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ABSTRACT
Bitcoin is a top-ranked cryptocurrency that has experienced huge
growth and survived numerous attacks. The protocols making up
Bitcoin must therefore accommodate the growth of the network
and ensure security.

Security of the Bitcoin network depends on connectivity be-
tween the nodes. Higher connectivity yields better security. In this
paper we make two observations: (1) current connectivity in the
Bitcoin network is too low for optimal security; (2) at the same
time, increasing connectivity will substantially increase the band-
width used by the transaction dissemination protocol, making it
prohibitively expensive to operate a Bitcoin node. Half of the total
bandwidth needed to operate a Bitcoin node is currently used to
just announce transactions. Unlike block relay, transaction dissemi-
nation has received little attention in prior work.

We propose a new transaction dissemination protocol, Erlay,
that not only reduces the bandwidth consumption by 40% assum-
ing current connectivity, but also keeps the bandwidth use almost
constant as the connectivity increases. In contrast, the existing
protocol increases the bandwidth consumption linearly with the
number of connections. By allowing more connections at a small
cost, Erlay improves the security of the Bitcoin network. And, as we
demonstrate, Erlay also hardens the network against attacks that
attempt to learn the origin node of a transaction. Erlay is currently
being investigated by the Bitcoin community for future use with
the Bitcoin protocol.

CCS CONCEPTS
• Networks → Peer-to-peer protocols; Network simulations; •
Security andprivacy→Distributed systems security; Pseudonymity,
anonymity and untraceability; Privacy-preserving protocols; Denial-
of-service attacks.
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1 INTRODUCTION
Bitcoin is a peer-to-peer (P2P) electronic cash system [52]. Recent
estimates indicate that there are over 60,000 nodes in the Bitcoin
network 1(as of March 2019). To keep up with the growth in the
number of nodes and usage of the network, the system must be
continually optimized while retaining the security guarantees that
its users have come to expect.

Security of the Bitcoin network depends on adequate network
connectivity. Bitcoin literature has repeatedly recommended in-
creasing the number of connections between nodes to make the
network more robust [11, 20]. As we explain in Section 3, certain
attacks become less successful if the network is highly connected.

Unfortunately, increasing the connectivity of the Bitcoin network
linearly increases the bandwidth consumption of transaction relay—
the protocol that currently takes up half of the total bandwidth
required to operate a Bitcoin node. Today, transaction relay alone
consumes as much as 18GB per node per month. If the connectivity
were increased from the currently used eight outbound connections
to 24, the per-node bandwidth used to relay transactions would
exceed 50GB/month. This would make it prohibitively expensive
for some users to operate a Bitcoin node.

Whilemany Internet providers in North America offer practically
unlimited bandwidth, some do impose caps. For example, at the time
of this writing, Suddenlink andMediacom in the US offer plans with
200-350GB data usage caps [60]. In Western Canada, Shaw Cable
and Telus, the only home Internet providers available, cap data
usage at 150GB and 300GB respectively for their CAD$80/month
plans [4, 5]. With these caps, operating a private Bitcoin node
may require upgrading to a more expensive plan. The situation is
worse in places like South Africa [37] and Asia, where Bitcoin is
gaining popularity. In these regions Internet access is capped at 5-30
GB/month (except at night) [3, 6]. While operating a private node
is expensive for these users, the cost of operating a public node, at
350GB/month, is prohibitive. If the number of private nodes in the
network doubles, the cost for a public node jumps to 700GB/month
only for relaying transactions.

Despite this inefficiency, transaction relay has not received much
attention in the literature, in contrast to block relay [2, 17, 56].
1https://luke.dashjr.org/programs/bitcoin/files/charts/software.html
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Figure 1: Lifecycle of a Bitcoin transaction. In this paper
we optimize the protocols for relaying transactions between
nodes in the Bitcoin network (grey box).

The overarching reason why the Bitcoin transaction relay proto-
col is inefficient is that it relies on flooding. A Bitcoin transaction
corresponds to a transfer of funds between several accounts. Fig. 1
overviews the lifecycle of a transaction in the Bitcoin network. To
be accepted by the network of nodes, a transaction must be first
disseminated, or relayed, throughout the network. Then it must
be validated and included in a block with other valid transactions.
Finally, the block containing the transaction must be relayed to all
the nodes. Every Bitcoin transaction must reach almost all nodes in
the network, and prior work has demonstrated that full coverage
of the network is important for security [63].

Today, Bitcoin disseminates transactions by ensuring that every
message received by a node is transmitted to all of its neighbors.
This flooding has high fault-tolerance since no single point of fail-
ure will halt relay, and it has low latency since nodes learn about
transactions as fast as possible [43].

However, flooding has poor bandwidth efficiency: every node in
the network learns about the transaction multiple times. Our empir-
ical measurements demonstrate that transaction announcements
account for 30–50% of the overall Bitcoin traffic. This inefficiency is
an important scalability limitation: the inefficiency increases as the
network becomes more connected, while the connectivity of the
network is desirable to the growth and the security of the network.

Prior work has explored two principal approaches to address
this inefficient use of bandwidth. The first is the use of short trans-
action identifiers (to decrease message size) [39]. The second is
to exclusively use blocks and never transmit individual transac-
tions [45]. Both approaches are inadequate: short identifiers only
reduce the constant factor and do not scale with the connectivity of
the network, while using only blocks creates spikes in block relay
and transaction validation. We discuss these approaches further in
Section 13.

The contribution of this paper is Erlay, a new protocol that we
designed to optimize Bitcoin’s transaction relay while maintaining
the existing security guarantees. The main idea behind Erlay is to
reduce the amount of information propagated via flooding and
instead use an efficient set reconciliation method [50] for most of
the transaction dissemination. In addition, we designed the Erlay
protocol to withstand DoS, timing, and other attacks.

We implemented Erlay in a simulator and as part of the mainline
Bitcoin node software, and evaluated Erlay at scale. Our results
show that Erlay makes announcement-related bandwidth negligible
while keeping latency to a small fraction of the inter-block interval.

In summary, this paper makes the following contributions:

…
Private nodes [Max inbound: 0, Max outbound: 8]

…

Public nodes [Max inbound: 125, Max outbound: 8]

Figure 2: Private and public nodes in the Bitcoin network.

• We analyze bandwidth inefficiency of Bitcoin’s transaction
relay protocol. We do this by running a node connected to
the Bitcoin network as well as by simulating the Bitcoin
network. Our results demonstrate that 88% of the bandwidth
used to announce transactions (and around 44% of the overall
bandwidth) is redundant.
• We propose a bandwidth-efficient transaction relay protocol
for Bitcoin called Erlay, which is a combination of fast low-
fanout flooding and efficient set reconciliation, designed to
work under the assumptions of the Bitcoin network.
• We demonstrate that Erlay achieves a close to optimal com-
bination of resource consumption and propagation delay,
and is robust to attacks. Erlay reduces the bandwidth used
to announce transactions by 84% immediately and allows
the Bitcoin network to achieve higher connectivity in the
future for better security.

