Inferring likely data invariants of distributed systems

Stewart Grant’, Sam Creed?, lvan Beschastnikh

Department of Computer Science, University of British Columbia

stewbertgrant@ gmail.com, samcreed @cs.ubc.ca, bestchai@cs.ubc.ca

Overview

Distributed systems are difficult to debug and understand. One key
reasons for this is distributed state, which is not easily accessible
and must be pieced together from the state at the individual nodes.
Developers have few tools to help them extract and reason about
distributed state. By contrast, the state of a sequential program
is well defined (e.g., stack and heap), easy to inspect (e.g., with
breakpoints) and can be checked for correctness (e.g., by asserting
invariants).

In this poster and demo! we describe a systems analysis tool
called DInv2. DInv use a combination of static and dynamic analyses
to identify and record at runtime the sets of concrete values for node
variables that make up distributed state in a distributed system.
It then determines consistent snapshots of distributed state in the
system and uses the Daikon tool [2] to infer likely data relations, or
invariants, over the tracked variables.

The inferred data invariants relate variables at different nodes
in the system and can be used in a variety of ways. For example,
they can improve developer understanding of their systems and
can be used by test-case generation techniques to more effectively
drive the system towards invalid states (i.e., states that violate a
mined invariant). They can be also used for debugging: a mined
invariant that violates the system’s specifications can be tracked
back to observed concrete values, which may help in reproducing
an execution that led to an incorrect state of the system.

For example, consider a two phase commit protocol in which the
coordinator first queries other nodes for their vote and if all nodes,
including the coordinator, voted “Commit” then the coordinator
broadcasts a “TX Commit”, otherwise it broadcasts a “TX Abort”.
At the end of this protocol all nodes should either commit or abort.
To check if the algorithm is correct, developers can examine the
DInv-inferred distributed state invariants for a set of executions.
In this case a developer can check whether DInv mines the invari-
ant coordinator.commit = replica;.commit for each replica i in the
system (i.e., commit state at all nodes should be identical).

The DInv tool is implemented in Go® and works on systems writ-
ten in Go. We have applied DInv to a Go implementation of the Raft
consensus algorithm [4] by HashiCorp*. With minimal instrumenta-
tion of the source code we are able to detect basic invariants about
the system regarding whether or not multiple leaders are active at
the same time and the number of active nodes in the system.

OStudent authors. Ivan (faculty) will probably present the poster.
'We will demo a preliminary version of our tool on a laptop.
ZPrototype at https:/bitbucket.org/bestchai/dinv
3http://golang.org

“https://github.com/hashicorp/raft

Related work

Modeling, management, and capture of state in distributed systems
has a long history [1, 6, 3]. However, the concrete state of a system
is only useful to tools that can evaluate it against known properties
of the system. To be more readily useful, distributed state needs a
more usable, and more abstract, representation.

DInv tackles the problem of mining and abstracting distributed
state. Other work in this domain focused on detecting dependencies,
anomalies [7], and performance debugging [5]. However, this prior
work considers events, and not the state of the system. The closest
prior work in the sequential domain is the Daikon tool [2], which
cannot be applied to distributed systems.

Yabandeh et al. [8] infer almost-invariants in distributed systems:
invariants that are true in most cases and assume these invariants
only are violated due to bugs. They require the user to provide a
list of variables and functions for invariant inference. DInv infers
distributed state variables automatically. Moreover, they assume
that an external module generates a trace of globally consistent cuts
with distributed state for their algorithm while our approach actually
generates these consistent cuts.

1. REFERENCES

[1] K. M. Chandy and L. Lamport. Distributed snapshots:
determining global states of distributed systems. ACM Trans.
Comput. Syst., 3(1):63-75, Feb. 1985.

[2] M. D. Ernst, J. Cockrell, W. G. Griswold, and D. Notkin.

Dynamically Discovering Likely Program Invariants to Support

Program Evolution. IEEE Transactions on Software

Engineering, 27(2):99-123, Feb. 2001.

D. Geels, G. Altekar, P. Maniatis, T. Roscoe, and I. Stoica.

Friday: Global Comprehension for Distributed Replay. In

NSDI, 2007.

[4] D. Ongaro and J. Ousterhout. In Search of an Understandable

Consensus Algorithm. In ATC, 2014.

R. R. Sambasivan, A. X. Zheng, M. De Rosa, E. Krevat,

S. Whitman, M. Stroucken, W. Wang, L. Xu, and G. R. Ganger.

Diagnosing Performance Changes by Comparing Request

Flows. In NSDI, 2011.

[6] E. B. Schneider. Implementing fault-tolerant services using the
state machine approach: a tutorial. ACM Comput. Surv.,
22(4):299-319, Dec. 1990.

[7] W. Xu, L. Huang, A. Fox, D. Patterson, and M. I. Jordan.
Detecting Large-Scale System Problems by Mining Console
Logs. In SOSP, 2009.

[8] M. Yabandeh, A. Anand, M. Canini, and D. Kostic. Finding
Almost-Invariants in Distributed Systems. In SRDS, 2011.

3

—

[5

—


https://bitbucket.org/bestchai/dinv
http://golang.org
https://github.com/hashicorp/raft

	1 References

