Inferring data invariants in distributed systems

https://bitbucket.org/bestchai/dinv

Debugging distributed systems is difficult and error-prone:

dst

dst

Requires knowing the distributed state and its properties across nodes:

- What variables at program point X are influenced by node B?
- How does the distributed state at Y change?
- Which node's send causes the state at node A to change?
- Do values at program points X and Z ever differ?

DInv: tool to infer Distributed system Invariants

- Works on systems written in Go
- Requires annotations to know when to log state
- Determines distributed state with slicing analyses
- Instruments code to record partial order and concrete state values during execution
- Infers likely invariants over recorded values at consistent cuts using Daikon

Daikon infers invariants from values at matching cuts

DInv instrumentation overview

Developer adds dump annotations at key program points

Backward slice: code affecting the sent product variable

Variables appearing in the slice: i, n, product

Injected code to log **product-affecting vars**

Research questions

- What is the annotation effort?
- What is the performance overhead?
- Are Daikon relations sufficient?
- Is grouping program points by consistent cuts too fine-grained?

Applications

- Regression/bug detection
- Characterizing test suite deficiency
- System comprehension