We also discuss how Erlay may be applied to cryptocurrencies
with higher transaction rate in Appendix A.

Next, we review the background for our work.

2 BITCOIN BACKGROUND
For the purpose of connectivity graph and propagation analysis,
there are 2 types of nodes in the Bitcoin network: private nodes
that do not accept inbound connections and public nodes that
do accept inbound connections (see Fig. 2). Public nodes act as a
backbone of the network: they help new nodes bootstrap onto the
network. Once they have joined the network, public and private
nodes are indistinguishable in their operation: both node types per-
form transaction and block validation, and relay valid transactions
and blocks to their peers.

The current version of the Bitcoin transaction relay protocol
propagates messages among nodes using diffusion [1], which is a
variation on random flooding. Flooding is a protocol where each
node announces every transaction it receives to each of its peers.
Announcements can be sent on either inbound and outbound links.
With diffusion, a peer injects a random delay before announcing a
received transaction to its peers. This mitigates timing attacks [54]
and significantly reduces the probability of in-flight collisions (when
two nodes simultaneously announce the same transaction over the
link between them).
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Figure 3: Transaction exchange between two peers.

The protocol by which a transaction propagates between two
peers is illustrated in Fig. 3. When a Bitcoin node receives a trans-
action (peer 1 in Fig. 3), it advertises the transaction to all of its
peers except for the node that sent the transaction in the first place
and other nodes from which it already received an advertisement.
To advertise a transaction, a node sends a hash of the transaction
within an inventory, or INV message. If a node (peer 2 in Fig. 3)
hears about a transaction for the first time, it will request the full
transaction by sending a GETDATA message to the node that sent
it the INV message.

We refer to the transaction-advertising portion of the protocol
(all the INV messages) as BTCFlood. Since it relies on flooding, most
transactions are advertised through each link in the network in one
direction (except those that are advertised during the block relay
phase). As a result, a node with n connections will send and receive
between n and 2n INV messages for a single transaction (two nodes
may announce the same transaction simultaneously to each other).

Both public and private nodes limit the number of inbound and
outbound connections (Fig. 2). By default a private node has no
inbound connections and up to 8 outbound connections, while a
public node can have 8 outbound connections as well as up to
125 inbound connections (but the inbound connection limit can be
configured up to around 1,000). Thus, as the number of private nodes
in the Bitcoin network grows, the bandwidth and computational
requirements to run a public node quickly increase. This is because
private nodes connect to multiple public nodes to ensure that they
are connected to the network through more than a single peer.

As a result, Bitcoin designers have focused on (1) making the
running of a public node more accessible, in terms of required
bandwidth, computational power, and hardware resources, and (2)
making public nodes more efficient so that they can accept more
connections from private nodes. Our work targets both objectives.

3 THE PROBLEMWITH FLOODING
TRANSACTIONS

Flooding is inefficient. BTCFlood sends many redundant trans-
action announcements. To see why let us first consider how many
announcements would be sent if the protocol were efficient. Since,
optimally, each node would receive each announcement exactly
once, the number of times each announcement is sent should be equal
to the number of nodes.

Next, let us consider how many times an announcement is sent
with BTCFlood. By definition, each node relays an announcement
on each of the links except the one where that announcement orig-
inally arrived. In other words, each link sees each announcement
once, if no two nodes ever send the same announcement to each
other simultaneously, and more than once if they do. Therefore, in
BTCFlood each announcement is sent at least as many times as the
number of links.

If N is the number of nodes in the Bitcoin network, the num-
ber of links is 8N , because each node must make eight outbound
connections. Therefore, the number of redundant announcements
is at least 8N − N = 7N . Each announcement takes 32 bytes out
of 300 total bytes needed to relay a single transaction to one node.
(These 300 bytes include the announcement, the response, and the
full transaction body). Therefore, if at least seven out of eight an-
nouncements are redundant (corresponding to 224 bytes), at least
43% of all announcement traffic is wasteful.

We validated this analysis experimentally. We configured a pub-
lic Bitcoin node with eight outbound connections and ran it for
one week. During this time, our node also received four inbound
connections. We measured the bandwidth dedicated to transac-
tion announcements and other transaction dissemination traffic.
A received announcement was considered redundant if it corre-
sponded to an already known transaction. A sent announcement
was considered redundant if it was not followed by a transaction
request. According to our measurements (taken at multiple nodes
at different locations) 10% of the traffic corresponding to received
announcements and 95% of the traffic corresponding to the sent
announcements were redundant. Overall, 55% of all traffic used by
our node was redundant.
Higher connectivity requires more bandwidth. Given that the
amount of redundant traffic is proportional to the number of links,
increasing the connectivity of the network (the number of out-
bound links per node) linearly increases bandwidth consumption
in BTCFlood.

We modeled how the bandwidth consumption of disseminating
one transaction across the network of 60K nodes increases with
connectivity. Fig. 4 (whose results we confirmed via simulation)
shows that announcement traffic turns dominant as the network be-
comes more connected. With eight connections per node, a private
node may consume 9GB of bandwidth per month just for announc-
ing transactions. Setting connectivity to 24 in Bitcoin today would
cause transaction relay to consume over 15GB/month.
Higher connectivity offers more security. In P2P networks,
higher connectivity improves network security. This was demon-
strated by both traditional P2P research [8, 9] and Bitcoin-specific
prior work [11, 20, 36, 44, 55].

Certain attacks become less successful if the network is highly
connected [35, 44, 54]. The eclipse attack paper [36] has shown that
fewer than 13 connections would be detrimental to the security
of the network. A recently discovered vulnerability [22] relies on
InvBlock [49]. InvBlock is a technique that prevents a transaction
from being propagated by first announcing it to a node, but then
withholding the transaction contents for two minutes. With higher
connectivity, this attack is easier to mitigate.
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Figure 4: Analytical cost of relaying transactions via flood-
ing for one Bitcoin node during one month.

4 PROTOCOL REQUIREMENTS
While there exists prior work on selective flooding in peer-to-peer
networks, the key challenge addressed in this work is how to apply
low-fanout flooding without compromising the security of the Bitcoin
system. Erlay’s design is shaped by four requirements.
R1: Scale with the number of connections. Our main goal is to
design a transaction dissemination protocol that has good scalability
as a function of the number of connections. This way, we can make
the network more secure without sacrificing performance.
R2: Maintain a network topology suited for a decentralized
environment. Bitcoin’s premise of a decentralized environment
puts constraints on the design of its network. Although imposing
a structure onto a network, e.g., by organizing it into a tree or
star topology, or by using DHT-style routing, enables bandwidth-
efficient implementation of flooding, this also introduces the risks
of censorship or partitioning [44]. The topology of the network
must, therefore, remain unstructured, and routing decisions must
be made independently by every node based on local state.
R3: Maintain a reasonable latency. Transaction propagation de-
lay should remain similar to what the existing protocol provides.
Low latency is essential to user experience and enables better effi-
ciency in block relay [17].
R4: Be robust to attacks under the existing threatmodel.Our
protocol must remain robust under the same threat model as that
assumed by the existing protocol. Similarly to Bitcoin, we assume
that an attacker has control over a limited, non-majority, number
of nodes in the network, has a limited ability to make other nodes
connect to it, and is otherwise unrestricted in intercepting and
generating traffic for peers that it is connected to.

