c1 c2SC?syn-ack c3CS!ack c4SC?ackCS!sync0

c5c6 CS!ack

c10

SC?fin

CS!finc11 SC?ack

c7 SC?ack

c12 CS!ack

c9 CS!fin

c13 SC?fin

CS!ack

c8SC?ack

SC

CS

Figure 8: The inferred state machines for the (a) TCP server and (b) TCP client. The server communicates with the client over the SC channel, and
the client communicates with the server over the CS channel. Shaded states represent the connection-established states.

compute and insert vector timestamps into Java system logs. ShiVec-
tor does not require modification of the system’s source code, only
recompilation with the ShiVector library added to the classpath.

ShiVector uses aspects (via AspectJ) to intercept socket-based
network communication to piggy-back process vector timestamps on
top of existing application-level protocols.7 ShiVector also intercepts
logging events to augment each logged event with a vector timestamp
at the time that the event was logged. Thus, ShiVector automatically
tracks and injects vector timestamps into concurrent systems’ logs.

6. EXPERIMENTAL EVALUATION
The CSight prototype uses McScM for model checking and

graphviz for model visualization. In all experiments we used a
value of k = 1 for the first-k-in-channels partitioning strategy. We
evaluated CSight on three sets of logs, produced by: a simulator
of the stop-and-wait protocol; the TCP stack of OS X; and Volde-
mort [56], an open-source project that implements a distributed hash
table [22] and is used in data centers at companies like LinkedIn. We
also carried out a user study with a group of undergraduate students
to evaluate the efficacy of CFSM models in finding bugs.

6.1 Stop-and-Wait Protocol
We applied CSight to traces from a simulator of the stop-and-

wait protocol described in Section 2. We derived a diverse set
of traces by varying message delays to produce different message
interleavings. CSight mined a total of 66 valid invariants. The
model CSight derived (Figure 1(b)) is identical to the true model of
the stop-and-wait protocol. This experiment was a sanity check to
verify that CSight performed as expected on this well-understood
protocol, when faced with concurrency-induced non-determinism in
interleavings.

6.2 TCP
The TCP protocol uses a three-phase opening handshake to estab-

lish a bi-directional communication channel between two end-points.
It tears down and cleans up the connection using a four-phase closing
handshake. The TCP state machine is complicated by the fact that
packet delays and packet losses cause the end-points to timeout and
re-transmit certain packets, which may in turn induce new messages.
Our goal was to model common-case TCP behavior, so we did not
explore these protocol corner cases.

We used netcat and dummynet [51] to generate TCP packet flow.
We captured packets using tcpdump and then semi-manually anno-
tated the log to include vector timestamps. A subset of the traces
that involve only the the opening and closing TCP handshakes were
fed into CSight.
7We plan to extend ShiVector to interpose on other kinds of inter-
process communication.

For the captured TCP log, CSight identified 149 valid invari-
ants, some of which are not true of the complete protocol (e.g.,
because the input traces did not contain certain packet retrans-
missions). The CSight-derived CFSM model is shown in Fig-
ure 8. The shaded states s4 and c4 represent the server and client
connection-established states, which is reached when the two
end-points have successfully set up the bi-directional channel. Tran-
sitions up to these two states model the opening handshake, while
transitions after these states model the closing handshake. The clos-
ing handshake is split into a server-initiated tear-down sequence
(middle row of states) and a client-initiated tear-down (bottom-most
row of states).

The derived model is accurate except for the self-loop on state
s4 in Figure 8(a). This loop appears because s4 represents both
the connection-established state and the state after the server
has initiated the closing handshake. This loop appears to contradict
the SC!fin 6→ SC!fin invariant, which is mined by CSight and is
valid. However, the model checker only considers counter-examples
that terminate. Note that if the loop at s4 is traversed twice then
the client will be unable to consume both server fin packet copies
and will enter an unspecified reception error state and therefore not
terminate. Such unspecified reception states are typically undesir-
able, as they can be confusing. The McScM model checker can be
used to detect these states and further refinement will eliminate them.
Implementing this elimination remains as part of future work.

