Inferring data invariants In distributed systems
https://bitbucket.org/bestchai/dinv

Debugging
distributed
systems is
difficult and
error-prone:

V-t N

Dinv: tool to infer Distributed system Invariants

src: 2, dst: 1, timestamp : 17, type : prepare
logl.txt

node

-

src: 2, dst: 1, timestamp : 17, type : prepare
log2.txt

node

o —

src: 2, dst: 0, timestamp : 0, type : prepare src: 2, dst: 0, timestamp : 0, type : prepare
src: 2, dst: 1, timestamp : 1, type : prepare src:2,dst: 1, timestamp : 1, type : prepare
src: 0, dst: 2, timestamp : 2, type : commit src: 0, dst: 2, timestamp : 2, type : commit
src: 1, dst: 2, ti t 3, type : commit src: 1, dst: 2, timestamp : 3, type : commit

 Works on systems written in Go

src: 2, dst: 1, timestamp : 17, type : prepare
log3.txt

Requires knowing the distributed state and its
properties across nodes:

 What variables at program point X are influenced by node B?

 How does the distributed state at Y change?

 Which node’s send causes the state at node A to change?

* Do values at program points X and Z ever differ?

 Requires annotations to know when to log state

 Determines distributed state with slicing analyses

Developer
annotates code

// @dump

=

Dinv add
iInstrumentation

log(var values)

)

=

Developer runs
the system

Node A

DInv instrumentation overview

Node B

A.log B.log C.log

* Instruments code to record partial order and
concrete state values during execution

* Infers likely invariants over recorded values at
consistent cuts using Daikon ‘

N

-

System generates
logs of node states

1 recv(n) @
2 1:=1

3 sum =0

4 product =1

5 fori<=n{

6 sum :=sum + 1

V4 product := product * |
8 =1+ 1

9 }

|

|

1

0 send(sum)

1 // @ dump
2 send (product)

©CoOoO~NOOLPRA~WDN =

K A

—h

product := product * |

recv(n) 1 recv(n)
=1 2 I:=1
3
product := 1 4 product := 1
fori<=n{ 5 fori<=n{
6
product := product * | V4
=1+ 1 8 =14+ 1
Y 9 }
10
1 // @ dump 11 // @ dump
2 send (product) 12 send (product)

©Ooo~NOCOILA~,WN =

Developer adds dump
annotations at key
program points

Backward slice: code
affecting the sent
product variable

Variables appearing in
the slice: I, n, product

recv(n)
=1
sum =0

product =1

fori<=n{

sum = sum + 1
product := product * |

=1+ 1

}

10 send(sum)

11 point = {[i,n,product],vclock}
12 Log(point)
|13 send (product)

@

Stewart Grant, Sam Creed, lvan Beschastnikh
University of British Columbia

Injected code to log
product-affecting vars

node states using

&

DInv associates

©

Daikon infers
invariants from values

consistent cuts at matching cuts

_ﬁ%
L RS

B.leader € {A,C} |

Research questions

-

P =) 4 a9 P

« What is the annotation effort?
 What is the performance overhead?
e Are Daikon relations sufficient?

* |s grouping program points by
consistent cuts too fine-grained?

Applications

 Regression/bug detection
 Characterizing test suite deficiency

 System comprehension