The transaction relay protocol must not be any more susceptible
to DoS attacks and client deanonymization, and must not leak any
more information about the network topology [54] than the existing
protocol.

5 ERLAY DESIGN
Traditionally, P2P networks addressed the inefficiency of flooding
by imposing a structured overlay onto an ad-hoc topology. We re-
frained from structured network organizations for security reasons
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Figure 5: Erlay disseminates transactions using low-fanout
flooding as the first step, and then several rounds of recon-
ciliation to reach all nodes in the network.
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Figure 6: Comparison of reconciliation, flooding, and Erlay
in their bandwidth usage and latency to reach all nodes.

discussed in Section 4. Instead, our design relies on two common
system-building techniques: delay and batching.

Instead of announcing every transaction on each link, a node
using our protocol advertises it to a subset of peers—this is called
low-fanout flooding. To make sure that all transactions reach the
entire network, nodes periodically engage in an interactive protocol
to discover announcements that were missed, and request missing
transactions. This is called set reconciliation. Our protocol, Erlay, is
comprised of low-fanout flooding and set reconciliation (Fig. 5).

Low-fanout flooding. The rationale behind low-fanout flood-
ing is to expediently relay a transaction to be within a small number
of hops of every node in the network. If each transaction ends up
close to every node, then reconciliation can finish dissemination
using a small number of rounds. Therefore, a key decision in low-
fanout flooding is to which peers to relay.

Set reconciliation. Set reconciliation was proposed as an alter-
native to synchronization in distributed systems [50]. Using set
reconciliation a node in a P2P network periodically compares its
local state to the state of its peers, and sends/requests only the
necessary information (the state difference). Set reconciliation may
be viewed as an efficient version of batching (accumulating multi-
ple state updates and sending them as a single message). The key



challenge in practical reconciliation is for the peers to efficiently
compute their missing transaction state, and to limit the exchanged
transactions to just those that the other peer is missing.

Fig. 6 shows how Erlay attempts to find a sweet spot in terms of
bandwidth and latency by combining flooding, which wastes band-
width but disseminates transactions quickly, and reconciliation,
which takes longer, but does not waste bandwidth. In Appendix A
we discuss how this design allows Erlay to be used in other cryp-
tocurrencies with higher transaction rate than currently provided
by Bitcoin.

Next, we discuss two fundamental aspects of Erlay in detail.

5.1 Low-fanout flooding
Flooding is expensive, so we want to use it sparingly and in strategic
locations. For that reason, only well-connected public nodes flood
transactions to other public nodes via outbound connections. Since
every private node is directly connected to several public nodes,
this policy ensures that a transaction is quickly propagated to be
within one hop from the majority of the nodes in the network. As
a result, only one or two reconciliation rounds are needed for full
reachability (R3). According to this, the protocol we propose may
be viewed as two-tier optimistic replication [59].

To meet our scalability goal (R1), we limit the flooding done by
public nodes to eight outbound connections even if the total number
of these connections is higher. This way, increasing connectivity
does not increase transaction dissemination cost proportionally.

The decision to relay through outbound connections, but not the
inbound ones, was made to defend against timing attacks [22, 54].
In a timing attack, an attacker connects to a victim and listens to
all transactions that a victim might send on that link (the inbound
connection for the victim). If an attacker learns about a transaction
frommultiple nodes (including the victim), the timing of transaction
arrival can be used to guess whether a transaction originated at the
victim: if it did then it will most likely arrive from the victim earlier
than from other nodes. BTCFlood introduces a diffusion delay to
prevent timing attacks. In Erlay, since we do not forward individual
transactions to inbound links, this delay is not necessary. So this
decision favors both R3 and R4.

Transactions in the Bitcoin network may originate at both public
and private nodes. In the protocol we propose, nodes do not relay
their transactions via flooding, so the network learns about the
transactions they have originated via reconciliation: private nodes
add their own transactions to the batch of other transactions that
they forward to their peers during reconciliation. This is used to
hide when transactions are originated at private nodes. If transac-
tions were instead flooded from private nodes, it would be obvious
to public nodes that those transactions must have been created at
those nodes, because according to the chosen flooding policy, this
is the only case where a private node floods a transaction, as they
have no inbound links. Since a private node forwards its own trans-
actions as part of a batch, as opposed to individually, a malicious
public node is unlikely to discover the origin of a transaction (R4).

5.2 Set reconciliation
In Erlay peers perform set reconciliation by computing a local set
sketch, as defined by the PinSketch algorithm [23]. A set sketch is a
type of set checksum with two important properties:

• Sketches have a predetermined capacity, and when the num-
ber of elements in the set does not exceed the capacity, it is
always possible to recover the entire set from the sketch by
decoding the sketch. A sketch of b-bit elements with capacity
c can be stored in bc bits.
• A sketch of the symmetric difference between the two sets
(i.e., all elements that occur in one but not both input sets),
can be obtained by XORing the bit representation of sketches
of those sets.

These properties make sketches appropriate for a bandwidth-
efficient set reconciliation protocol. More specifically, if two parties,
Alice and Bob, each have a set of elements, and they suspect that
these sets largely but not entirely overlap, they can use the following
protocol to have both parties learn all the elements of the two sets:

• Alice and Bob both locally compute sketches of their sets.
• Alice sends her sketch to Bob.
• Bob combines the two sketches, and obtains a sketch of the
symmetric difference.
• Bob tries to recover the elements from the symmetric differ-
ence sketch.
• Bob sends to Alice the elements that she is missing.

This procedure will always succeed when the size of the differ-
ence (elements that Alice has but Bob does not have plus elements
that Bob has but Alice does not have) does not exceed the capacity
of the sketch that Alice sent. Otherwise, the procedure is very likely
to fail.

A key property of this process is that it works regardless of the
actual set sizes: only the size of the set differences matters.

Decoding the sketch is computationally expensive and is qua-
dratic in the size of the difference. Because of this, accurately es-
timating the size of the difference (Section 5.2.1) and reconciling
before the set difference becomes too large (Section 5.2.2) are im-
portant goals for the protocol.

5.2.1 Reconciliation round. Fig. 7 summarizes the reconciliation
protocol. To execute a round of reconciliation, every nodemaintains
a reconciliation set for each one of its peers. A reconciliation set
consists of short IDs of transactions that a node would have sent
to a corresponding peer in regular BTCFlood, but has not because
Erlay limits flooding. We will refer to Alice’s reconciliation set for
Bob asA and Bob’s set for Alice as B. Alice and Bob will compute the
sketches for these reconciliation sets as described in the previous
section.