Figure 8 also illustrates a key feature of CSight — the user de-
cides (by specifying a set of line-matching regular expressions) what
information in the log is relevant to the modeling task. Thus, for
each use of CSight, the user decides on the trade-off between com-
prehensibility of the model (e.g., model size) and the amount of
information lost/retained by the modeling process. For example, the
TCP model in Figure 8 is simple to understand, but it omits TCP
sequence numbers, data packets, and other details that were present
in the input log.

6.3 Voldemort Distributed Hash Table
Voldemort [56] implements a distributed hash table with a client

API that has two main methods. put(k,v) associates the value v
with the key k, and get(k) retrieves the current value associated
with the key k. Voldemort is a distributed system as it provides
scalability by partitioning the key space across multiple machines
and achieves fault tolerance by replicating keys and values across
multiple machines.

The Voldemort project has an extensive test suite. We used a
subset of integration tests that exercise the synchronous replication
protocol to generate a log of replication messages in a system with
one client and two replicas. We logged messages generated by client
calls to the synchronized versions of put and get and captured just

(a) Voldemort Replica 1 (b) Voldemort client

c1

c2

R1-C?put-re

c3 C-R2!put

R2-C?put-re

C-R1!putc0R1-C

C-R1

c4

c5

R1-C?get-re

c6C-R2!get

R2-C?get-re

C-R1!get

r1r0r2

R1-C!get-re

C-R1?get C-R1?put

R1-C!put-re

(c) Voldemort Replica 2

s1s0s2

R2-C!get-re

C-R2?get C-R2?put

R2-C!put-re

R2-C

C-R2

Figure 9: (a,c) replica models and (b) client model for a three-node Voldemort cluster. “re” stands for “response”.

the messages between the client and the two replicas.8 Since Volde-
mort does not implement vector timestamps, we used ShiVector
(described in Section 5) to produce a vector timestamped log.

CSight mined 112 valid invariants and generated the model in Fig-
ure 9. This model contains a client FSM and two replica FSMs. As
expected, the replica FSMs are identical. Synchronized Voldemort
operations are serialized in a specific order, so the flow of messages
for put as well as for get is identical — the client first executes the
operation at replica 1 and then at replica 2.

We manually inspected Voldemort’s replication code to confirm
that the model in Figure 9 is accurate. This model provides a high-
level overview of how replication messages flow in the system.
However, as with the TCP protocol, the model also abstract away
and omits numerous details, such as what happens when replicas fail.
One feature of CSight is that it allows a developer to focus on those
aspects of system behavior that are important to them. For example,
by not exercising irrelevant system behavior in the first place, or by
running CSight with regular expressions that ignore certain logged
behavior in the log parsing stage of the process.

6.4 User Study
To determine whether CFSM models are useful in finding bugs,

we designed and ran a user study. It is typical for developers to
interpret distributed executions in the form of time-space diagrams.
Therefore, we compared the efficacy of CFSM models against time-
space diagrams in bug-finding tasks. Throughout the study and in
the oral feedback session that followed, participants were not told
the purpose of the study.

The study focused on two concurrent systems: the stop-and-wait
protocol and Voldemort. We introduced a bug into each system —
the sender in the stop-and-wait protocol failed to re-transmit packets
on timeout, and the synchronized Voldemort client sent requests to
all replicas concurrently, instead of blocking on acknowledgment
from each replica. In our experience, both bugs are representative
of real bugs faced by distributed system developers. The root cause
of the stop-and-wait bug is not taking the right action on an event;
the root cause of the Voldemort bug is performing an action at
the wrong time. For each buggy system, we generated: (1) a set
of representative time-space execution diagrams (8 for the stop-
and-wait protocol and 6 for Voldemort), and (2) a CFSM model.
Overall, we created four artifacts for the study — tspace-saw and
cfsm-saw (time-space diagrams and CFSM model of the buggy stop-
and-wait protocol), and tspace-vol and cfsm-vol (artifacts for buggy
Voldemort).

