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The emerging ML economy

● With the explosion of machine learning (ML), data is the new currency!
○ Good quality data is vital to the health of ML ecosystems

● Improve models with more data from more sources!
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Actors in the ML economy

● Data providers: 
○ Owners of potentially private datasets
○ Contribute data to the ML process 

● Model owners:
○ Define model task and goals
○ Deploy and profit from trained model

● Infrastructure providers:
○ Host training process and model
○ Expose APIs for training and prediction
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Actors in today’s ML economy

● Data providers supply data for model owners
● Model owners:

○ Manage infrastructure to host computation
○ Provide privacy and security for data providers
○ Use the model for profit once training is complete 
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In-House privacy solutions

5

[1] Wired 2016.
[2] Apple. “Learning with Privacy at Scale” Apple Machine Learning Journal V1.8 2017.
[3] Wired 2017.
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Incentive trade-off in the ML economy

● Not only correctness, but there is an issue with incentives:
○ Data providers want to keep their data as private as possible
○ Model owners want to extract as much value from the data as possible

● Service providers lack incentives to provide fairness [1]
○ Need solutions that can work without cooperation from the system 

provider and are deployed from outside the system itself
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[1] Overdorf et al. “Questioning the assumptions behind fairness solutions.” NeurIPS 2018.
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We cannot trust model owners to control the ML 
incentive tradeoff!
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Incentives in today’s ML economy

● Data providers supply data for model owners
● Model owners have incentive to:

○ Manage infrastructure to host computation
○ Provide privacy and security for data providers
○ Use the model for profit once training is complete 
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Our contribution: Brokered learning

● Introduce a broker as a neutral infrastructure provider:
○ Manage infrastructure to host ML computation
○ Provide privacy and security for data providers and model owners
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Federated learning
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● A recent push for privacy-preserving multi-party ML [1]:
○ Send model updates over network
○ Aggregate updates across multiple clients
○ Client-side differential privacy [2]
○ Better speed, no data transfer
○ State of the art in multi-party ML

○ Brokered learning builds on 
federated learning

[1] McMahan et al. “Communication-Efficient Learning of Deep Networks from Decentralized Data” AISTATS 2017.
[2] Geyer et al. “Differentially Private Federated Learning: A Client Level Perspective” NIPS 2017. 
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● Giving data providers unmonitored control over compute: 
○ Providers can maximize privacy, give zero utility or attack system
○ Providers can attack ML model, compromising integrity [1]
○ Providers can attack other providers, compromising privacy [2]

Data providers are not to be trusted

13
[1] Bagdasaryan et al. “How To Backdoor Federated Learning” arXiv 2018.
[2] Hitaj et al. “Deep Models Under the GAN: Information Leakage from Collaborative Deep Learning” CCS 2017. 
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Putting it all together

● The state of the art in multi-party ML
○ Gives too much control to model owners 
○ Not privacy focused and vulnerable

● State of the art in private multi-party ML (federated learning)
○ Require trust in model owners or data providers 
○ But there is no incentive for either to do so

● Data marketplaces (blockchains) [1]
○ Security and system overkill
○ Much too slow for modern use cases

15[1] Hynes et al. “A Demonstration of Sterling: A Privacy-Preserving Data Marketplace” VLDB 2018.
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● Current multi-party ML systems use unsophisticated threat/incentive model: 
○ Trust the model owner

● New brokered learning setting for privacy-preserving ML
● New defences against known ML attacks for this setting
● TorMentor: A brokered learning example of an anonymous ML system

Our contributions
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Brokered Learning: A new standard for incentives in secure ML



Brokered Learning
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Brokered agreements in the ML economy

● Federated learning:
○ Communicate with model owner
○ Trust that model owner is not malicious
○ Model owners have full control over 

model and process
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● Brokered learning
○ Communicate with neutral broker
○ Broker executes model owner’s 

validation services
○ Decouple model owners and 

infrastructure



● Deployment verifier
○ Interface for model owners (“curators”)

● Provider verifier
○ Interface for data providers

● Aggregator
○ Host ML deployments
○ Collect and aggregate model updates
○ Same as federated learning

Brokered learning components
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[1] Szabo, Nick. “Formalizing and Securing Relationships on Public Networks” 1997. 