Important parameters of the protocol are: D – the true size of
the set difference, d – an estimate of D, and q – a parameter used to
compute d . We provide the derivation of these values below. First,
we describe a reconciliation round:

(1) According to a chosen reconciliation schedule (Section 5.2.2),
Alice sends to Bob the size of A and q.

(2) Bob computes d , an estimate of D, between his B and Alice’s
A (see below).
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(3) Bob computes a sketch of B with capacity for d transactions
and sends it to Alice, along with the size of B.

(4) Alice receives Bob’s sketch of B, computes a sketch of A,
and XORs the two sketches. Now Alice has a sketch of the
difference between A and B.

(5) If the difference size was estimated correctly, Alice is able to
decode the sketch computed in the previous step, request the
transactions that she is missing from Bob, and then advertise
to Bob the transactions that he is missing. If the estimation
was incorrect (sketch decoding failed), Alice will resort to
bisection (Section 5.2.3).

(6) After this process, Alice updates q (see below) and clears A.
Bob clears B.

Accurate estimation of D is crucial for a successful reconcilia-
tion, because sketches are computed in order to decode d or fewer
differences: under-estimation results in a protocol failure and over-
estimation introduces bandwidth overhead. Prior work estimated
D using techniques like min-wise hashing [14] or random projec-
tions [30]. These techniques are complex, and we were concerned
that they would use more bandwidth than they would save. There-
fore, Erlay uses a minimalistic approach: it estimates the size of
the set difference based on just the current sizes of the sets and the
difference observed in the previous reconciliation round:

d = abs ( |A| − |B |) + q ·min( |A|, |B |) + c,

where q is a floating point coefficient (derived below) that charac-
terizes previous reconciliation, and c is a parameter for handling
special cases.

Indeed, the difference between two sets cannot be smaller than
the difference in their sizes. To avoid costly underestimations, we
add the size of the smaller set normalized by q, and a constant
c = 1, which prevents estimating d = 0 when |A| = |B | and q ·
min( |A|, |B |) = 0.

The coefficient q characterizes earlier reconciliation, so before
the very first reconciliation round it is set to zero. At the end of
a reconciliation round, we simply update q based on the true D
that we discovered during the round, by substituting D for d in the
above equation, dropping c , and then solving for q:

q =
D − abs ( |A| − |B |)

min( |A|, |B |)

This updated q will be used in the next reconciliation round. We
compute q in this way because we assume that every node in the
network will have a consistent optimal q.

Reconciliation is a fertile ground for DoS attacks, because decod-
ing a sketch is computationally expensive. To prevent these attacks,
in our protocol the node that is interested in reconciliation (and the
one that has to decode the sketch) initiates reconciliation (Alice, in
our example). Bob cannot coerce Alice to perform excessive sketch
decoding.

5.2.2 Reconciliation schedule. Every node initiates reconciliation
with one outbound peer every T seconds. Choosing the right value
for T is important for performance and bandwidth consumption.
If T is too low, reconciliation will run too often and will use more
bandwidth than it saves. If T is too high, reconciliation sets will
be large and decoding set differences will be expensive (the com-
putation is quadratic in the number of differences). A large T also
increases the latency of transaction propagation.

A node reconciles with one peer every T seconds. Since every
node has c outbound connections, every link in the network would,
on average, run reconciliation every T · c seconds. This means
that the average reconciliation set prior to reconciliation would
contain T · c · TX rate transactions, where TX rate is the global
transaction rate. This also means that during the interval between
reconciliations every node would receive T ·TX rate transactions.

We use a value of 1 second for T in Erlay. With this setting,
and the current ratio of private to public nodes, every public node
will perform about eight reconciliations per second. Given the
current maximum Bitcoin network transaction rate TX rate of 7
transactions/s, the average difference set size for this protocol is 7
elements. We evaluate our choice of parameters in Sections ??.

5.2.3 Bisection for set difference estimation failure. Our set recon-
ciliation approach relies on the assumption that an upper bound for
the set difference between two peers is predictable. That is, if the
actual difference is higher than estimated, then reconciliation will
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fail. This failure is detectable by a client computing the difference.
An obvious solution to this failure is to recompute and retransmit
the sketch assuming a larger difference in the sets. However, this
would make prior reconciliation transmissions useless, which is
inefficient.

Instead, Erlay uses reconciliation bisection, which reuses previ-
ously transmitted information. Bisection is based on the assumption
that elements are uniformly distributed in reconciliation sets (this
may be achieved by hashing). If a node is unable to reconstruct the
set difference from a product of two sketches, the node then makes
an additional reconciliation request, similar to the initial one, but
this request is applied to only a fraction of possible messages (e.g.,
to transactions in the range 0x0–0x8). Because of the linearity of
sketches, a sketch of a subset of transactions would allow the node
to compute a sketch for the remainder, which saves bandwidth.

However, this approach would allow recovery of at most 2d
differences, where d is the estimated set difference in the initial step.
Even though bisections are not limited to one and may be applied
consequentially without losing efficiency, in our implementation
after a reconciliation step failure we allow only one bisection with
a new overall estimate 2d (see Fig. 8). The bisection process is
illustrated in protocol Reconcile-Bisec in Figure 7.

If bisection fails, then Erlay falls back to the original INV-GETDATA
protocol (Fig. 3) and applies it to all of the transactions in the two
sets being reconciled.

6 IMPLEMENTATION DETAILS
In this section we describe low-level design decisions required to
implement Erlay and increase its bandwidth efficiency (R2) and
make it robust to collision-based DoS attacks (R4).

Library implementation.We created Minisketch2, a C++ library
with 3305 LOC, which is an optimized implementation of the PinS-
ketch [23] algorithm. We benchmarked the library to verify that
set reconciliation would not create high computational workload
on Bitcoin nodes. Fig. 9 shows the decoding performance on an
Intel Core i7-7820HQ CPU of our library (Minisketch) as compared
to CPISync [64]3 for varying difference sizes. Our library has sub-
millisecond performance for difference sizes of 100 elements or
fewer. As we will show later (Fig. 13) this performance is suffi-
ciently fast for the differences we observe in practice (in simulation
and in deployment). The worst-case can occur when the links have
different speeds and the reconciliations are unbalanced. Even in
this case, since the interval between reconciliations over the same
link is 8s and the transaction rate is around 7 tx/s, the set difference
would not exceed 100 elements and set reconciliation would not be
prohibitively slow.

We used this library to build a reference implementation of
Erlay as a part of the Bitcoin Core software, which we evaluate in
Section 11.
Short identifiers and salting. The size of a transaction ID in the
Bitcoin protocol is 32 bytes. To use PinSketch [23], we have to use
shorter, 64 bit, identifiers. Using fewer bits reduces the bandwidth
usage by 75% (R2), but it also creates a probability of collisions.
Collisions in transaction relay are an attack surface, because a
malicious actor may flood a network with colluding transactions
and fill memory pools of the nodes with transactions, which would
then be propagated and confirmed in a very slow manner. Thus we
want to secure the protocol against such attacks (R4).