The study consisted of an in-class, web-based assignment9 in
an undergraduate Introduction to Software Engineering class at
the University of Massachusetts, Amherst. The 39 students who
completed the assignment had, on average, 4.2 years of programming
experience, and 76% of them had never taken a networks course.
8The replicas also communicate with each other to maintain key
availability, but we excluded this communication from the log.
9Available online: http://www.bestchai.net/papers/icse2014_csight_eval/

We considered two factors: the model factor (time-space diagrams
vs. CFSM models), and the task factor (stop-and-wait vs. Voldemort).
To account for learning effects, we used a within-participants mixed
design across all 39 participants. We randomly assigned each student
to one of four possible study sequences: 〈tspace-saw, cfsm-vol〉,
〈tspace-vol, cfsm-saw〉, 〈cfsm-saw, tspace-vol〉, 〈cfsm-vol, tspace-
saw〉. We considered the two bugs to be independent — finding
one bug in one artifact does not help in finding the other bug in a
different artifact.

Each task consisted of two steps:
1. Each student completed a mini-tutorial on the appropriate

diagram (time-space and CFSM, respectively). To verify their under-
standing, at the end of each tutorial, each student had to answer two
basic questions correctly. They could resubmit their answers until
both were correct.10

2. Each student was given a correct, written description of the
system in English, along with either a set of time-space diagrams or
a CFSM model. The student was asked to respond to a single open-
ended question. For time-space diagrams (tspace-saw, tspace-vol)
we asked: “List all of the time-space diagrams above that you think
do not conform to the description of the system above. What made
you choose these diagrams?” For the CFSM models (cfsm-saw,
cfsm-vol) we asked: “How does the observed model differ from the
intended system description?”

6.4.1 Results
Students found bugs approximately as well with the CFSM model

as they did with the time-space diagrams that are developers’ current
preferred visualization. For the stop-and-wait protocol, students
who were shown the CFSM were 72% successful in getting the right
answer, while those who were shown the 8 time-space diagrams
were 61% successful. For Voldemort, the success rate with the
CFSM was 72% and the success rate with the 6 time-space diagrams
was 86%.

Students found CFSMs just as useful (for completing the task) as
the small collection of time-space diagrams. These results indicate
that CFSM models can be used to effectively find bugs. Moreover,
in practice, developers have to inspect neither 8 nor 6 executions
of the system, but hundreds or thousands. The task of manually
finding the anomalous time-space diagrams would be infeasible.
The CFSM models, though, will remain roughly of the same size
and complexity regardless of the number of executions. Therefore,
we believe that our results on the utility of CFSMs over time-space
diagrams are conservative, and CFSMs would perform even better
in practice. Our study finds that they already perform as well as
time-space diagrams tightly focused on the buggy behavior.

Students’ oral feedback on the assignment reveals why many
of them preferred the CFSM model. According to many students,

10The average time to complete either tutorial was 5 minutes. Stu-
dents made, on average, 1.8 attempts to answer the tutorial questions
correctly. These measures were similar when the time-space and the
CFSM tutorials were considered separately.

http://www.bestchai.net/papers/icse2014_csight_eval/

time-space diagrams were difficult to follow, especially for long
executions:

“I found the time-space diagrams confusing. It was hard to tell what
was happening when. The [CFSM] models were simpler and made it
clear what state a system was in and I could keep track of that state.” –
student 1

“Time-space diagrams were easy to follow for small time segments. For
longer time segments, you got lost. The other [CFSM] models were
better for longer time.” – student 2

Students could compare a CFSM model to their own mental
model, or the model they would draw after reading the system
description:

“I read the description and tried to recreate the [CFSM] model myself
first. Then, I compared what I drew to the given diagram and found
mistakes. Understanding those mistakes helped me understand the
system a lot better.” – student 3

Finally, students mentioned that CFSM models were easier to use
because they did not explicitly model time:

“For the [CFSM] models, I assumed no time delay in the network mes-
sages. It was harder to do in the time-space diagrams because you
cannot ignore the delay there. In CFSMs, you can ignore time at first,
and then allow for it.” – student 4

7. RELATED WORK
CFSMs can be inferred from manually-labeled message sequence

charts [13]. In contrast, CSight automates the inference by relying on
mined invariants. CFSMs inferred from executions can demonstrate
system properties, such as absence of deadlocks and unspecified
receptions [15, 55]. We found that CFSMs also provide a concise
representation of complex concurrent system logs. Another poten-
tially useful inferred model of concurrent systems is class-level
specifications in the form of symbolic message sequence charts [38].
CSight can use these to merge identical process FSMs, such as the
replica models in Figure 9(a,c).