● Serves as model owner interface
○ curate(): Launch curator deployment

■ Set provider verifier parameters
○ fetch(): Access to model once trained

● Protects the ML model from abuse from 
curator during training

● E.g. Blockchain smart contracts [1]

Deployment verifier API
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● Serves as data provider interface  
○ Defined by curator
○ join(): Verify identity and allow provider join
○ update(): Verify and allow model update

● Protect model from malicious data providers
● E.g. Access tokens and statistical tests

Provider verifier API

26



Brokered learning workflow

● Curator: Create deployment
○ Define model and provide deployment 

parameters
○ Define verification services
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Admission
Parameters
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Brokered learning workflow

● Curator: Create deployment
○ Define model and provide deployment 

parameters
○ Define verification services

● Data providers: Join model and train
○ Define personal privacy preferences (ε)
○ Pass verification on join
○ Iterative model updates
○ Pass verification on model update

● Complete training
○ Return model to curator
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● Assume:
○ Broker honours verifier parameters
○ Users adhere to the given APIs for joining and model updates
○ Curators and data providers can collaborate

● Trust is based on incentives: broker is neutral to ML incentive trade-off
○ If broker attacks clients or violates curator specifications, reputation lost
○ Governments, large organizations, blockchains

Threat model
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TorMentor : An Example 
Brokered Learning System 

32



● Use brokered learning to build the first anonymous ML system:
○ Further support privacy in multi-party ML
○ Data provider and curator identity are hidden:

○ From each other and from the broker
● Meet defined learning objectives in reasonable time

○ Compared to WAN federated learning baseline

TorMentor system goals
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Implementation on Tor
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● Onion routing protocols (Tor) [1]
○ Hide source and destination of messages by communicating through 

chain of random nodes in system
○ Hide identity of users in distributed ML!
○ Deploy broker as hidden Tor service

[1] Dingledine et al. “Tor: The Second-Generation Onion Router” Usenix Security 2014.



● Libraries written in Python and Go
○ 1500 LOC Python, 600 LOC Go

● Tested on “credit card default” UCI dataset
○ Logistic classifier
○ 30000 examples, 24 features (14 MB / client)

● Deployment at scale on Azure (8 data centres)
○ Deploy curators and data providers as users over wide area network

Implementation
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Convergence at scale over Tor

With Tor Without Tor
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Convergence at scale over Tor

With Tor Without Tor
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TorMentor is within 4-10x baseline, and still 
converges while serving 200 clients on a WAN.



● Reject on Negative Influence (RONI) [1]
○ Reject datasets with negative impact on “influence” metric

■ Typically, just use validation error

● Model curator defines a distributed RONI:
○ Evaluate influence of model updates instead of data
○ Use curator provided validation set
○ Tune using data provider proof-of-work [2] 

Provider verifier
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[1] Barreno et al. “The Security of Machine Learning.” Machine Learning 81:2, 2010.
[2] Nakamoto, Satoshi. “Bitcoin: A peer-to-peer electronic cash system” 2008.



Evaluation: Provider verifier
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Evaluation: Provider verifier
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The curator can define a service through the broker 
that rejects attacks under certain conditions.



Brokered learning opportunities and 
limitations
● Modern use cases:

○ Blockchain-based data marketplaces
○ Standardizing “ML as a service”
○ GDPR Compliance

● Limitations
○ Moving from 2 actors to 3
○ Adoption from big players
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● Existing ML systems do not provide:
○ Incentives, privacy, security

● We propose brokered learning as an 
alternative to federated learning
○ APIs to protect process from model owners and data providers

● TorMentor prototype
○ Supports anonymous ML between 

data providers and curators
○ Allows curator defined process to reject 

malicious data providers

Summary of contributions

42https://github.com/DistributedML/TorML