While collisions on one side of a communication are easy to
detect and handle, collisions involving transactions on both sides
may cause a significant slowdown. To mitigate this, every pair of
nodes uses different salt (random data added to an input of a hash-
function) while hashing transaction IDs into short identifiers.

The salt value is enforced by the peer that initiates the con-
nection, and per Erlay’s design, requests reconciliation. Since the
peer requesting reconciliation also computes the reconciliation dif-
ference, the requestor peer would have to deal with short IDs of
unknown transactions. Since salt is chosen by the requestor, re-
using the same salt for different reconciliations would allow him
to compare salted short IDs of unknown transactions to the IDs
received during flooding from other peers at the same time.
Low-fanout diffusion delay. Bitcoin flooding mitigates timing
attacks [54] and in-flight collisions by introducing a random de-
lay into transaction announcements. For timing attacks Bitcoin
assumes that an attacker connects (possibly, multiple times) to
the node (or takes over a fraction of outbound connections of the
node). In a low-fanout model, this attack is not feasible, because
transactions are flooded through outbound connections only.

In-flight collisions are also not possible in the case of low-fanout
relay through only outbound links, because transactions are always
announced in the same direction of a link.

In consideration of these arguments as well as to reduce latency,
Erlay has a lower random diffusion interval. Instead of usingToi = 2

2https://github.com/sipa/minisketch
3https://github.com/trachten/cpisync

https://github.com/trachten/cpisync


seconds for outbound connections andTii = 5 seconds for inbound,
Erlay uses Toi = 1 seconds for outbound.
Reconciliation diffusion delay. Even though in Erlay timing at-
tacks by observing low-fanout flooding are not feasible, an attacker
would be able to perform them through reconciliations. To make
timing attacks through reconciliations more expensive to perform,
we enforce every peer to respond to reconciliation requests after a
small random delay (in our implementation, a Poisson-distributed
random variable which is on average Tr i = 1 seconds), which is
shared across reconciliation requests from all peers, and we rate-
limit reconciliations per peer. This measure wouldmake Erlay better
than BTCFlood at withstanding timing attacks.

Our measure in Erlay has the same idea as in flooding/low-fanout
diffusion; however, having the ratio Tii/Toi higher makes timing
attacks less accurate, because duringTii (the average time before an
attacker receives a transaction) a transaction would be propagated
to more nodes in the network.

We chose the interval of 1 second because a lower interval would
make Erlay more susceptible to timing attacks than Bitcoin, and a
higher interval results in high latency.

7 EVALUATION METHODOLOGY
In evaluating Erlay we focus on answering four questions:

(1) How does Erlay compare to BTCFlood in latency (the time
that it takes for the transaction to reach all of the nodes)
and bandwidth (the number of bits used to disseminate a
transaction)?

(2) How do the two parts of Erlay (low-fanout flooding and rec-
onciliation) perform at scale and with varying connectivity,
varying number of nodes, and varying transaction rates?

(3) How do malicious nodes impact Erlay’s performance?
(4) How does Erlay affect the stale block rate (and security of

the network)?

We use two types of measurement results to answer the questions
above. First, we used a simulator to simulate Erlay on a single
machine (Sections 8, 10). Second, we implemented Erlay in the
mainline Bitcoin client and deployed a network of Erlay clients on
the Azure cloud across several data centers (Section 11).

Simulator design. Our simulation was done with ns3. We mod-
ified an open-source Bitcoin Simulator [33] to support transaction
relay. The original simulator had 9663 LOC; the version wemodified
has 9948 LOC.

Our simulator is based on the INV-GETDATA transaction relay
protocol (see Section 2). It is parameterized by the current ratio of
public nodes to private nodes in the Bitcoin network and the trans-
action rate based on the historical data from the Bitcoin network
(7 transactions per second on average). We simulate the different
ratios of faults in the network by introducing Black Hole nodes,
which receive transactions but do not relay them.

Our simulator does not account for heterogeneous node re-
sources, the block relay phase, the joining and leaving of nodes
during the transaction relay phase (churn), and does not consider
sophisticated malicious nodes.

The propagation latency measured for BTCFlood by our sim-
ulator matches the value suggested for the validation of Bitcoin
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Figure 10: Average bandwidth one Bitcoin node spends per
month to announce transactions.

simulators [27], and our measured bandwidth matches our analyti-
cal estimates.

Topology of the simulated network.We emulated a network
similar to the current Bitcoin network, since inferring the Bitcoin
network topology is non-trivial [54]. In our simulation we boot-
strapped the network in two phases: (1) public nodes connected to
each other using a limit of eight outbound connections, then (2)
private nodes connected to eight random public nodes. In some
experiments we increased connectivity, as indicated in the experi-
ment’s description.

Unless stated otherwise, our simulation results are for a network
of 6,000 public nodes and 54,000 private nodes (this is the scale of
today’s network4). In each experiment we first used the above two
steps to create the topology, then we relayed transactions for 600
seconds (on average, we generated 4,200 transactions from random
private nodes).

8 PERFORMANCE EVALUATION
In this section we use simulation to evaluate latency and bandwidth
consumption in Erlay, and to compare these to BTCFlood.

8.1 Relay bandwidth usage
To verify that Erlay scales better than BTCFlood as the connectivity
increases, we varied the number of outbound connections per node
and measured the bandwidth used for announcing transactions.
Figure 10 shows the results.

With BTCFlood, relay bandwidth increases linearly with the
connectivity because BTCFlood announces transactions on every
link in the network. With Erlay, however, bandwidth consump-
tion grows significantly slower. Erlay seamlessly embraces higher
connectivity, which allows for better security.

Transaction announcements in overall bandwidth.To demon-
strate that Erlay’s announcement optimization impacts overall band-
width, we measure the bandwidth consumed by a simulated net-
work to relay transactions with BTCFlood and with Erlay. Fig. 11
plots the results for simulations in which every node establishes 8
4https://bitnodes.earn.com/
https://luke.dashjr.org/programs/bitcoin/files/charts/software.html

https://bitnodes.earn.com/
https://luke.dashjr.org/programs/bitcoin/files/charts/software.html
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Figure 11: Average bandwidth cost of fully relaying trans-
actions during 1 month for a Bitcoin node with outbound
connectivity of 8.

Table 1: Breakdown of bandwidth usage in Erlay.

Erlay component Bandwidth %
Low-fanout flooding 54%

Reconciliation 32%
Bisection 0.7%
Fallback 4.3%

Post-reconcile. INVs 9%
Total 100%

connections. Erlay’s announcement bandwidth is just 12.8% of the
relay bandwidth, while for BTCFlood the announcement bandwidth
is 47.6%.

Breaking down Erlay’s bandwidth usage. To further under-
stand Erlay’s bandwidth usage, we broke it down by the different
parts of the protocol: low-fanout flooding, reconciliation, and post-
reconciliation announcements.

Table 1 lists the results. The table shows that about a third of
the bandwidth is used by reconciliation, while low-fanout flooding
accounts for a majority of the bandwidth. The post-reconciliation
INVs account for a small fraction of Erlay’s bandwidth.