In addition to inferring models, concurrent system logs can be
used to detect anomalies [35, 44, 57], identify performance bugs [52,
53], and mine temporal system properties [9, 17, 59]. Our focus is
on concurrency and on extracting a model that can aid understand-
ing of more general system behavior. Our own work on mining
temporal invariants of concurrent systems [9] is complementary to
CSight, which needs to mine such invariants from execution logs.
Probabilistic analysis of logs (measuring number, frequency, and
regularity of event occurrences) can help discover concurrent system
execution patterns, which can help the developer better understand
and improve the design of concurrent systems [17]. Logs can also
be used to mine message sequence charts [37], which describe the
process interactions within a concurrent system.

The problem of finding a short sequence of refinements to produce
a small abstract FSM that satisfies all of the valid invariants is NP-
hard [16], and CSight’s design finds an approximate solution. For
logs of serial systems (totally ordered logs), the problem of automata
inference from positive examples of executions is computable [12]
but NP-complete [30, 5], and the FSA cannot be approximated by
any polynomial-time algorithm [48]. Unlike CSight, prior work on
model inference from totally ordered logs either excluded concur-
rency or captured a particular interleaving of concurrent events [2,
10, 7, 11, 18, 28, 43, 46, 49]. Tomte [1] and Synoptic [10] take a
similar approach to CSight, using CEGAR [16] to refine models.
Synoptic mines temporal invariants and infers FSM models from
a log of sequential executions, while Tomte infers scalarset Mealy
machines. CSight mirrors Synoptic’s inference procedure but uses
a different modeling formalism and algorithms, and works for con-
current systems that log concurrency as a partial order. We believe

that modeling concurrency explicitly is crucial to understanding a
concurrent system’s behavior.

System models can also be inferred from developer-written specifi-
cations [4, 19, 21, 29, 31, 36]. Compared to CSight, these techniques
require significantly more manual effort from the developer and are
not suitable for legacy systems.

CSight relies on the McScM model checker [33, 32], which repre-
sents a scalability bottleneck. Future work will use the more efficient
Spin model checker [34].

Other distributed system debugging approaches focus on data
(e.g., [3, 6, 26]), as opposed to event execution sequences. Run-
time monitoring approaches can detect execution sequence or data
property violations for error reporting [50, 27, 41, 20] or self-
adaptation [40, 23, 58, 47]. CSight models can be used at runtime to
verify that executions conform to the expected model.

8. DISCUSSION
The vector timestamp tracking and logging by ShiVector (Sec-

tion 5) may affect system performance. However, as is typical for
production systems, ShiVector can be enabled for a small fraction
of the requests. If the collected traces are representative of typical
system behavior, then CSight’s model, too, will be representative.

CSight’s model construction cannot directly eliminate two kinds
of error states [14] — unspecified reception and deadlock. Unspeci-
fied reception occurs when a process enters a state with a message
m at the head of its channel, but has no reachable future state that
receives m. A deadlock occurs when no process can send a message
and at least one process cannot reach a terminating state. CSight
does not check if these error states are reachable in the final model.
CSight can be extended with such a check (e.g., by using the McScM
model checker), but the check would be computationally expensive.

CSight mines three types of invariants and ensures that the final
model satisfies the valid invariants. For the invariants to be accurate,
the log must have executions representative of all possible executions
of the modeled system. While we found these invariant types to
be sufficient to infer interesting models in practice, more extensive
invariants can lead to more expressive models.

CSight works for system traces that satisfy certain communication
constraints (Def. 1). For example, CSight cannot model unclean
termination and assumes that each execution terminates with empty
channels. However, in practice, system logs may not satisfy these
constraints. In our future work we will extend CSight to handle
terminal states with non-empty channels.

9. CONCLUSION
Concurrent systems are hard to implement, debug, and verify.

To help with these tasks, we developed CSight, a tool that uses
a partially ordered log of events to infer a concise and accurate
communicating finite state machine model of the system. CSight’s
accuracy comes from its use of mined temporal properties that relate
events in the log. Our tool prototypes are available for download at
http://synoptic.googlecode.com/. By automatically mining a system
model from logs, CSight has the potential to ease system understand-
ing, debugging, and maintenance tasks.

10. ACKNOWLEDGMENTS
We thank Jenny Abrahamson for her work on ShiVector and

Roykrong Sukkerd for her contributions to the project. This
material is based upon work supported by the United States Air
Force under Contract No. FA8750-12-C-0174 and by IARPA under
Contract No. N66001-13-1-2006.

http://synoptic.googlecode.com/

11. REFERENCES
[1] Fides Aarts, Faranak Heidarian, Harco Kuppens, Petur Olsen,

and Frits W. Vaandrager. Automata learning through coun-
terexample guided abstraction refinement. In the International
Symposium on Formal Methods (FM), Paris, France, 2012.

[2] Mithun Acharya, Tao Xie, Jian Pei, and Jun Xu. Mining API
Patterns as Partial Orders from Source Code: From Usage Sce-
narios to Specifications. In the Joint Meeting of the European
Software Engineering Conference and the International Sympo-
sium on the Foundations of Software Engineering (ESEC/FSE),
Dubrovnik, Croatia, 2007.

[3] Marcos K. Aguilera, Jeffrey C. Mogul, Janet L. Wiener, Patrick
Reynolds, and Athicha Muthitacharoen. Performance Debug-
ging for Distributed Systems of Black Boxes. Operating Sys-
tems Review (OSR), 37(5):74–89, October 2003.

[4] Dalal Alrajeh, Jeff Kramer, Alessandra Russo, and Sebastin
Uchitel. Learning Operational Requirements from Goal Mod-
els. In the International Conference on Software Engineering
(ICSE), Vancouver, BC, Canada, 2009.

[5] Dana Angluin. Finding Patterns Common to a Set of Strings.
Journal of Computer and System Sciences, 21(1):46 – 62, 1980.

[6] Paul Barham, Austin Donnelly, Rebecca Isaacs, and Richard
Mortier. Using magpie for request extraction and workload
modelling. In Networked Systems Design and Implementation
(NSDI), San Francisco, CA, USA, 2004.

[7] Ivan Beschastnikh, Yuriy Brun, Jenny Abrahamson, Michael D.
Ernst, and Arvind Krishnamurthy. Unifying FSM-Inference
Algorithms through Declarative Specification. In the Inter-
national Conference on Software Engineering (ICSE), San
Francisco, CA, USA, 2013.

[8] Ivan Beschastnikh, Yuriy Brun, Michael D. Ernst, and Arvind
Krishnamurthy. Inferring Models of Networked Systems
from Logs of their Behavior with CSight. Technical report,
http://hdl.handle.net/2429/46122, Univ. of British Columbia,
2014.

[9] Ivan Beschastnikh, Yuriy Brun, Michael D. Ernst, Arvind Kr-
ishnamurthy, and Thomas E. Anderson. Mining Temporal In-
variants from Partially Ordered Logs. Operating Systems Re-
view (OSR), 45(3):39–46, December 2011.

[10] Ivan Beschastnikh, Yuriy Brun, Sigurd Schneider, Michael
Sloan, and Michael D. Ernst. Leveraging Existing Instrumenta-
tion to Automatically Infer Invariant-Constrained Models. In
the Joint Meeting of the European Software Engineering Con-
ference and the International Symposium on the Foundations
of Software Engineering (ESEC/FSE), Szeged, Hungary, 2011.

[11] Alan W. Biermann and Jerome A. Feldman. On the synthesis
of finite-state machines from samples of their behavior. IEEE
Transactions on Computers (TC), 21(6):592–597, June 1972.

[12] Lenore Blum and Manuel Blum. Toward a Mathematical The-
ory of Inductive Inference. Information and Control, 28(2):125–
155, 1975.

[13] Benedikt Bollig, Joost P. Katoen, Carsten Kern, and Mar-
tin Leucker. Learning Communicating Automata from MSCs.
IEEE Transactions on Software Engineering (TSE), 36(3):390–
408, May 2010.