The number of small messages. We also evaluated whether
Erlay increases the number of small messages as compared to
BTCFlood. Our results indicate that Erlay does not increase small
message traffic due to the delay in reconciling over every link and
the low-fanout nature of flooding in Erlay.

Set reconciliation effectiveness. To understand the effective-
ness of Erlay’s set reconciliation, we measured how often reconcil-
iation or the following bisection protocol fail. Fig. 12 reports the
results aggregated from one of our simulation runs with 60,000
nodes. The end-to-end probability of reaching fallback is below 1%.
Since bisection does not introduce additional bandwidth overhead
(while fallback does), the overall reconciliation overhead is low.

Since every reconciliation round requires a set difference esti-
mation, we measured the distribution of the estimated difference
sizes. Fig. 13 demonstrates that set difference depends on the trans-
action rate. This is expected: for the same reconciliation intervals,
a higher transaction rate would result in both reconciling parties

Fallback

Reconcile-Init

DiffExchange

Reconcile-Bisec

96%

4%

7%93%

Figure 12: Finite state machine of the protocol in Fig. 3 an-
notated with transition percentages observed in our experi-
ments.

5 tx/s

6 tx/s
7 tx/s
8 tx/s

Figure 13: Distribution of the set difference estimates during
reconciliation for different transaction rates.

receiving more transactions and would lead to a larger set differ-
ence. This dependency between set difference and transaction rate
allows accurate set difference estimation. Fig. 12 illustrates that
Erlay’s estimate is correct 96% of the time. For the cases where Erlay
under-estimates and the initial reconciliation fails, the resulting
bandwidth overhead constitutes 9% of the overall bandwidth.

In our library benchmarks the decode time for a sketch con-
taining 100 differences is under 1 millisecond (Fig. 9). Thus, the
computational cost of operating over sketches with the distribution
in Fig. 13 is negligible.

8.2 Relay latency
Fig. 14 plots the average latency for a single transaction to reach
all nodes for Erlay and BTCFlood as we vary the total number of
nodes. In this set of experiments we kept constant the ratio between
private and public types of nodes at 9 : 1 (this is the ratio in today’s
Bitcoin network).

Erlay has a constant latency overhead on top of BTCFlood that is
due to its use of batching. However, this overhead is just 2.6 seconds
and changes at approximately the same rate with the number of
nodes as BTCFlood’s latency. Erlay’s per-transaction latency can
be reduced at the cost of higher bandwidth usage. This is a tunable
parameter, subject to design constraints.
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Figure 15: Average latency for a single transaction to reach
100% nodes in the network with variable connectivity.

We chose to pay this latency overhead, because this is an ac-
ceptable cost to maximize bandwidth efficiency, as we discuss in
Sections ??.

One of Erlay’s goals is to enable higher connectivity. We there-
fore analyzed the latency of Erlay and BTCFlood for different con-
nectivities of the network. Figure 15 demonstrates that, as the con-
nectivity increases, latency significantly decreases for BTCFlood (at
high bandwidth cost), and only slightly decreases for Erlay without
significant effect on bandwidth.

To understand how transactions propagate across the network,
we measured the latency to reach a certain fraction of nodes in
the network. Figure 16 demonstrates that Erlay follows the same
propagation pattern as BTCFlood with a fairly constant overhead
of 2.6 seconds.

9 RECONCILIATION AND FLOODING
TRADE-OFF

Erlay’s design combines flooding with reconciliation to achieve a
balance between two extremes: the current flooding-only protocol
in Bitcoin (BTCFlood), and a reconciliation-only protocol. This
intuition is captured in the latency-bandwidth trade-off diagram in
Figure 6. However, does Erlay actually strike a balance? And, what
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Figure 16: Average latency for a single transaction to reach
a certain fraction of nodes in the network

other intermediate protocol alternatives lie between flooding-only
and reconciliation-only designs?

A key design choice in Erlay is to flood transactions to 8 out-
bound peers and none to the inbound peers. We have also con-
sidered other alternatives while designing Erlay. Although a full
exposition of the design space is beyond the scope of this paper, we
present a limited comparison of the latency-bandwidth trade-off
for several other protocol variants that use a different choice of
flooding inbound/outbound peers. Specifically, we used our simu-
lator to collect data about versions of the Erlay protocol that use
X inbound peers and Y outbound peers for flooding (while using
reconciliation on all links including X and Y ), for different values
of X and Y .

We ran several experiments, with each experiment being a proto-
col configuration that selects a specific X inbound and Y outbound
values. In these experiments we simulated a network of 24,000
private and 6,000 public nodes and relayed a total of 1,000 transac-
tions5. We collected transaction latency and bandwidth usage for
each experiment and Figure 17 plots the results.

Figure 17 shows that BTCFlood and Reconciliation-only indeed
lie at opposite ends of the trade-off spectrum (top left for BTCFlood
and bottom right for Reconciliation-only). And, most key, Erlay
lies closer to the bottom left corner than either configuration. This
figure also shows that configurations with other choices of values
for X and Y get close to the left corner. But they do not strike as
good a balance between latency and bandwidth as Erlay does.

10 SECURITY EVALUATION
As discussed in Section 4, Erlay must be robust to attacks under the
existing threat model. In this section we evaluate Erlay’s security.

10.1 First-spy estimator
One of Erlay’s design goals is to be more robust to timing attacks
from sybils [22, 35]. To evaluate Erlay’s robustness against timing
attacks, we simulated a network of 60,000 nodes and used first-spy
estimator approach to link transactions to nodes of their origin.

With the first-spy estimator an attacker deploys some number of
spy nodes. Each node keeps a local log of timestamped records, each
of which records (1) when the spy first learned about a transaction,

5We restricted the network size to constraint the experiment running time
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and (2) from which node the spy learned it. In our setup, at the end
of the experiment the spy nodes aggregate their logs and estimate
that the source node of a transaction is the node which was the very
first one to announce the transaction (to any of the spies). Tables 2
and 3 list the success rates of the first-spy estimator for different
number of spies, which were either private or public nodes.

While Erlay is more susceptible to spying by private nodes (Ta-
bles 2), we believe that this is acceptable for three reasons. (1) The
success rate is below 50% for both protocols, which means that this
deanonymization attack is unreliable, (2) the difference between
the two protocols is at most 10%, and (3), Erlay is materially more
susceptible to spying when there are higher levels of private spying
nodes (30%). At this level, an attack with public spies is a more
reasonable alternative since the attacker must control fewer nodes
to achieve a higher attack success rate.

By contrast, Erlay increases the cost of the deanonymization
attack by public nodes (Table 3): an attacker must control more
long-running public nodes in the network with Erlay than with
BTCFlood to achieve the same attack rate.

We also measured that increasing the connectivity with Erlay
does not change the success rate of first-spy estimation.

First-spy estimation is just one type of timing attack strategy.
Withstanding more sophisticated attacks (e.g., fingerprinting prop-
agation traces) is an open question for future research.