[14] Daniel Brand and Pitro Zafiropulo. On Communicating Finite-
State Machines. Journal of the ACM, 30(2):323–342, April
1983.

[15] Xiao J. Chen and Hasan Ural. Construction of Deadlock-free
Designs of Communication Protocols from Observations. The
Computer Journal, 45(2):162–173, January 2002.

[16] Edmund Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and
Helmut Veith. Counterexample-guided Abstraction Refine-
ment. In Computer Aided Verification, pages 154–169, 2000.

[17] Jonathan E. Cook, Zhidian Du, Chongbing Liu, and Alexan-
der L. Wolf. Discovering models of behavior for concurrent
workflows. Computers in Industry, 53(3):297–319, 2004.

[18] Jonathan E. Cook and Alexander L. Wolf. Discovering Models
of Software Processes from Event-Based Data. Transactions on
Software Engineering and Methodology (TOSEM), 7(3):215–
249, 1998.

[19] Christophe Damas, Bernard Lambeau, and Axel van Lam-
sweerde. Scenarios, Goals, and State Machines: a Win-Win
Partnership for Model Synthesis. In the International Sym-
posium on the Foundations of Software Engineering (FSE),
Portland, OR, USA, 2006.

[20] Darren Dao, Jeannie Albrecht, Charles Killian, and Amin Vah-
dat. Live Debugging of Distributed Systems. In the Interna-
tional Conference on Compiler Construction (CC), Boston,
MA, USA, 2009.

[21] Guido de Caso, Victor Braberman, Diego Garbervetsky, and Se-
bastian Uchitel. Validation of Contracts Using Enabledness Pre-
serving Finite State Abstractions. In the International Confer-
ence on Software Engineering (ICSE), Vancouver, BC, Canada,
2009.

[22] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gu-
navardhan Kakulapati, Avinash Lakshman, Alex Pilchin,
Swaminathan Sivasubramanian, Peter Vosshall, and Werner
Vogels. Dynamo: Amazon’s Highly Available Key-Value Store.
In the Symposium on Operating Systems Principles (SOSP),
Stevenson, WA, USA, 2007.

[23] Brian Demsky, Michael D. Ernst, Philip J. Guo, Stephen Mc-
Camant, Jeff H. Perkins, and Martin Rinard. Inference and
enforcement of data structure consistency specifications. In the
International Symposium on Software Testing and Analysis,
pages 233–243, Portland, ME, USA, July 2006.

[24] Matthew B. Dwyer, George S. Avrunin, and James C. Corbett.
Patterns in Property Specifications for Finite-State Verifica-
tion. In the International Conference on Software Engineering
(ICSE), Los Angeles, CA, USA, 1999.

[25] Colin J. Fidge. Timestamps in Message-Passing Systems that
Preserve the Partial Ordering. In the Australian Computer Sci-
ence Conference, pages 55–66, University of Queensland, Aus-
tralia, 1988.

[26] Rodrigo Fonseca, George Porter, Randy H. Katz, Scott Shenker,
and Ion Stoica. X-Trace: A Pervasive Network Tracing Frame-
work. In Networked Systems Design and Implementation
(NSDI), Cambridge, MA, USA, 2007.

[27] Dennis Geels, Gautam Altekar, Petros Maniatis, Timothy
Roscoe, and Ion Stoica. Friday: Global Comprehension for
Distributed Replay. In Networked Systems Design and Imple-
mentation (NSDI), Cambridge, MA, USA, 2007.

[28] Carlo Ghezzi, Mauro Pezzè, Michele Sama, and Giordano
Tamburrelli. Mining Behavior Models from User-intensive
Web Applications. In the International Conference on Software
Engineering (ICSE), Hyderabad, India, 2014.

[29] Dimitra Giannakopoulou and Jeff Magee. Fluent Model Check-
ing for Event-Based Systems. In the International Symposium
on the Foundations of Software Engineering (FSE), Helsinki,
Finland, 2003.