10.2 Stale block rate
One notable security property of PoW-based blockchains is the
stale block rate, which is the fraction of mined blocks that do not
become part of the blockchain because a concurrently mined block
is added instead. Increasing the stale block rate reduces security
of the network [20, 32, 61]. A higher latency of block relay leads
to a higher stale block rate because during the time between the

Private node spies BTCFlood Erlay
5% 18% 16%
10% 20% 20%
30% 20% 27%
60% 21% 31%

Table 2: Success rate of first-spy estimator with variable
number of private spying nodes in BTCFlood and Erlay.

Public node spies BTCFlood Erlay
5% 11% 11%
10% 19% 15%
30% 52% 32%
60% 82% 67%

Table 3: Success rate of first-spy estimator with variable
number of public spying nodes in BTCFlood and Erlay.

creation and reception of a block, other miners would mine on the
previous block instead of the latest one.

Compact Block relay [17] is a currently deployed measure in
the Bitcoin P2P stack for reducing block relay latency. Compact
Blocks performance relies on nodes in the network having all the
transactions in the block: in this case a block can be relayed between
two directly connected nodes with just one message (or in 0.5 RTT).
If at least one transaction from the block is missing, three messages
are needed (or 1.5 RTT), because a node receiving the block must
request the missing transactions.

To evaluate the protocols, we measured the round trips required
to relay blocks between two random private nodes (representing
miners) in a network of 54,000 private nodes and 6,000 public nodes.



While it is not clear whether miners run public or private nodes, we
measured the latency between private nodes because it is always
higher.

To understand the best-case behavior (the shortest possible path),
we simulated Compact Block relay of empty blocks, meaning that
every transfer between two peers took 0.5 RTT. Then, we simulated
transaction relaywith Erlay and BTCFlood, and ran Compact Blocks
at a random point of time during continuous transaction relay. We
repeated this experiment 50 times. Relaying blocks while using
BTCFlood for transaction relay took on average 2.035 RTTs, and
with Erlay 1.985 RTTs, with a best-case (empty blocks) taking 1.945
RTTs. With higher connectivity, Erlay’s latency further approaches
the best-case.

Erlay helps to reduce block relay latency between two random
private nodes because of the faster transaction relay among public
nodes (which bridge private nodes in the network), public nodes
almost always have the necessary transactions, and relay blocks
within 0.5 RTT. This result indicates that Erlay makes the network
more secure by reducing the stale block rate.

10.3 Other attacks
Eclipse attack. The combination of limited flooding and reconcilia-
tion over every link in the network makes Erlay no more susceptible
to eclipsing than with BTCFlood: unless a node is isolated from
the rest of the network by connecting only to an attacker, a node
would receive all the transactions.

Mining-related attacks. There is no direct relationship be-
tween Erlay and attacks like selfish mining [26]. By making timing
attacks more expensive, Erlay makes it harder to infer the network
topology. Inferring the topology would allow clustering the net-
work by attacking bottlenecks. Clustering the network would then
split mining efforts and introduce many stale blocks until the net-
work clusters recompose. Thus, Erlay indirectly makes the network
stronger.

Black holes.We evaluated Erlay’s latency in a simple adversar-
ial setting. For this we simulated a network in which 10% of the
public nodes are black holes and measured the time for a transaction
to reach all nodes. While it is difficult to outperform the robustness
of BTCFlood, an alternative protocol should not be dramatically
impacted by this attack.

According to ourmeasurements, while the slowdownwith BTCFlood
in this setting is 2%, the slowdown with Erlay is 20%. We believe
that this latency increase is acceptable for a batching-based proto-
col. We have ideas for heuristics that might be applied to mitigate
black-hole attacks and make Erlay less susceptible. For example,
a node might avoid reconciling with those outbound connections
that regularly provide the fewest new transactions.

Denial-of-service. Set reconciliation is a fertile ground for DoS
attacks because decoding a sketch is computationally expensive. To
prevent these attacks, in our protocol the node that is interested in
reconciliation (and the one that has to decode the sketch) initiates
reconciliation (Alice, in the example from Section 5). Bob cannot
coerce Alice to perform excessive sketch decoding.

The impact of churn.According to the data we obtained from a
long-running Bitcoin measurement node, 80% of connections to the
node were maintained for at least one day, and 95% of connections

BTCFlood Erlay
Base cost (MB)
(TX+GETDATA) 27 27

Other messages (MB) 1.06 1.1
Announcement cost (MB) 42 15

Latency (s) 1.85 2.05
Table 4: Prototype measurements collected from a 100-node
deployment comparing the latency and bandwidth of the
BTCFlood in the reference implementation against our Er-
lay implementation.

were maintained for at least one hour. This means that only a small
fraction of connections are non-persistent. We believe that the
impact of this low connection churn rate on the efficiency of the
frequent (order of seconds) set reconciliation and the overall Erlay
protocol is negligible in practice.

11 REFERENCE IMPLEMENTATION RESULTS
We implemented Erlay as part of Bitcoin Core. For this we added
584 LOC, not includingMinisketch.We used a network of 100 Azure
nodes located in 6 data centers, running a reference implementa-
tion of our protocol integrated in Bitcoin Core node software, to
evaluate Erlay in deployment. We generated and relayed 1000 trans-
actions, all originating from one node with a rate of 7 transactions
per second. We compared the average latency and bandwidth of
Erlay versus Bitcoin’s current implementation. Table 4 summarizes
our results. According to our measurements, Erlay introduced a
latency increase of 0.2 seconds, while saving 40% of the overall
node bandwidth.

As in our simulations, Erlay has a higher latency but lower
bandwidth cost, confirming our original design intent (Fig. 6).

12 DISCUSSION
Reconciliation-only relay. We believe that a reconciliation-only
transaction relay protocol would be inherently susceptible to tim-
ing attacks that could reveal the source of the transaction. Unlike
flooding, reconciliation is inherently bi-directional: an inbound con-
nection for one peer is an outbound connection for another peer.
Delays cannot be applied per-direction but rather per-link. There-
fore, BTCFlood’s diffusion delay cannot be used in reconciliation.

Set difference estimation algorithms. Erlay could use more
sophisticated algorithms to estimate set difference [15, 29]. We
have not yet integrated these algorithms for three reasons: (1) Erlay
already has a low overhead due to over- and under-estimations
(see Section 8.1), (2) those algorithms would require added code
complexity, and (3) they would increase the number of messages in
the protocol and increase bandwidth usage.

Erlay increases latency from 3.15s to 5.75s. Erlay increases
the time to relay an unconfirmed transaction across all nodes, which
is a small fraction of the end-to-end transaction processing (10
minutes). We tuned Erlay to maximize bandwidth savings assuming
that an increase in latency from 3.15s to 5.75s is acceptable. It is
possible to tune Erlay to provide the same latency as BTCFlood
by reconciling more often, but this would save 70% of transaction
relay bandwidth instead of 84%. If we tuned Erlay to provide the



same latency as BTCFlood, we could increase network connectivity
and improve the network security without additional bandwidth
overhead. Section 9 details more results from experiments that tune
the latency-bandwidth trade-off. In practice, there are 2 primary
implications of transaction relay latency increase.