[30] E. Mark Gold. Language Identification in the Limit. Informa-
tion and Control, 10(5):447–474, 1967.

http://hdl.handle.net/2429/46122

[31] David Harel, Hillel Kugler, and Amir Pnueli. Synthesis Re-
visited: Generating Statechart Models from Scenario-Based
Requirements. Formal Methods in Software and Systems Mod-
eling, 3393, 2005.

[32] Alexander Heussner, Tristan Gall, and Grégoire Sutre.
Extrapolation-Based Path Invariants for Abstraction Refine-
ment of Fifo Systems. In the International SPIN Workshop on
Model Checking of Software, Grenoble, France, 2009.

[33] Alexander Heussner, Tristan Le Gall, and Grégoire Sutre.
McScM: A General Framework for the Verification of Commu-
nicating Machines. In the International Conference on Tools
and Algorithms for the Construction and Analysis of Systems
(TACAS), Tallinn, Estonia, 2012.

[34] Gerard J. Holzmann. The Model Checker SPIN. IEEE Trans-
actions on Software Engineering (TSE), 23(5):279–295, May
1997.

[35] Guofei Jiang, Haifeng Chen, Cristian Ungureanu, and Kenji
Yoshihira. Multi-resolution Abnormal Trace Detection Using
Varied-length N-grams and Automata. In the International
Conference on Autonomic Computing (ICAC), Seattle, WA,
USA, 2005.

[36] Ivo Krka, Yuriy Brun, George Edwards, and Nenad Medvi-
dovic. Synthesizing Partial Component-Level Behavior Models
from System Specifications. In the International Symposium on
the Foundations of Software Engineering (FSE), Amsterdam,
The Netherlands, 2009.

[37] Sandeep Kumar, Siau-Cheng Khoo, Abhik Roychoudhury, and
David Lo. Mining Message Sequence Graphs. In the Inter-
national Conference on Software Engineering (ICSE), pages
91–100, Honolulu, HI, USA, 2011.

[38] Sandeep Kumar, Siau-Cheng Khoo, Abhik Roychoudhury, and
David Lo. Inferring Class Level Specifications for Distributed
Systems. In the International Conference on Software Engi-
neering (ICSE), Zurich, Switzerland, 2012.

[39] Leslie Lamport. Time, Clocks, and the Ordering of Events in a
Distributed System. Communications of the ACM, 21(7):558–
565, July 1978.

[40] Lee Lin and Michael D. Ernst. Improving the Adaptability of
Multi-mode Systems via Program Steering. In the International
Symposium on Software Testing and Analysis, pages 206–216,
Boston, MA, USA, 2004.

[41] Xuezheng Liu, Zhenyu Guo, Xi Wang, Feibo Chen, Xiaochen
Lian, Jian Tang, Ming Wu, M. Frans Kaashoek, and Zheng
Zhang. D3S: Debugging Deployed Distributed Systems. In
Networked Systems Design and Implementation (NSDI), San
Francisco, CA, USA, 2008.

[42] David Lo, Leonardo Mariani, and Mauro Pezzè. Automatic
Steering of Behavioral Model Inference. In the Joint Meet-
ing of the European Software Engineering Conference and
the International Symposium on the Foundations of Software
Engineering (ESEC/FSE), Amsterdam, The Netherlands, 2009.

[43] Davide Lorenzoli, Leonardo Mariani, and Mauro Pezzè. Auto-
matic generation of software behavioral models. In the Inter-
national Conference on Software Engineering (ICSE), Leipzig,
Germany, 2008.

[44] Jian G. Lou, Qiang Fu, Shengqi Yang, Ye Xu, and Jiang Li.
Mining Invariants from Console Logs for System Problem
Detection. In the USENIX Annual Technical Conference (ATC),

Boston, MA, USA, 2010.
[45] Friedemann Mattern. Virtual Time and Global States of Dis-

tributed Systems. In the International Workshop on Parallel
and Distributed Algorithms, pages 215–226, Gers, France,
1989.

[46] Tony Ohmann, Kevin Thai, Ivan Beschastnikh, and Yuriy Brun.
Mining Precise Performance-Aware Behavioral Models from
Existing Instrumentation. In the International Conference on
Software Engineering New Ideas and Emerging Results (ICSE
NIER) track, Hyderabad, India, 2014.