Stale block rate represents the fraction of mined blocks that
become abandoned because of concurrently generated blocks. In
Section 10.2 we explained how the stale block rate correlates with
the security of the network and demonstrated that Erlay reduces
the stale block rate by reducing transaction relay latency among
public nodes.

User experience. If a transaction is accepted in an unconfirmed
state, then the user perceives the 2.6s latency increase. However,
unconfirmed transactions are rarely accepted by users. Instead,
users wait for at least 10 minutes to confirm transactions. Therefore,
we think that Erlay’s 2.6s latency increase insignificantly impacts
the users’ experience.

Compatibility with Dandelion. Dandelion is an alternative
transaction relay protocol introduced to improve the anonymity
and robustness to adversarial observers in Bitcoin [28]. Dandelion
has two phases: stem (propagation across a single link of ten nodes
on average), and fluff (relay using flooding from the last node in the
stem link). Erlay is complimentary with Dandelion: Erlay would
replace the fluff phase in Dandelion, while the stem phase of Dan-
delion would flood through both inbound and outbound links to
preserve the privacy of private nodes.

Backward compatibility. Only about 30% of Bitcoin nodes
run the latest release of Bitcoin Core6. Therefore, Erlay must be
backward compatible. If not all nodes use Erlay, then Erlay may be
activated per-link if both peers support it.

13 RELATEDWORK
Prior studies of Bitcoin’s transaction relay focused on information
leakage and other vulnerabilities [28, 54], and did not consider
bandwidth optimization. We believe that our work is the first to
introduce a bandwidth-efficient, low-latency, and robust transaction
relay alternative for Bitcoin. Erlay is designed as a minimal change
to Bitcoin (584 LOC), in contrast with other proposals that optimize
Bitcoin more deeply [25].
Short transaction identifiers. One solution to BTCFlood’s ineffi-
ciency is to use short transaction identifiers. There are two issues
with this solution. First, this only reduces bandwidth cost by a con-
stant factor. In our simulation we found that short identifiers would
reduce redundant traffic from 43% to 10%. But, with higher connec-
tivity, redundancy climbs back up faster than it does with Erlay.
The second issue with short IDs is that they would make the system
vulnerable to collision-related attacks, requiring a new per-node or
per-link secure salting strategy.
Blocksonly setting. Bitcoin Core 0.12 introduced a blocksonly
setting in which a node does not send or receive individual transac-
tions; instead, the node only handles complete blocks. As a result,
blocksonly has no INV message overhead. In the blocksonly case,
nodes will have to relay and receive many transactions at once.
This will increase the maximum node bandwidth requirements and
cause spikes in block content relay and transaction validation.

6https://luke.dashjr.org/programs/bitcoin/files/charts/security.html

Reconciliation alternatives. Prior work has also devised multi-
party set reconciliation [13, 51]. This approach, however, has addi-
tional complexity and additional trust requirements between peers.
We believe that the benefits of such an approach are not substan-
tial enough to justify these limitations. In addition, techniques
based on set reconciliation usually provide bandwidth-efficiency
under the assumptions where most of the state being reconciled is
shared [17, 56].

Network attacks on Bitcoin and connectivity. The security
of the Bitcoin network has been under substantial scrutiny with
many published network-related attacks [10–12, 18, 21, 24, 34, 36,
40, 41, 44, 47, 48, 53]. These attacks attempt to make the network
weaker (e.g., increase the probability of double-spending or denials
of service) or violate user privacy. Many of these attacks rely on
non-mining nodes and assume limited connectivity from victim
nodes. Our work allows Bitcoin nodes to have higher connectivity,
which we believe will make the network more secure.

Prior P2P research. Structured P2P networks are usually based
on Distributed Hash Tables (DHTs), in which every peer is respon-
sible for specific content [46]. In these networks research has ex-
plored the use of topology information to make efficient routing
decisions [16, 58, 62, 65]. This design, however, makes these proto-
cols leak information about the structure of the network and makes
them less robust to Byzantine faults, though limited solutions to
Byzantine faults in this setting have been explored [19, 31].

The trade-off between latency and bandwidth efficiency is well-
known in P2P research. Kumar et. al. identified and formalized
the trade-off between latency and bandwidth [42], and Jiang et. al.
proposed a solution to achieve an optimal combination of these
properties [38]. However, the solution was not designed for adver-
sarial settings. Prior work also proposed feedback-based approaches
to flooding [7, 57]. However, we believe that to work efficiently,
this work would have unacceptable information leakage.

14 CONCLUSIONS
Bitcoin is one of the most widely used P2P applications. Today,
Bitcoin relies on flooding to relay transactions in a network of
about 60,000 nodes. Flooding provides low latency and is robust to
adversarial behavior, but it is also bandwidth-inefficient and creates
a significant amount of redundant traffic. We proposed Erlay, an al-
ternative protocol that combines limited flooding with intermittent
reconciliation. We evaluated Erlay in simulation and with a prac-
tical deployment. Compared to Bitcoin’s current protocols, Erlay
reduces the bandwidth used to announce transactions by 84% while
increasing the latency for transaction dissemination by 2.6s (from
3.15s to 5.75s). Erlay allows Bitcoin nodes to have higher connec-
tivity, which will make the network more secure. We are actively
working to introduce Erlay into Bitcoin Core’s node software.
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A RELEVANCE TO OTHER BLOCKCHAINS
Erlay is relevant to most other deployed blockchains (e.g., Ethereum,
Zcash) because they use flooding for transaction relay. Even though
there might be a difference in TXID size or the number of connected
peers, the difference that matters is the transaction rate.

To demonstrate that bandwidth savings and latency are not im-
pacted by higher transaction rates, we simulated a network of 54,000
private and 6,000 public nodes with connectivity of 8, generated
transactions at different rates (from 7 tx/s to 70 tx/s), and measured
the impact of higher transaction rates on latency and bandwidth.

Figure 18 shows that the relative bandwidth savings of Erlay
is not impacted by transaction rate. Figure 19 shows that Erlay’s
latency remains constant for different transaction rates. We also
confirmed these results in a network of 100 nodes running our
prototype implementation.

At the same time, since PinSketch has quadratic complexity,
using it without modifications would lead to a high computational
cost due to reconciliation, and higher hardware requirements. To
reduce the computational cost of reconciliation, we recommend the
use of bisection from the first reconciliation step.

For example, consider a system with a network similar to Bit-
coin, but with a throughput of 700 transactions per second. If Erlay
is applied in the same way as we suggest for Bitcoin, an average
reconciliation set difference would consist of 1,000 elements. Ac-
cording to our benchmarks, straightforward reconciliation through
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Minisketch would take 1,000ms. At the same time, with bisection
recursively applied 3 times, 8 chunks consisting of 125 elements
would have to be reconciled, and this would take only 20ms. This
result makes Erlay useful in systems with higher transaction rates.
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