[47] Jeff H. Perkins, Sunghun Kim, Sam Larsen, Saman Amaras-
inghe, Jonathan Bachrach, Michael Carbin, Carlos Pacheco,
Frank Sherwood, Stelios Sidiroglou, Greg Sullivan, Weng-
Fai Wong, Yoav Zibin, Michael D. Ernst, and Martin Rinard.
Automatically patching errors in deployed software. In the
Symposium on Operating Systems Principles (SOSP), pages
87–102, Big Sky, MT, USA, 2009.

[48] Leonard Pitt and Manfred K. Warmuth. The Minimum Con-
sistent DFA Problem Cannot be Approximated Within any
Polynomial. Journal of the ACM, 40(1):95–142, 1993.

[49] Steven P. Reiss and Manos Renieris. Encoding Program Execu-
tions. In the International Conference on Software Engineering
(ICSE), Toronto, ON, Canada, 2001.

[50] Patrick Reynolds, Charles Killian, Janet L. Wiener, Jeffrey C.
Mogul, Mehul A. Shah, and Amin Vahdat. Pip: Detecting
the Unexpected in Distributed Systems. In Networked Systems
Design and Implementation (NSDI), San Jose, CA, USA, 2006.

[51] Luigi Rizzo. Dummynet: a Simple Approach to the Evalua-
tion of Network Protocols. Computer Communication Review
(CCR), 27(1):31–41, January 1997.

[52] Raja R. Sambasivan, Alice X. Zheng, Michael De Rosa, Elie
Krevat, Spencer Whitman, Michael Stroucken, William Wang,
Lianghong Xu, and Gregory R. Ganger. Diagnosing Perfor-
mance Changes by Comparing Request Fows. In Networked
Systems Design and Implementation (NSDI), Boston, MA,
USA, 2011.

[53] Jaspal Subhlok and Qiang Xu. Automatic Construction of Co-
ordinated Performance Skeletons. In the International Parallel
& Distributed Processing Symposium (IPDPS), Miami, FL,
USA, 2008.

[54] Andrew S. Tanenbaum and David J. Wetherall. Computer Net-
works. Prentice Hall, 5th edition, 2010.

[55] Hasan Ural and Hüsnü Yenigün. Towards Design Recovery
from Observations, volume 3235, chapter 9, pages 133–149.
Springer Berlin Heidelberg, 2004.

[56] Voldemort. http://project-voldemort.com, 2013.
[57] Wei Xu, Ling Huang, Armando Fox, David Patterson, and

Michael I. Jordan. Detecting Large-Scale System Problems by
Mining Console Logs. In the Symposium on Operating Systems
Principles (SOSP), Big Sky, MT, USA, 2009.

[58] Maysam Yabandeh, Nikola Knezevic, Dejan Kostic, and Viktor
Kuncak. CrystalBall: predicting and preventing inconsistencies
in deployed distributed systems. In Networked Systems Design
and Implementation (NSDI), Boston, MA, USA, 2009.

[59] Jinlin Yang, David Evans, Deepali Bhardwaj, Thirumalesh
Bhat, and Manuvir Das. Perracotta: Mining Temporal API
Rules from Imperfect Traces. In the International Conference
on Software Engineering (ICSE), Shanghai, China, 2006.

http://project-voldemort.com

	1 Introduction
	2 CSight overview
	3 Formal description of CSight
	3.1 Expected Log Input
	3.2 Invariant Mining
	3.3 Deriving a Concrete FSM
	3.3.1 Concrete State
	3.3.2 Transitions
	3.3.3 The Concrete FSM
	3.3.4 Validating the Mined Invariants

	3.4 Abstracting a Concrete FSM
	3.5 Model-Checking and Refining an AFSM
	3.5.1 Refining an AFSM to Satisfy Invariants

	4 Formal analysis
	5 Logging Vector Timestamps
	6 Experimental evaluation
	6.1 Stop-and-Wait Protocol
	6.2 TCP
	6.3 Voldemort Distributed Hash Table
	6.4 User Study
	6.4.1 Results

	7 Related work
	8 Discussion
	9 Conclusion
	10 ACKNOWLEDGMENTS
	11 REFERENCES

